Abstract
The structure of the title compound, [CoII(C2H8N2)3]SO4, the cobalt example of [M(C2H8N2)3]SO4, is reported. The Co and S atoms are located at the 2d and 2c Wyckoff sites (point symmetry 32), respectively. The Co atom is coordinated by six N atoms of three chelating ethylenediamine molecules generated from half of the ethylenediamine molecule in the asymmetric unit. The O atoms of the sulfate anion are disordered mostly over two crystallographic sites. The third disorder site of O (site symmetry 3) has a site occupancy approaching zero. The H atoms of the ethylenediamine molecules interact with the sulfate anions via intermolecular N—H⋯O hydrogen-bonding interactions.
Related literature
For isostructural [M(C2H8N2)3]SO4 complexes, see: Haque et al. (1970 ▶); Cullen & Lingafelter (1970 ▶); Daniels et al. (1995 ▶); Lu (2009 ▶) for the nickel, copper, vanadium and manganese analogues, respectively.
Experimental
Crystal data
[Co(C2H8N2)3]SO4
M r = 335.30
Trigonal,
a = 8.9920 (2) Å
c = 9.5927 (3) Å
V = 671.71 (3) Å3
Z = 2
Mo Kα radiation
μ = 1.45 mm−1
T = 298 K
0.48 × 0.22 × 0.20 mm
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.543, T max = 0.760
3638 measured reflections
688 independent reflections
589 reflections with I > 2σ(I)
R int = 0.027
Refinement
R[F 2 > 2σ(F 2)] = 0.028
wR(F 2) = 0.069
S = 1.06
688 reflections
47 parameters
16 restraints
H-atom parameters constrained
Δρmax = 0.25 e Å−3
Δρmin = −0.29 e Å−3
Data collection: SMART (Bruker, 2003 ▶); cell refinement: SAINT (Bruker, 2003 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶) and WinGX (Farrugia, 1999 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶) and WinGX (Farrugia, 1999 ▶); molecular graphics: DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016168/tk2667sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016168/tk2667Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1A⋯O3i | 0.90 | 2.13 | 2.889 (12) | 142 |
| N1—H1A⋯O1i | 0.90 | 2.15 | 3.049 (7) | 176 |
| N1—H1A⋯O2ii | 0.90 | 2.22 | 3.054 (8) | 155 |
| N1—H1A⋯O2iii | 0.90 | 2.32 | 3.104 (11) | 145 |
| N1—H1B⋯O2iv | 0.90 | 1.98 | 2.843 (6) | 161 |
| N1—H1B⋯O1 | 0.90 | 2.48 | 3.353 (14) | 165 |
| N1—H1B⋯O1v | 0.90 | 2.52 | 3.256 (10) | 139 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Acknowledgments
This work was supported financially by the Thailand Research Fund and the Center of Excellence for Innovation in Chemistry. BY thanks the Royal Golden Jubilee PhD program and the Graduate School of Chiang Mai University for a graduate scholarship.
supplementary crystallographic information
Comment
The title complex, [CoII(C2H8N2)3]SO4 (Fig. 1), is isostructural to the earlier reported [NiII(C2H8N2)3]SO4 (Haque et al.,, 1970), [VII(C2H8N2)3]SO4 (Daniels et al., 1995), [MnII(C2H8N2)3]SO4 (Lu, 2009) and [CuII(C2H8N2)3]SO4 (Cullen & Lingafelter, 1970) complexes, constituting the [MII(C2H2N2)3]SO4 series. The [MII(C2H2N2)3]SO4 structures crystallize in the same trigonal space group of P31c with quite similar cell parameters. Likewise, the metal and sulfur atoms are positioned in the same crystallographic sites; MII on the 2d and S on the 2c Wyckoff sites (each with point symmetry 32). The disorder about the six-fold rotation axis found in the sulfate anion is intriguingly common in each structure, although the number of unique O atoms varies from two to four. In the structure of [CoII(C2H8N2)3]SO4, the O atoms were refined as being disordered over three crystallographic sites, although the site occupancy of O3 located on the 4f Wyckoff site approaches zero. The bond length associated with this O3 atom (S1—O3; 1.382 (16) Å) is notably shorter than the other S—O bonds (1.431 (5)–1.445 (5) Å). The disordered sulfate anions are linked to the [CoII(C2H8N2)3]2+ cations by hydrogen bonding interactions of N—H···O type to form a hydrogen-bonding supramolecular network. The hydrogen bonding geometries are consistent with those of the previously reported [MII(C2H2N2)3]SO4 complexes.
Experimental
Orange blocks of the title complex were synthesized and grown from the sovolthermal reaction of Co(NO3)2.6H2O (1.34 mmol), NH2SO3H (1.34 mmol), NH2C2H4NH2 (3.89 mmol) in ethylene glycol (160 mmol), conducted at 453 K for 72 h.
Refinement
The O atoms were positioned from a difference Fourier map, and refined with restraints using commands SUMP, SADI and SIMU in SHELXL (Sheldrick, 2008). Although there was an indication for further splitting of the O2 atom, after the final cycles of refinement, such action did not give a better result. All H-atoms were treated as riding groups on the bonded atoms, with C—H = 0.97 Å and N—H 0.90 Å, and with Uiso(H) = 1.2Uequiv(C, N).
Figures
Fig. 1.
View of the title complex showing atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. [Symmetry codes: (i) -y+1, x-y, z; (ii) -x+y+1, -x+1, z; (iii) -y+1, -x+1, -z+1/2; (iv) -x+y+1, y, -z+1/2; (v) x, x-y, -z+1/2; (vi) -y+1, x-y+1, z, (vii) -x+y, -x+1, z; (viii) -x+y, y, -z+1/2; (ix) x, x-y+1, -z+1/2]. Hydrogen atoms are omitted.
Fig. 2.
View of the hydrogen bonding interactions (dotted lines) between the disordered sulfate O atoms and the amino-H atoms of the [CoII(C2H8N2)]2+ cations. [Symmetry codes: (ii) -x+y+1, -x+1, z; (iii) -y+1, -x+1, -z+1/2; (viii) -x+y, y, -z+1/2; (ix) x, x-y+1, -z+1/2; (xiii) y, x, z+1/2; (xiv) -y+x, -y+1, -z+1/2; (xv) -x+1, -x+y+1, z+1/2].
Crystal data
| [Co(C2H8N2)3]SO4 | Dx = 1.658 Mg m−3 |
| Mr = 335.30 | Mo Kα radiation, λ = 0.71073 Å |
| Trigonal, P31c | Cell parameters from 589 reflections |
| Hall symbol: -P 3 2c | θ = 2.6–31.0° |
| a = 8.9920 (2) Å | µ = 1.45 mm−1 |
| c = 9.5927 (3) Å | T = 298 K |
| V = 671.71 (3) Å3 | Block, orange |
| Z = 2 | 0.48 × 0.22 × 0.20 mm |
| F(000) = 354 |
Data collection
| Bruker SMART CCD area-detector diffractometer | 688 independent reflections |
| Radiation source: fine-focus sealed tube | 589 reflections with I > 2σ(I) |
| graphite | Rint = 0.027 |
| ? scan | θmax = 31.0°, θmin = 2.6° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→10 |
| Tmin = 0.543, Tmax = 0.760 | k = −11→11 |
| 3638 measured reflections | l = −11→13 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.069 | H-atom parameters constrained |
| S = 1.06 | w = 1/[σ2(Fo2) + (0.0354P)2 + 0.1217P] where P = (Fo2 + 2Fc2)/3 |
| 688 reflections | (Δ/σ)max < 0.001 |
| 47 parameters | Δρmax = 0.25 e Å−3 |
| 16 restraints | Δρmin = −0.29 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Co1 | 0.6667 | 0.3333 | 0.2500 | 0.02175 (16) | |
| N1 | 0.68784 (18) | 0.54599 (18) | 0.12760 (13) | 0.0332 (3) | |
| H1A | 0.6936 | 0.5265 | 0.0363 | 0.040* | |
| H1B | 0.5954 | 0.5579 | 0.1418 | 0.040* | |
| S1 | 0.3333 | 0.6667 | 0.2500 | 0.0240 (2) | |
| C1 | 0.8446 (2) | 0.7024 (2) | 0.17145 (19) | 0.0388 (4) | |
| H1C | 0.8405 | 0.8031 | 0.1409 | 0.047* | |
| H1D | 0.9444 | 0.7056 | 0.1297 | 0.047* | |
| O1 | 0.3029 (19) | 0.5088 (9) | 0.1852 (8) | 0.096 (3) | 0.319 (8) |
| O2 | 0.339 (2) | 0.7851 (9) | 0.1475 (6) | 0.096 (4) | 0.316 (9) |
| O3 | 0.3333 | 0.6667 | 0.1059 (16) | 0.086 (8) | 0.094 (10) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Co1 | 0.0226 (2) | 0.0226 (2) | 0.0201 (2) | 0.01129 (10) | 0.000 | 0.000 |
| N1 | 0.0410 (8) | 0.0330 (7) | 0.0283 (7) | 0.0204 (6) | −0.0033 (5) | 0.0031 (5) |
| S1 | 0.0243 (3) | 0.0243 (3) | 0.0233 (4) | 0.01215 (14) | 0.000 | 0.000 |
| C1 | 0.0445 (10) | 0.0267 (8) | 0.0413 (9) | 0.0147 (7) | 0.0058 (7) | 0.0076 (6) |
| O1 | 0.185 (9) | 0.051 (4) | 0.063 (4) | 0.069 (5) | −0.012 (5) | −0.016 (3) |
| O2 | 0.194 (12) | 0.055 (4) | 0.044 (3) | 0.067 (5) | −0.012 (4) | 0.012 (3) |
| O3 | 0.118 (11) | 0.118 (11) | 0.021 (11) | 0.059 (5) | 0.000 | 0.000 |
Geometric parameters (Å, °)
| Co1—N1i | 2.1696 (13) | S1—O2vi | 1.431 (5) |
| Co1—N1ii | 2.1696 (13) | S1—O2v | 1.431 (5) |
| Co1—N1iii | 2.1696 (13) | S1—O2vii | 1.431 (5) |
| Co1—N1iv | 2.1696 (13) | S1—O2viii | 1.431 (5) |
| Co1—N1 | 2.1696 (13) | S1—O2ix | 1.431 (5) |
| Co1—N1v | 2.1696 (13) | S1—O1ix | 1.445 (5) |
| N1—C1 | 1.469 (2) | S1—O1viii | 1.445 (5) |
| N1—H1A | 0.9000 | S1—O1vi | 1.445 (5) |
| N1—H1B | 0.9000 | S1—O1vii | 1.445 (5) |
| S1—O3 | 1.382 (16) | C1—C1iv | 1.512 (4) |
| S1—O3v | 1.382 (16) | C1—H1C | 0.9700 |
| S1—O2 | 1.431 (5) | C1—H1D | 0.9700 |
| N1i—Co1—N1ii | 80.49 (7) | O2viii—S1—O1viii | 110.7 (4) |
| N1i—Co1—N1iii | 93.48 (5) | O2ix—S1—O1viii | 138.0 (11) |
| N1ii—Co1—N1iii | 93.17 (8) | O1ix—S1—O1viii | 63.4 (8) |
| N1i—Co1—N1iv | 93.17 (8) | O3—S1—O1vi | 64.5 (3) |
| N1ii—Co1—N1iv | 93.48 (5) | O3v—S1—O1vi | 115.5 (3) |
| N1iii—Co1—N1iv | 171.28 (7) | O2—S1—O1vi | 57.2 (5) |
| N1i—Co1—N1 | 93.48 (5) | O2vi—S1—O1vi | 110.7 (4) |
| N1ii—Co1—N1 | 171.28 (8) | O2v—S1—O1vi | 138.0 (11) |
| N1iii—Co1—N1 | 93.48 (5) | O2vii—S1—O1vi | 69.9 (6) |
| N1iv—Co1—N1 | 80.49 (7) | O2viii—S1—O1vi | 45.7 (4) |
| N1i—Co1—N1v | 171.28 (8) | O2ix—S1—O1vi | 119.2 (10) |
| N1ii—Co1—N1v | 93.48 (5) | O1ix—S1—O1vi | 93.3 (11) |
| N1iii—Co1—N1v | 80.49 (7) | O1viii—S1—O1vi | 102.9 (4) |
| N1iv—Co1—N1v | 93.48 (5) | O3—S1—O1vii | 115.5 (3) |
| N1—Co1—N1v | 93.17 (8) | O3v—S1—O1vii | 64.5 (3) |
| C1—N1—Co1 | 107.94 (10) | O2—S1—O1vii | 138.0 (11) |
| C1—N1—H1A | 110.1 | O2vi—S1—O1vii | 69.9 (6) |
| Co1—N1—H1A | 110.1 | O2v—S1—O1vii | 57.2 (5) |
| C1—N1—H1B | 110.1 | O2vii—S1—O1vii | 110.7 (4) |
| Co1—N1—H1B | 110.1 | O2viii—S1—O1vii | 119.2 (10) |
| H1A—N1—H1B | 108.4 | O2ix—S1—O1vii | 45.7 (4) |
| O3—S1—O3v | 180.000 (3) | O1ix—S1—O1vii | 102.9 (4) |
| O3—S1—O2 | 46.6 (3) | O1viii—S1—O1vii | 93.3 (11) |
| O3v—S1—O2 | 133.4 (3) | O1vi—S1—O1vii | 161.1 (12) |
| O3—S1—O2vi | 46.6 (3) | N1—C1—C1iv | 108.84 (12) |
| O3v—S1—O2vi | 133.4 (3) | N1—C1—H1C | 109.9 |
| O2—S1—O2vi | 78.0 (5) | C1iv—C1—H1C | 109.9 |
| O3—S1—O2v | 133.4 (3) | N1—C1—H1D | 109.9 |
| O3v—S1—O2v | 46.6 (3) | C1iv—C1—H1D | 109.9 |
| O2—S1—O2v | 104.4 (11) | H1C—C1—H1D | 108.3 |
| O2vi—S1—O2v | 99.7 (7) | O2vi—O1—O2viii | 91.9 (8) |
| O3—S1—O2vii | 133.4 (3) | O2vi—O1—S1 | 66.5 (5) |
| O3v—S1—O2vii | 46.6 (3) | O2viii—O1—S1 | 60.9 (3) |
| O2—S1—O2vii | 99.7 (7) | O2vi—O1—O1vii | 75.7 (11) |
| O2vi—S1—O2vii | 176.3 (13) | O2viii—O1—O1vii | 117.8 (4) |
| O2v—S1—O2vii | 78.0 (5) | S1—O1—O1vii | 58.3 (4) |
| O3—S1—O2viii | 46.6 (3) | O2vi—O1—O2ix | 108.3 (7) |
| O3v—S1—O2viii | 133.4 (3) | O2viii—O1—O2ix | 92.2 (8) |
| O2—S1—O2viii | 78.0 (5) | S1—O1—O2ix | 54.6 (4) |
| O2vi—S1—O2viii | 78.0 (5) | O1viii—O2—O1vi | 129.8 (7) |
| O2v—S1—O2viii | 176.3 (13) | O1viii—O2—S1 | 67.8 (4) |
| O2vii—S1—O2viii | 104.4 (11) | O1vi—O2—S1 | 61.9 (4) |
| O3—S1—O2ix | 133.4 (3) | O1viii—O2—O1ix | 63.3 (12) |
| O3v—S1—O2ix | 46.6 (3) | O1vi—O2—O1ix | 87.5 (9) |
| O2—S1—O2ix | 176.3 (13) | S1—O2—O1ix | 55.5 (3) |
| O2vi—S1—O2ix | 104.4 (11) | O1viii—O2—O2vi | 49.8 (6) |
| O2v—S1—O2ix | 78.0 (5) | O1vi—O2—O2vi | 95.3 (5) |
| O2vii—S1—O2ix | 78.0 (5) | S1—O2—O2vi | 51.0 (2) |
| O2viii—S1—O2ix | 99.7 (7) | O1ix—O2—O2vi | 91.9 (8) |
| O3—S1—O1ix | 115.5 (3) | O1viii—O2—O2viii | 106.1 (5) |
| O3v—S1—O1ix | 64.5 (3) | S1—O2—O2viii | 51.0 (2) |
| O2—S1—O1ix | 69.9 (6) | O1ix—O2—O2viii | 102.2 (4) |
| O2vi—S1—O1ix | 119.2 (10) | O2vi—O2—O2viii | 60.000 (1) |
| O2v—S1—O1ix | 45.7 (4) | O2vi—O3—O2viii | 107.9 (8) |
| O2vii—S1—O1ix | 57.2 (5) | O2vi—O3—S1 | 69.0 (8) |
| O2viii—S1—O1ix | 138.0 (11) | O2viii—O3—S1 | 69.0 (8) |
| O2ix—S1—O1ix | 110.7 (4) | O2vi—O3—O1viii | 61.1 (6) |
| O3—S1—O1viii | 64.5 (3) | O2viii—O3—O1viii | 128.2 (13) |
| O3v—S1—O1viii | 115.5 (3) | S1—O3—O1viii | 59.8 (5) |
| O2—S1—O1viii | 45.7 (4) | O2vi—O3—O1vi | 128.2 (13) |
| O2vi—S1—O1viii | 57.2 (5) | O2viii—O3—O1vi | 47.4 (6) |
| O2v—S1—O1viii | 69.9 (6) | S1—O3—O1vi | 59.8 (5) |
| O2vii—S1—O1viii | 119.2 (10) | O1viii—O3—O1vi | 96.9 (7) |
Symmetry codes: (i) −x+y+1, −x+1, z; (ii) x, x−y, −z+1/2; (iii) −y+1, x−y, z; (iv) −x+y+1, y, −z+1/2; (v) −y+1, −x+1, −z+1/2; (vi) −y+1, x−y+1, z; (vii) −x+y, y, −z+1/2; (viii) −x+y, −x+1, z; (ix) x, x−y+1, −z+1/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···O3x | 0.90 | 2.13 | 2.889 (12) | 142 |
| N1—H1A···O1x | 0.90 | 2.15 | 3.049 (7) | 176 |
| N1—H1A···O2xi | 0.90 | 2.22 | 3.054 (8) | 155 |
| N1—H1A···O2xii | 0.90 | 2.32 | 3.104 (11) | 145 |
| N1—H1B···O2viii | 0.90 | 1.98 | 2.843 (6) | 161 |
| N1—H1B···O1 | 0.90 | 2.48 | 3.353 (14) | 165 |
| N1—H1B···O1v | 0.90 | 2.52 | 3.256 (10) | 139 |
Symmetry codes: (x) −x+1, −y+1, −z; (xi) y, −x+y, −z; (xii) x−y+1, x, −z; (viii) −x+y, −x+1, z; (v) −y+1, −x+1, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2667).
References
- Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Cullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem 9, 1858–1864.
- Daniels, L. M., Murillo, C. A. & Rodriguez, K. G. (1995). Inorg. Chim. Acta, 229, 27–32.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Haque, M.-U., Caughlan, C. N. & Emerson, K. (1970). Inorg. Chem.9, 2421–2424.
- Lu, J. (2009). Acta Cryst. E65, m1187. [DOI] [PMC free article] [PubMed] [Retracted]
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016168/tk2667sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016168/tk2667Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


