Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 22;66(Pt 6):o1420–o1421. doi: 10.1107/S1600536810018180

2-Amino-5-methyl­pyridinium picolinate 0.63-hydrate

Madhukar Hemamalini a, Hoong-Kun Fun a,*,
PMCID: PMC2979649  PMID: 21579497

Abstract

The asymmetric unit of the title compound, C6H9N2 +·C6H4NO2 ·0.63H2O, contains two crystallographically independent 2-amino-5-methyl­pyridinium cations, a pair of picolinate anions and two water mol­ecules, one with an occupancy of 0.25. Both the 2-amino-5-methyl­pyridine mol­ecules are protonated at the pyridine N atoms. In the crystal structure, the cations, anions and water mol­ecules are linked via N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds, as well as by C—H⋯O contacts, forming a chain along the b axis. In addition, weak π–π inter­actions are observed between pyridinium rings, with centroid–centroid distances of 3.5306 (13) Å.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); Navarro Ranninger et al. (1985); Luque et al. (1997); Qin et al. (1999); Yip et al. (1999); Ren et al. (2002); Rivas et al. (2003); Jin et al. (2001); Albrecht et al. (2003); Nahringbauer & Kvick (1977). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For details of picolinic acid, see: Mahler & Cordes (1971); Ogata et al. (2000). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1420-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C6H4NO2 ·0.63H2O

  • M r = 242.51

  • Orthorhombic, Inline graphic

  • a = 12.126 (3) Å

  • b = 13.842 (3) Å

  • c = 14.318 (3) Å

  • V = 2403.4 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.28 × 0.20 × 0.09 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.973, T max = 0.991

  • 50363 measured reflections

  • 3955 independent reflections

  • 3119 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.141

  • S = 1.09

  • 3955 reflections

  • 353 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018180/sj5005sup1.cif

e-66-o1420-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018180/sj5005Isup2.hkl

e-66-o1420-Isup2.hkl (190KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2W2⋯O2Ai 0.82 2.00 2.812 (2) 170
N1A—H1NA⋯O2Bii 0.99 (2) 1.69 (2) 2.669 (2) 170 (2)
N2A—H2NA⋯O1Bii 0.94 (3) 1.89 (3) 2.829 (2) 178 (3)
N2A—H3NA⋯N3A 0.94 (3) 2.08 (3) 3.019 (3) 177 (2)
N1B—H1NB⋯O2Ai 0.96 (3) 1.68 (3) 2.642 (2) 173 (3)
N2B—H2NB⋯N3B 0.83 (3) 2.22 (3) 3.040 (2) 173 (2)
N2B—H3NB⋯O1Ai 0.93 (2) 1.90 (2) 2.831 (3) 175 (2)
C5A—H5AA⋯O2Wiii 0.93 2.39 3.319 (3) 175
C7A—H7AA⋯O2Biv 0.93 2.42 3.217 (3) 144
C8A—H8AA⋯O2Wv 0.93 2.50 3.339 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Luque et al., 1997; Qin et al., 1999; Yip et al., 1999; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). Picolinic acid (pyridine-2-carboxylic acid) is a well known terminal tryptophan metabolite (Mahler & Cordes, 1971). It induces apoptosis in leukaemia HL-60 cells (Ogata et al., 2000). Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-methylpyridinium cations (A and B), two picolinate anions (A and B) and two water molecules, O1W and O2W (with occupancies 0.25 and 1.0, respectively), (Fig. 1). Each 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.024 (2) Å for atom C6A in cation A and 0.005 (2) Å for atom C1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A—N1A—C5A [123.2 (2)°] and C1B—N1B—C5B [123.0 (2)°] angles compared to those observed in an unprotonated structure (Nahringbauer & Kvick, 1977). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the carboxylate groups of each picolinate anion interact with the corresponding 2-amino-5-methylpyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The ionic units are linked by N—H···N, N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds, forming a one-dimensional chain along the b-axis. The crystal structure is further stabilized by π–π interactions involving the pyridinium (N1A/C1A–C5A) and pyridinium (N1B/C1B–C5B) rings, with centroid-to-centroid distance of 3.5306 (13) Å [symmetry code: 1-x, 1/2+y, 1/2-z].

Experimental

Hot methanol solutions (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and picolinic acid (62 mg, Merck) were mixed and warmed over a a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

Atoms H1NA, H2NA, H3NA, H1NB, H2NB and H3NB were located from a difference Fourier map and freely refined. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 Å, N–H = 0.82 (3)–0.97 (4) Å and O–H = 0.8098–0.8226 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O). The methyl H atoms were positioned geometrically and were refined using a riding model, with Uiso(H) = 1.5Ueq(C). A rotating group model was used for the methyl group. The occupancy of the (O1W) water molecule was initially refined and then fixed at 25% occupancy in the final refinement. In the absence of significant anomalous scattering effects, 3139 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. H atoms not involved in hydrogen bond interactions are omitted for clarity.

Crystal data

C6H9N2+·C6H4NO2·0.63H2O F(000) = 1026
Mr = 242.51 Dx = 1.340 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 7433 reflections
a = 12.126 (3) Å θ = 2.2–29.8°
b = 13.842 (3) Å µ = 0.10 mm1
c = 14.318 (3) Å T = 100 K
V = 2403.4 (10) Å3 Block, colourless
Z = 8 0.28 × 0.20 × 0.09 mm

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 3955 independent reflections
Radiation source: fine-focus sealed tube 3119 reflections with I > 2σ(I)
graphite Rint = 0.068
φ and ω scans θmax = 30.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −17→17
Tmin = 0.973, Tmax = 0.991 k = −19→19
50363 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0779P)2 + 0.4137P] where P = (Fo2 + 2Fc2)/3
3955 reflections (Δ/σ)max = 0.001
353 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1A 0.97657 (16) 0.86544 (15) 0.09594 (13) 0.0235 (4)
N2A 0.98590 (18) 0.69933 (17) 0.08274 (15) 0.0291 (5)
C1A 0.93479 (19) 0.78196 (18) 0.06311 (15) 0.0231 (4)
C2A 0.83756 (19) 0.78782 (18) 0.00781 (17) 0.0253 (5)
H2AA 0.8060 0.7319 −0.0162 0.030*
C3A 0.79046 (19) 0.87571 (18) −0.01001 (17) 0.0257 (5)
H3AA 0.7273 0.8789 −0.0467 0.031*
C4A 0.83615 (19) 0.96169 (17) 0.02636 (17) 0.0247 (5)
C5A 0.92944 (19) 0.95332 (17) 0.07947 (16) 0.0238 (5)
H5AA 0.9613 1.0085 0.1048 0.029*
C6A 0.7824 (2) 1.05808 (19) 0.01044 (19) 0.0306 (5)
H6AA 0.8170 1.1058 0.0493 0.046*
H6AB 0.7055 1.0539 0.0258 0.046*
H6AC 0.7904 1.0761 −0.0539 0.046*
O1A 1.0576 (2) 0.51193 (14) 0.1466 (2) 0.0585 (8)
O2A 1.06051 (16) 0.35162 (13) 0.15326 (14) 0.0349 (4)
N3A 0.8965 (2) 0.50822 (17) 0.01507 (19) 0.0407 (6)
C7A 0.8132 (2) 0.5040 (2) −0.0465 (2) 0.0425 (7)
H7AA 0.7946 0.5602 −0.0785 0.051*
C8A 0.7533 (2) 0.4213 (2) −0.0653 (2) 0.0373 (6)
H8AA 0.6959 0.4219 −0.1084 0.045*
C9A 0.7809 (2) 0.3379 (2) −0.0184 (2) 0.0332 (6)
H9AA 0.7420 0.2811 −0.0288 0.040*
C10A 0.8683 (2) 0.34009 (19) 0.04496 (18) 0.0280 (5)
H10A 0.8890 0.2846 0.0771 0.034*
C11A 0.9239 (2) 0.42690 (18) 0.05917 (18) 0.0282 (5)
C12A 1.0218 (2) 0.43223 (19) 0.1257 (2) 0.0319 (5)
N1B 0.24603 (16) 0.35896 (15) 0.24965 (14) 0.0233 (4)
N2B 0.25938 (19) 0.52545 (16) 0.24544 (15) 0.0271 (4)
C1B 0.29982 (19) 0.44099 (17) 0.27328 (16) 0.0230 (4)
C2B 0.39853 (18) 0.43069 (17) 0.32614 (17) 0.0251 (5)
H2BA 0.4384 0.4851 0.3438 0.030*
C3B 0.4344 (2) 0.34168 (19) 0.35063 (18) 0.0280 (5)
H3BA 0.4989 0.3362 0.3853 0.034*
C4B 0.3767 (2) 0.25626 (18) 0.32509 (17) 0.0276 (5)
C5B 0.2821 (2) 0.26944 (17) 0.27415 (17) 0.0251 (5)
H5BA 0.2415 0.2157 0.2559 0.030*
C6B 0.4152 (3) 0.15790 (19) 0.3523 (2) 0.0392 (7)
H6BA 0.3732 0.1102 0.3191 0.059*
H6BB 0.4052 0.1491 0.4182 0.059*
H6BC 0.4919 0.1511 0.3371 0.059*
O1B 0.16897 (15) 0.71003 (12) 0.20473 (13) 0.0300 (4)
O2B 0.16686 (15) 0.87068 (13) 0.18961 (13) 0.0310 (4)
N3B 0.35568 (17) 0.71727 (15) 0.30874 (15) 0.0279 (4)
C7B 0.4429 (2) 0.72461 (19) 0.3658 (2) 0.0358 (6)
H7BA 0.4767 0.6679 0.3857 0.043*
C8B 0.4858 (2) 0.8121 (2) 0.3969 (2) 0.0373 (6)
H8BA 0.5458 0.8134 0.4373 0.045*
C9B 0.4378 (2) 0.89624 (19) 0.36688 (19) 0.0332 (6)
H9BA 0.4650 0.9558 0.3860 0.040*
C10B 0.3477 (2) 0.89054 (18) 0.30724 (17) 0.0271 (5)
H10B 0.3142 0.9465 0.2851 0.033*
C11B 0.30822 (18) 0.80070 (17) 0.28102 (16) 0.0227 (4)
C12B 0.20592 (18) 0.79216 (17) 0.21971 (16) 0.0222 (4)
O1W 0.1654 (5) 0.0578 (4) 0.2767 (5) 0.0227 (12) 0.25
H1W1 0.1196 0.0966 0.2937 0.034* 0.25
H2W1 0.1398 0.0069 0.2582 0.034* 0.25
O2W 0.0279 (3) 0.15220 (18) 0.17835 (19) 0.0758 (10)
H1W2 −0.0219 0.1402 0.2150 0.114*
H2W2 0.0312 0.2103 0.1667 0.114*
H1NA 1.044 (3) 0.858 (3) 0.131 (3) 0.050 (10)*
H2NA 1.049 (3) 0.702 (3) 0.124 (3) 0.060 (11)*
H3NA 0.959 (3) 0.638 (2) 0.064 (2) 0.034 (8)*
H1NB 0.177 (3) 0.359 (3) 0.219 (3) 0.061 (11)*
H2NB 0.292 (3) 0.574 (2) 0.263 (2) 0.037 (9)*
H3NB 0.193 (3) 0.525 (3) 0.212 (2) 0.045 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0208 (9) 0.0264 (10) 0.0232 (9) 0.0005 (8) −0.0022 (8) 0.0015 (8)
N2A 0.0295 (10) 0.0258 (11) 0.0318 (11) 0.0013 (9) −0.0059 (9) 0.0014 (9)
C1A 0.0233 (10) 0.0254 (11) 0.0206 (10) 0.0000 (9) 0.0007 (9) 0.0010 (9)
C2A 0.0242 (10) 0.0245 (11) 0.0274 (11) −0.0028 (9) −0.0029 (9) −0.0013 (9)
C3A 0.0205 (10) 0.0314 (12) 0.0253 (11) −0.0022 (9) −0.0019 (9) 0.0026 (9)
C4A 0.0231 (10) 0.0248 (11) 0.0263 (11) 0.0013 (9) 0.0032 (9) 0.0031 (9)
C5A 0.0240 (10) 0.0217 (11) 0.0257 (11) −0.0007 (9) 0.0002 (9) −0.0008 (9)
C6A 0.0275 (11) 0.0281 (12) 0.0361 (13) 0.0001 (10) −0.0007 (10) 0.0047 (11)
O1A 0.0586 (14) 0.0248 (10) 0.0922 (19) −0.0069 (10) −0.0532 (14) 0.0083 (11)
O2A 0.0308 (9) 0.0263 (9) 0.0475 (11) −0.0005 (7) −0.0147 (8) 0.0024 (8)
N3A 0.0420 (13) 0.0305 (12) 0.0495 (14) −0.0023 (10) −0.0252 (12) 0.0033 (11)
C7A 0.0435 (16) 0.0355 (15) 0.0483 (16) 0.0052 (13) −0.0225 (14) 0.0034 (13)
C8A 0.0311 (13) 0.0435 (16) 0.0373 (14) 0.0067 (12) −0.0122 (11) −0.0120 (12)
C9A 0.0267 (12) 0.0338 (14) 0.0392 (14) −0.0009 (10) −0.0045 (11) −0.0136 (11)
C10A 0.0242 (11) 0.0293 (12) 0.0305 (12) 0.0010 (10) 0.0006 (9) −0.0032 (10)
C11A 0.0265 (11) 0.0263 (12) 0.0318 (12) −0.0001 (10) −0.0057 (10) −0.0009 (10)
C12A 0.0298 (12) 0.0253 (12) 0.0407 (14) −0.0018 (10) −0.0125 (11) 0.0017 (11)
N1B 0.0228 (9) 0.0216 (10) 0.0255 (9) 0.0017 (8) −0.0028 (8) −0.0009 (8)
N2B 0.0292 (10) 0.0215 (10) 0.0305 (11) 0.0005 (9) −0.0057 (9) 0.0004 (8)
C1B 0.0225 (10) 0.0235 (11) 0.0230 (10) 0.0006 (9) 0.0019 (8) 0.0003 (9)
C2B 0.0209 (10) 0.0249 (11) 0.0294 (12) −0.0010 (9) −0.0036 (9) −0.0018 (9)
C3B 0.0246 (11) 0.0298 (13) 0.0295 (12) 0.0024 (9) −0.0051 (9) 0.0019 (10)
C4B 0.0300 (12) 0.0246 (11) 0.0281 (11) 0.0028 (10) −0.0030 (10) 0.0016 (9)
C5B 0.0277 (11) 0.0208 (11) 0.0268 (11) −0.0004 (9) −0.0017 (9) −0.0001 (9)
C6B 0.0436 (15) 0.0250 (12) 0.0490 (16) 0.0054 (12) −0.0147 (13) 0.0054 (12)
O1B 0.0288 (8) 0.0233 (8) 0.0378 (10) 0.0010 (7) −0.0088 (8) −0.0037 (7)
O2B 0.0280 (8) 0.0267 (9) 0.0382 (10) −0.0038 (7) −0.0098 (8) 0.0084 (8)
N3B 0.0256 (10) 0.0254 (10) 0.0327 (10) −0.0018 (8) −0.0074 (8) 0.0038 (8)
C7B 0.0348 (13) 0.0256 (13) 0.0470 (15) −0.0031 (11) −0.0183 (12) 0.0069 (11)
C8B 0.0367 (13) 0.0322 (14) 0.0432 (15) −0.0102 (12) −0.0176 (12) 0.0065 (12)
C9B 0.0376 (14) 0.0236 (12) 0.0385 (14) −0.0115 (10) −0.0126 (12) 0.0055 (11)
C10B 0.0294 (12) 0.0200 (11) 0.0320 (12) −0.0043 (9) −0.0048 (10) 0.0048 (9)
C11B 0.0207 (10) 0.0246 (11) 0.0227 (10) −0.0032 (9) 0.0004 (8) 0.0026 (9)
C12B 0.0206 (9) 0.0237 (11) 0.0222 (10) −0.0007 (9) 0.0007 (8) 0.0016 (9)
O1W 0.018 (3) 0.017 (3) 0.032 (3) 0.000 (2) 0.005 (3) −0.001 (3)
O2W 0.122 (3) 0.0424 (13) 0.0626 (15) −0.0350 (16) 0.0451 (17) −0.0191 (12)

Geometric parameters (Å, °)

N1A—C1A 1.347 (3) N1B—H1NB 0.95 (4)
N1A—C5A 1.365 (3) N2B—C1B 1.329 (3)
N1A—H1NA 0.97 (4) N2B—H2NB 0.82 (3)
N2A—C1A 1.331 (3) N2B—H3NB 0.93 (3)
N2A—H2NA 0.96 (4) C1B—C2B 1.423 (3)
N2A—H3NA 0.94 (3) C2B—C3B 1.353 (3)
C1A—C2A 1.423 (3) C2B—H2BA 0.9300
C2A—C3A 1.368 (3) C3B—C4B 1.421 (4)
C2A—H2AA 0.9300 C3B—H3BA 0.9300
C3A—C4A 1.412 (3) C4B—C5B 1.371 (3)
C3A—H3AA 0.9300 C4B—C6B 1.491 (3)
C4A—C5A 1.368 (3) C5B—H5BA 0.9300
C4A—C6A 1.502 (3) C6B—H6BA 0.9600
C5A—H5AA 0.9300 C6B—H6BB 0.9600
C6A—H6AA 0.9600 C6B—H6BC 0.9600
C6A—H6AB 0.9600 O1B—C12B 1.241 (3)
C6A—H6AC 0.9600 O2B—C12B 1.262 (3)
O1A—C12A 1.223 (3) N3B—C7B 1.340 (3)
O2A—C12A 1.273 (3) N3B—C11B 1.350 (3)
N3A—C11A 1.333 (3) C7B—C8B 1.391 (4)
N3A—C7A 1.343 (3) C7B—H7BA 0.9300
C7A—C8A 1.382 (4) C8B—C9B 1.372 (4)
C7A—H7AA 0.9300 C8B—H8BA 0.9300
C8A—C9A 1.376 (4) C9B—C10B 1.389 (3)
C8A—H8AA 0.9300 C9B—H9BA 0.9300
C9A—C10A 1.395 (3) C10B—C11B 1.384 (3)
C9A—H9AA 0.9300 C10B—H10B 0.9300
C10A—C11A 1.393 (3) C11B—C12B 1.524 (3)
C10A—H10A 0.9300 O1W—H1W1 0.8098
C11A—C12A 1.523 (3) O1W—H2W1 0.8148
N1B—C1B 1.353 (3) O2W—H1W2 0.8172
N1B—C5B 1.360 (3) O2W—H2W2 0.8226
C1A—N1A—C5A 123.2 (2) C1B—N1B—H1NB 123 (2)
C1A—N1A—H1NA 114 (2) C5B—N1B—H1NB 114 (2)
C5A—N1A—H1NA 122 (2) C1B—N2B—H2NB 117 (2)
C1A—N2A—H2NA 118 (2) C1B—N2B—H3NB 117 (2)
C1A—N2A—H3NA 123.3 (19) H2NB—N2B—H3NB 126 (3)
H2NA—N2A—H3NA 119 (3) N2B—C1B—N1B 119.1 (2)
N2A—C1A—N1A 119.2 (2) N2B—C1B—C2B 123.9 (2)
N2A—C1A—C2A 123.5 (2) N1B—C1B—C2B 117.0 (2)
N1A—C1A—C2A 117.2 (2) C3B—C2B—C1B 119.9 (2)
C3A—C2A—C1A 120.0 (2) C3B—C2B—H2BA 120.0
C3A—C2A—H2AA 120.0 C1B—C2B—H2BA 120.0
C1A—C2A—H2AA 120.0 C2B—C3B—C4B 122.2 (2)
C2A—C3A—C4A 121.1 (2) C2B—C3B—H3BA 118.9
C2A—C3A—H3AA 119.4 C4B—C3B—H3BA 118.9
C4A—C3A—H3AA 119.4 C5B—C4B—C3B 116.0 (2)
C5A—C4A—C3A 117.3 (2) C5B—C4B—C6B 121.5 (2)
C5A—C4A—C6A 121.2 (2) C3B—C4B—C6B 122.6 (2)
C3A—C4A—C6A 121.5 (2) N1B—C5B—C4B 121.8 (2)
N1A—C5A—C4A 121.2 (2) N1B—C5B—H5BA 119.1
N1A—C5A—H5AA 119.4 C4B—C5B—H5BA 119.1
C4A—C5A—H5AA 119.4 C4B—C6B—H6BA 109.5
C4A—C6A—H6AA 109.5 C4B—C6B—H6BB 109.5
C4A—C6A—H6AB 109.5 H6BA—C6B—H6BB 109.5
H6AA—C6A—H6AB 109.5 C4B—C6B—H6BC 109.5
C4A—C6A—H6AC 109.5 H6BA—C6B—H6BC 109.5
H6AA—C6A—H6AC 109.5 H6BB—C6B—H6BC 109.5
H6AB—C6A—H6AC 109.5 C7B—N3B—C11B 116.8 (2)
C11A—N3A—C7A 117.5 (2) N3B—C7B—C8B 123.8 (2)
N3A—C7A—C8A 124.0 (3) N3B—C7B—H7BA 118.1
N3A—C7A—H7AA 118.0 C8B—C7B—H7BA 118.1
C8A—C7A—H7AA 118.0 C9B—C8B—C7B 118.7 (2)
C9A—C8A—C7A 118.1 (2) C9B—C8B—H8BA 120.7
C9A—C8A—H8AA 120.9 C7B—C8B—H8BA 120.7
C7A—C8A—H8AA 120.9 C8B—C9B—C10B 118.6 (2)
C8A—C9A—C10A 119.0 (2) C8B—C9B—H9BA 120.7
C8A—C9A—H9AA 120.5 C10B—C9B—H9BA 120.7
C10A—C9A—H9AA 120.5 C11B—C10B—C9B 119.3 (2)
C11A—C10A—C9A 118.8 (2) C11B—C10B—H10B 120.3
C11A—C10A—H10A 120.6 C9B—C10B—H10B 120.3
C9A—C10A—H10A 120.6 N3B—C11B—C10B 122.8 (2)
N3A—C11A—C10A 122.6 (2) N3B—C11B—C12B 116.7 (2)
N3A—C11A—C12A 116.7 (2) C10B—C11B—C12B 120.5 (2)
C10A—C11A—C12A 120.7 (2) O1B—C12B—O2B 126.5 (2)
O1A—C12A—O2A 125.7 (2) O1B—C12B—C11B 117.7 (2)
O1A—C12A—C11A 118.3 (2) O2B—C12B—C11B 115.8 (2)
O2A—C12A—C11A 116.0 (2) H1W1—O1W—H2W1 114.2
C1B—N1B—C5B 123.0 (2) H1W2—O2W—H2W2 111.4
C5A—N1A—C1A—N2A −179.8 (2) C5B—N1B—C1B—N2B 179.2 (2)
C5A—N1A—C1A—C2A 0.8 (3) C5B—N1B—C1B—C2B 0.1 (3)
N2A—C1A—C2A—C3A −179.4 (2) N2B—C1B—C2B—C3B −179.2 (2)
N1A—C1A—C2A—C3A 0.0 (3) N1B—C1B—C2B—C3B −0.2 (3)
C1A—C2A—C3A—C4A −0.6 (4) C1B—C2B—C3B—C4B 0.2 (4)
C2A—C3A—C4A—C5A 0.4 (3) C2B—C3B—C4B—C5B −0.1 (4)
C2A—C3A—C4A—C6A −177.5 (2) C2B—C3B—C4B—C6B −179.6 (3)
C1A—N1A—C5A—C4A −1.0 (3) C1B—N1B—C5B—C4B 0.0 (4)
C3A—C4A—C5A—N1A 0.4 (3) C3B—C4B—C5B—N1B 0.0 (4)
C6A—C4A—C5A—N1A 178.3 (2) C6B—C4B—C5B—N1B 179.5 (2)
C11A—N3A—C7A—C8A 1.3 (5) C11B—N3B—C7B—C8B 0.0 (4)
N3A—C7A—C8A—C9A −0.3 (5) N3B—C7B—C8B—C9B −1.1 (5)
C7A—C8A—C9A—C10A −0.6 (4) C7B—C8B—C9B—C10B 0.6 (4)
C8A—C9A—C10A—C11A 0.6 (4) C8B—C9B—C10B—C11B 0.9 (4)
C7A—N3A—C11A—C10A −1.4 (4) C7B—N3B—C11B—C10B 1.6 (4)
C7A—N3A—C11A—C12A 177.5 (3) C7B—N3B—C11B—C12B −177.3 (2)
C9A—C10A—C11A—N3A 0.5 (4) C9B—C10B—C11B—N3B −2.1 (4)
C9A—C10A—C11A—C12A −178.3 (2) C9B—C10B—C11B—C12B 176.8 (2)
N3A—C11A—C12A—O1A 11.8 (4) N3B—C11B—C12B—O1B 4.8 (3)
C10A—C11A—C12A—O1A −169.3 (3) C10B—C11B—C12B—O1B −174.2 (2)
N3A—C11A—C12A—O2A −166.9 (3) N3B—C11B—C12B—O2B −175.6 (2)
C10A—C11A—C12A—O2A 12.0 (4) C10B—C11B—C12B—O2B 5.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2W—H2W2···O2Ai 0.82 2.00 2.812 (2) 170
N1A—H1NA···O2Bii 0.99 (2) 1.69 (2) 2.669 (2) 170 (2)
N2A—H2NA···O1Bii 0.94 (3) 1.89 (3) 2.829 (2) 178 (3)
N2A—H3NA···N3A 0.94 (3) 2.08 (3) 3.019 (3) 177 (2)
N1B—H1NB···O2Ai 0.96 (3) 1.68 (3) 2.642 (2) 173 (3)
N2B—H2NB···N3B 0.83 (3) 2.22 (3) 3.040 (2) 173 (2)
N2B—H3NB···O1Ai 0.93 (2) 1.90 (2) 2.831 (3) 175 (2)
C5A—H5AA···O2Wiii 0.93 2.39 3.319 (3) 175
C7A—H7AA···O2Biv 0.93 2.42 3.217 (3) 144
C8A—H8AA···O2Wv 0.93 2.50 3.339 (3) 151

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, −y+3/2, −z; (v) x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5005).

References

  1. Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr.33, 269–276.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  6. Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  7. Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  8. Jin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr.31, 191–195.
  9. Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  10. Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.
  11. Mahler, H. R. & Cordes, E. H. (1971). Biological Chemistry, 2nd ed., pp. 801–803. New York: Harper and Row Publishers.
  12. Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.
  13. Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21–22.
  14. Ogata, S., Takeuchi, M., Fujita, H., Shibata, K., Okumura, K. & Taguchi, H. (2000). Biosci. Biotechnol. Biochem.64, 327–332. [DOI] [PubMed]
  15. Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
  16. Qin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461–3464.
  17. Ren, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Chin. J. Struct. Chem.21, 38–41.
  18. Rivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339–3349.
  19. Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Yip, J. H. K., Feng, R. & Vittal, J. J. (1999). Inorg. Chem.38, 3586–3589. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018180/sj5005sup1.cif

e-66-o1420-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018180/sj5005Isup2.hkl

e-66-o1420-Isup2.hkl (190KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES