Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):m628. doi: 10.1107/S1600536810016168

Tris(ethyl­enediamine)cobalt(II) sulfate

Bunlawee Yotnoi a, Athittaya Seeharaj a, Yothin Chimupala a, Apinpus Rujiwatra a,*
PMCID: PMC2979650  PMID: 21579283

Abstract

The structure of the title compound, [CoII(C2H8N2)3]SO4, the cobalt example of [M(C2H8N2)3]SO4, is reported. The Co and S atoms are located at the 2d and 2c Wyckoff sites (point symmetry 32), respectively. The Co atom is coordinated by six N atoms of three chelating ethyl­enediamine mol­ecules generated from half of the ethyl­enediamine mol­ecule in the asymmetric unit. The O atoms of the sulfate anion are disordered mostly over two crystallographic sites. The third disorder site of O (site symmetry 3) has a site occupancy approaching zero. The H atoms of the ethyl­enediamine mol­ecules inter­act with the sulfate anions via inter­molecular N—H⋯O hydrogen-bonding inter­actions.

Related literature

For isostructural [M(C2H8N2)3]SO4 complexes, see: Haque et al. (1970); Cullen & Lingafelter (1970); Daniels et al. (1995); Lu (2009) for the nickel, copper, vanadium and manganese analogues, respectively.graphic file with name e-66-0m628-scheme1.jpg

Experimental

Crystal data

  • [Co(C2H8N2)3]SO4

  • M r = 335.30

  • Trigonal, Inline graphic

  • a = 8.9920 (2) Å

  • c = 9.5927 (3) Å

  • V = 671.71 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 298 K

  • 0.48 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.543, T max = 0.760

  • 3638 measured reflections

  • 688 independent reflections

  • 589 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.069

  • S = 1.06

  • 688 reflections

  • 47 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016168/tk2667sup1.cif

e-66-0m628-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016168/tk2667Isup2.hkl

e-66-0m628-Isup2.hkl (33.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.90 2.13 2.889 (12) 142
N1—H1A⋯O1i 0.90 2.15 3.049 (7) 176
N1—H1A⋯O2ii 0.90 2.22 3.054 (8) 155
N1—H1A⋯O2iii 0.90 2.32 3.104 (11) 145
N1—H1B⋯O2iv 0.90 1.98 2.843 (6) 161
N1—H1B⋯O1 0.90 2.48 3.353 (14) 165
N1—H1B⋯O1v 0.90 2.52 3.256 (10) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported financially by the Thailand Research Fund and the Center of Excellence for Innovation in Chemistry. BY thanks the Royal Golden Jubilee PhD program and the Graduate School of Chiang Mai University for a graduate scholarship.

supplementary crystallographic information

Comment

The title complex, [CoII(C2H8N2)3]SO4 (Fig. 1), is isostructural to the earlier reported [NiII(C2H8N2)3]SO4 (Haque et al.,, 1970), [VII(C2H8N2)3]SO4 (Daniels et al., 1995), [MnII(C2H8N2)3]SO4 (Lu, 2009) and [CuII(C2H8N2)3]SO4 (Cullen & Lingafelter, 1970) complexes, constituting the [MII(C2H2N2)3]SO4 series. The [MII(C2H2N2)3]SO4 structures crystallize in the same trigonal space group of P31c with quite similar cell parameters. Likewise, the metal and sulfur atoms are positioned in the same crystallographic sites; MII on the 2d and S on the 2c Wyckoff sites (each with point symmetry 32). The disorder about the six-fold rotation axis found in the sulfate anion is intriguingly common in each structure, although the number of unique O atoms varies from two to four. In the structure of [CoII(C2H8N2)3]SO4, the O atoms were refined as being disordered over three crystallographic sites, although the site occupancy of O3 located on the 4f Wyckoff site approaches zero. The bond length associated with this O3 atom (S1—O3; 1.382 (16) Å) is notably shorter than the other S—O bonds (1.431 (5)–1.445 (5) Å). The disordered sulfate anions are linked to the [CoII(C2H8N2)3]2+ cations by hydrogen bonding interactions of N—H···O type to form a hydrogen-bonding supramolecular network. The hydrogen bonding geometries are consistent with those of the previously reported [MII(C2H2N2)3]SO4 complexes.

Experimental

Orange blocks of the title complex were synthesized and grown from the sovolthermal reaction of Co(NO3)2.6H2O (1.34 mmol), NH2SO3H (1.34 mmol), NH2C2H4NH2 (3.89 mmol) in ethylene glycol (160 mmol), conducted at 453 K for 72 h.

Refinement

The O atoms were positioned from a difference Fourier map, and refined with restraints using commands SUMP, SADI and SIMU in SHELXL (Sheldrick, 2008). Although there was an indication for further splitting of the O2 atom, after the final cycles of refinement, such action did not give a better result. All H-atoms were treated as riding groups on the bonded atoms, with C—H = 0.97 Å and N—H 0.90 Å, and with Uiso(H) = 1.2Uequiv(C, N).

Figures

Fig. 1.

Fig. 1.

View of the title complex showing atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. [Symmetry codes: (i) -y+1, x-y, z; (ii) -x+y+1, -x+1, z; (iii) -y+1, -x+1, -z+1/2; (iv) -x+y+1, y, -z+1/2; (v) x, x-y, -z+1/2; (vi) -y+1, x-y+1, z, (vii) -x+y, -x+1, z; (viii) -x+y, y, -z+1/2; (ix) x, x-y+1, -z+1/2]. Hydrogen atoms are omitted.

Fig. 2.

Fig. 2.

View of the hydrogen bonding interactions (dotted lines) between the disordered sulfate O atoms and the amino-H atoms of the [CoII(C2H8N2)]2+ cations. [Symmetry codes: (ii) -x+y+1, -x+1, z; (iii) -y+1, -x+1, -z+1/2; (viii) -x+y, y, -z+1/2; (ix) x, x-y+1, -z+1/2; (xiii) y, x, z+1/2; (xiv) -y+x, -y+1, -z+1/2; (xv) -x+1, -x+y+1, z+1/2].

Crystal data

[Co(C2H8N2)3]SO4 Dx = 1.658 Mg m3
Mr = 335.30 Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31c Cell parameters from 589 reflections
Hall symbol: -P 3 2c θ = 2.6–31.0°
a = 8.9920 (2) Å µ = 1.45 mm1
c = 9.5927 (3) Å T = 298 K
V = 671.71 (3) Å3 Block, orange
Z = 2 0.48 × 0.22 × 0.20 mm
F(000) = 354

Data collection

Bruker SMART CCD area-detector diffractometer 688 independent reflections
Radiation source: fine-focus sealed tube 589 reflections with I > 2σ(I)
graphite Rint = 0.027
? scan θmax = 31.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→10
Tmin = 0.543, Tmax = 0.760 k = −11→11
3638 measured reflections l = −11→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.1217P] where P = (Fo2 + 2Fc2)/3
688 reflections (Δ/σ)max < 0.001
47 parameters Δρmax = 0.25 e Å3
16 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.6667 0.3333 0.2500 0.02175 (16)
N1 0.68784 (18) 0.54599 (18) 0.12760 (13) 0.0332 (3)
H1A 0.6936 0.5265 0.0363 0.040*
H1B 0.5954 0.5579 0.1418 0.040*
S1 0.3333 0.6667 0.2500 0.0240 (2)
C1 0.8446 (2) 0.7024 (2) 0.17145 (19) 0.0388 (4)
H1C 0.8405 0.8031 0.1409 0.047*
H1D 0.9444 0.7056 0.1297 0.047*
O1 0.3029 (19) 0.5088 (9) 0.1852 (8) 0.096 (3) 0.319 (8)
O2 0.339 (2) 0.7851 (9) 0.1475 (6) 0.096 (4) 0.316 (9)
O3 0.3333 0.6667 0.1059 (16) 0.086 (8) 0.094 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0226 (2) 0.0226 (2) 0.0201 (2) 0.01129 (10) 0.000 0.000
N1 0.0410 (8) 0.0330 (7) 0.0283 (7) 0.0204 (6) −0.0033 (5) 0.0031 (5)
S1 0.0243 (3) 0.0243 (3) 0.0233 (4) 0.01215 (14) 0.000 0.000
C1 0.0445 (10) 0.0267 (8) 0.0413 (9) 0.0147 (7) 0.0058 (7) 0.0076 (6)
O1 0.185 (9) 0.051 (4) 0.063 (4) 0.069 (5) −0.012 (5) −0.016 (3)
O2 0.194 (12) 0.055 (4) 0.044 (3) 0.067 (5) −0.012 (4) 0.012 (3)
O3 0.118 (11) 0.118 (11) 0.021 (11) 0.059 (5) 0.000 0.000

Geometric parameters (Å, °)

Co1—N1i 2.1696 (13) S1—O2vi 1.431 (5)
Co1—N1ii 2.1696 (13) S1—O2v 1.431 (5)
Co1—N1iii 2.1696 (13) S1—O2vii 1.431 (5)
Co1—N1iv 2.1696 (13) S1—O2viii 1.431 (5)
Co1—N1 2.1696 (13) S1—O2ix 1.431 (5)
Co1—N1v 2.1696 (13) S1—O1ix 1.445 (5)
N1—C1 1.469 (2) S1—O1viii 1.445 (5)
N1—H1A 0.9000 S1—O1vi 1.445 (5)
N1—H1B 0.9000 S1—O1vii 1.445 (5)
S1—O3 1.382 (16) C1—C1iv 1.512 (4)
S1—O3v 1.382 (16) C1—H1C 0.9700
S1—O2 1.431 (5) C1—H1D 0.9700
N1i—Co1—N1ii 80.49 (7) O2viii—S1—O1viii 110.7 (4)
N1i—Co1—N1iii 93.48 (5) O2ix—S1—O1viii 138.0 (11)
N1ii—Co1—N1iii 93.17 (8) O1ix—S1—O1viii 63.4 (8)
N1i—Co1—N1iv 93.17 (8) O3—S1—O1vi 64.5 (3)
N1ii—Co1—N1iv 93.48 (5) O3v—S1—O1vi 115.5 (3)
N1iii—Co1—N1iv 171.28 (7) O2—S1—O1vi 57.2 (5)
N1i—Co1—N1 93.48 (5) O2vi—S1—O1vi 110.7 (4)
N1ii—Co1—N1 171.28 (8) O2v—S1—O1vi 138.0 (11)
N1iii—Co1—N1 93.48 (5) O2vii—S1—O1vi 69.9 (6)
N1iv—Co1—N1 80.49 (7) O2viii—S1—O1vi 45.7 (4)
N1i—Co1—N1v 171.28 (8) O2ix—S1—O1vi 119.2 (10)
N1ii—Co1—N1v 93.48 (5) O1ix—S1—O1vi 93.3 (11)
N1iii—Co1—N1v 80.49 (7) O1viii—S1—O1vi 102.9 (4)
N1iv—Co1—N1v 93.48 (5) O3—S1—O1vii 115.5 (3)
N1—Co1—N1v 93.17 (8) O3v—S1—O1vii 64.5 (3)
C1—N1—Co1 107.94 (10) O2—S1—O1vii 138.0 (11)
C1—N1—H1A 110.1 O2vi—S1—O1vii 69.9 (6)
Co1—N1—H1A 110.1 O2v—S1—O1vii 57.2 (5)
C1—N1—H1B 110.1 O2vii—S1—O1vii 110.7 (4)
Co1—N1—H1B 110.1 O2viii—S1—O1vii 119.2 (10)
H1A—N1—H1B 108.4 O2ix—S1—O1vii 45.7 (4)
O3—S1—O3v 180.000 (3) O1ix—S1—O1vii 102.9 (4)
O3—S1—O2 46.6 (3) O1viii—S1—O1vii 93.3 (11)
O3v—S1—O2 133.4 (3) O1vi—S1—O1vii 161.1 (12)
O3—S1—O2vi 46.6 (3) N1—C1—C1iv 108.84 (12)
O3v—S1—O2vi 133.4 (3) N1—C1—H1C 109.9
O2—S1—O2vi 78.0 (5) C1iv—C1—H1C 109.9
O3—S1—O2v 133.4 (3) N1—C1—H1D 109.9
O3v—S1—O2v 46.6 (3) C1iv—C1—H1D 109.9
O2—S1—O2v 104.4 (11) H1C—C1—H1D 108.3
O2vi—S1—O2v 99.7 (7) O2vi—O1—O2viii 91.9 (8)
O3—S1—O2vii 133.4 (3) O2vi—O1—S1 66.5 (5)
O3v—S1—O2vii 46.6 (3) O2viii—O1—S1 60.9 (3)
O2—S1—O2vii 99.7 (7) O2vi—O1—O1vii 75.7 (11)
O2vi—S1—O2vii 176.3 (13) O2viii—O1—O1vii 117.8 (4)
O2v—S1—O2vii 78.0 (5) S1—O1—O1vii 58.3 (4)
O3—S1—O2viii 46.6 (3) O2vi—O1—O2ix 108.3 (7)
O3v—S1—O2viii 133.4 (3) O2viii—O1—O2ix 92.2 (8)
O2—S1—O2viii 78.0 (5) S1—O1—O2ix 54.6 (4)
O2vi—S1—O2viii 78.0 (5) O1viii—O2—O1vi 129.8 (7)
O2v—S1—O2viii 176.3 (13) O1viii—O2—S1 67.8 (4)
O2vii—S1—O2viii 104.4 (11) O1vi—O2—S1 61.9 (4)
O3—S1—O2ix 133.4 (3) O1viii—O2—O1ix 63.3 (12)
O3v—S1—O2ix 46.6 (3) O1vi—O2—O1ix 87.5 (9)
O2—S1—O2ix 176.3 (13) S1—O2—O1ix 55.5 (3)
O2vi—S1—O2ix 104.4 (11) O1viii—O2—O2vi 49.8 (6)
O2v—S1—O2ix 78.0 (5) O1vi—O2—O2vi 95.3 (5)
O2vii—S1—O2ix 78.0 (5) S1—O2—O2vi 51.0 (2)
O2viii—S1—O2ix 99.7 (7) O1ix—O2—O2vi 91.9 (8)
O3—S1—O1ix 115.5 (3) O1viii—O2—O2viii 106.1 (5)
O3v—S1—O1ix 64.5 (3) S1—O2—O2viii 51.0 (2)
O2—S1—O1ix 69.9 (6) O1ix—O2—O2viii 102.2 (4)
O2vi—S1—O1ix 119.2 (10) O2vi—O2—O2viii 60.000 (1)
O2v—S1—O1ix 45.7 (4) O2vi—O3—O2viii 107.9 (8)
O2vii—S1—O1ix 57.2 (5) O2vi—O3—S1 69.0 (8)
O2viii—S1—O1ix 138.0 (11) O2viii—O3—S1 69.0 (8)
O2ix—S1—O1ix 110.7 (4) O2vi—O3—O1viii 61.1 (6)
O3—S1—O1viii 64.5 (3) O2viii—O3—O1viii 128.2 (13)
O3v—S1—O1viii 115.5 (3) S1—O3—O1viii 59.8 (5)
O2—S1—O1viii 45.7 (4) O2vi—O3—O1vi 128.2 (13)
O2vi—S1—O1viii 57.2 (5) O2viii—O3—O1vi 47.4 (6)
O2v—S1—O1viii 69.9 (6) S1—O3—O1vi 59.8 (5)
O2vii—S1—O1viii 119.2 (10) O1viii—O3—O1vi 96.9 (7)

Symmetry codes: (i) −x+y+1, −x+1, z; (ii) x, xy, −z+1/2; (iii) −y+1, xy, z; (iv) −x+y+1, y, −z+1/2; (v) −y+1, −x+1, −z+1/2; (vi) −y+1, xy+1, z; (vii) −x+y, y, −z+1/2; (viii) −x+y, −x+1, z; (ix) x, xy+1, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O3x 0.90 2.13 2.889 (12) 142
N1—H1A···O1x 0.90 2.15 3.049 (7) 176
N1—H1A···O2xi 0.90 2.22 3.054 (8) 155
N1—H1A···O2xii 0.90 2.32 3.104 (11) 145
N1—H1B···O2viii 0.90 1.98 2.843 (6) 161
N1—H1B···O1 0.90 2.48 3.353 (14) 165
N1—H1B···O1v 0.90 2.52 3.256 (10) 139

Symmetry codes: (x) −x+1, −y+1, −z; (xi) y, −x+y, −z; (xii) xy+1, x, −z; (viii) −x+y, −x+1, z; (v) −y+1, −x+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2667).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem 9, 1858–1864.
  4. Daniels, L. M., Murillo, C. A. & Rodriguez, K. G. (1995). Inorg. Chim. Acta, 229, 27–32.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Haque, M.-U., Caughlan, C. N. & Emerson, K. (1970). Inorg. Chem.9, 2421–2424.
  7. Lu, J. (2009). Acta Cryst. E65, m1187. [DOI] [PMC free article] [PubMed] [Retracted]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016168/tk2667sup1.cif

e-66-0m628-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016168/tk2667Isup2.hkl

e-66-0m628-Isup2.hkl (33.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES