Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 26;66(Pt 6):o1468. doi: 10.1107/S1600536810019173

Methyl 1-methyl-1H-1,2,3-triazole-4-carboxyl­ate

F Nawaz Khan a, K Prabakaran a, S Mohana Roopan a, Venkatesha R Hathwar b, Mehmet Akkurt c,*
PMCID: PMC2979655  PMID: 21579536

Abstract

The title mol­ecule, C5H7N3O2, has an almost planar conformation, with a maximum deviation of 0.043 (3) Å, except for the methyl H atoms. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane. Inter­molecular π–π stacking inter­actions [centroid–centroid distances = 3.685 (2) and 3.697 (2) Å] are observed between the parallel triazole rings.

Related literature

For related structures, see: Prabakaran et al. (2009a ,b ); Beitelman et al. (2007); Jabli et al. (2010). For the properties and applications of related compounds, see: Dehne (1994); Fan & Katritzky (1996); Genin et al. (2000); Velazquez et al. (1998).graphic file with name e-66-o1468-scheme1.jpg

Experimental

Crystal data

  • C5H7N3O2

  • M r = 141.14

  • Triclinic, Inline graphic

  • a = 5.697 (1) Å

  • b = 7.1314 (11) Å

  • c = 8.6825 (16) Å

  • α = 71.053 (16)°

  • β = 86.865 (15)°

  • γ = 76.528 (14)°

  • V = 324.37 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur Eos (Nova) CCD detector diffractometer

  • 6915 measured reflections

  • 1108 independent reflections

  • 800 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.173

  • S = 1.13

  • 1108 reflections

  • 93 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019173/xu2764sup1.cif

e-66-o1468-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019173/xu2764Isup2.hkl

e-66-o1468-Isup2.hkl (54.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.96 2.59 3.509 (5) 160
C5—H5B⋯O1ii 0.96 2.39 3.277 (5) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for the data collection. F·NK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

1,2,3-Triazoles are useful synthetic targets in organic synthesis and are associated with biological properties such as antiviral, antibacterial, antiepileptic and antiallergic (Velazquez et al., 1998; Genin et al., 2000). They have also found applications as agrochemicals, dyes, hotographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne, 1994). In continuous of our earlier reports (Prabakaran et al., 2009a,b), here the crystal structure of the title compound is presented.

As shown in Fig. 1, the conformation of the title molecule is almost planar, with a maximum deviation of -0.043 (3) Å for O1, except the H atoms of two methyl groups.

In the crystal structure, molecules connect to each other, via the intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2), into two-dimensional layers parallel to the bc plane, and intermolecular π–π stacking interactions [Cg1···Cg1(1 - x, -y, 2 - z) = 3.685 (2) Å and Cg1···Cg1(1 - x, 1 - y, 2 - z) = 3.697 (2) Å, where Cg1 is a centroid of the triazole ring] between the parallel triazole rings contribute to the stabilization of the structure.

Experimental

To methyl 1H-1,2,3-triazole-4-carboxylate (2 g) in dry DMF (15 ml) maintained at 273 K in nitrogen atmosphere, was added K2CO3 (1.3 g), methyliodide (0.98 ml), the mixture was then stirred at 273 K for 1 h, allowed to warm to room temperature and stirred till completion of reaction, monitored by TLC. The reaction mixture on LCMS analysis showed three isomers well separated with their significant retention time and high purity. Three fractions were identified by mass spectroscopy. The solvent was evaporated under vacuo and the residue was isolated into individual isomers by column chromatography. The single crystals of the title compound for X-ray structure analysis were obtained from ether solution by slow evaporation.

Refinement

H atoms were positioned geometrically with C—H = 0.93-0.96 Å, and were refined in riding mode with Uiso(H) = 1.2 or 1.5Ueq(C). In the final refinement cycles, the inconsistent 33 reflections were omitted.

Figures

Fig. 1.

Fig. 1.

The title molecule showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the crystal packing of (I), viewed down the a axis. The H atoms not involved in the hydrogen bonding pattern have been omitted for clarity.

Crystal data

C5H7N3O2 Z = 2
Mr = 141.14 F(000) = 148
Triclinic, P1 Dx = 1.445 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.697 (1) Å Cell parameters from 1326 reflections
b = 7.1314 (11) Å θ = 2.0–20.7°
c = 8.6825 (16) Å µ = 0.11 mm1
α = 71.053 (16)° T = 293 K
β = 86.865 (15)° Block, colourless
γ = 76.528 (14)° 0.15 × 0.10 × 0.05 mm
V = 324.37 (10) Å3

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer 800 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.049
graphite θmax = 25.0°, θmin = 3.1°
ω scans h = −6→6
6915 measured reflections k = −8→8
1108 independent reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.2349P] where P = (Fo2 + 2Fc2)/3
1108 reflections (Δ/σ)max < 0.001
93 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6694 (5) 0.2352 (5) 0.5832 (3) 0.0591 (13)
O2 0.2797 (4) 0.2639 (4) 0.6475 (3) 0.0440 (9)
N1 0.7108 (5) 0.2390 (4) 1.0644 (3) 0.0361 (10)
N2 0.4740 (5) 0.2478 (5) 1.0897 (4) 0.0430 (11)
N3 0.3757 (5) 0.2534 (5) 0.9553 (4) 0.0417 (10)
C1 0.8687 (7) 0.2325 (6) 1.1941 (5) 0.0471 (14)
C2 0.7651 (6) 0.2415 (5) 0.9131 (4) 0.0369 (11)
C3 0.5521 (6) 0.2492 (5) 0.8434 (4) 0.0342 (11)
C4 0.5106 (6) 0.2486 (5) 0.6793 (4) 0.0373 (12)
C5 0.2257 (7) 0.2676 (7) 0.4852 (5) 0.0532 (14)
H1A 0.77460 0.24230 1.28750 0.0700*
H1B 0.94680 0.34440 1.15670 0.0700*
H1C 0.98850 0.10660 1.22340 0.0700*
H2 0.91520 0.23860 0.86500 0.0440*
H5A 0.26750 0.38410 0.40620 0.0790*
H5B 0.05650 0.27540 0.47490 0.0790*
H5C 0.31730 0.14580 0.46690 0.0790*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0354 (15) 0.103 (3) 0.0513 (18) −0.0203 (15) 0.0119 (13) −0.0399 (17)
O2 0.0336 (14) 0.0667 (18) 0.0370 (15) −0.0139 (12) −0.0013 (11) −0.0216 (13)
N1 0.0315 (16) 0.0468 (19) 0.0314 (17) −0.0104 (13) 0.0007 (13) −0.0133 (13)
N2 0.0346 (17) 0.057 (2) 0.0386 (18) −0.0098 (14) 0.0038 (14) −0.0178 (15)
N3 0.0348 (16) 0.055 (2) 0.0354 (18) −0.0108 (14) 0.0002 (14) −0.0140 (14)
C1 0.045 (2) 0.062 (3) 0.036 (2) −0.0133 (19) −0.0046 (17) −0.0165 (19)
C2 0.0306 (18) 0.047 (2) 0.036 (2) −0.0126 (16) 0.0054 (15) −0.0155 (17)
C3 0.0286 (18) 0.038 (2) 0.039 (2) −0.0116 (15) 0.0068 (15) −0.0144 (16)
C4 0.038 (2) 0.039 (2) 0.038 (2) −0.0120 (16) −0.0022 (18) −0.0137 (17)
C5 0.046 (2) 0.082 (3) 0.040 (2) −0.025 (2) −0.0030 (18) −0.023 (2)

Geometric parameters (Å, °)

O1—C4 1.205 (4) C3—C4 1.459 (5)
O2—C4 1.331 (4) C1—H1A 0.9600
O2—C5 1.449 (5) C1—H1B 0.9600
N1—N2 1.345 (4) C1—H1C 0.9600
N1—C1 1.462 (5) C2—H2 0.9300
N1—C2 1.328 (4) C5—H5A 0.9600
N2—N3 1.307 (5) C5—H5B 0.9600
N3—C3 1.361 (5) C5—H5C 0.9600
C2—C3 1.367 (5)
O1···C5i 3.277 (5) C4···N2vii 3.439 (5)
O2···N3 2.731 (4) C5···C1x 3.435 (6)
O1···H1Aii 2.5900 C5···O1vi 3.277 (5)
O1···H5A 2.6300 C1···H5Bix 2.8500
O1···H5Bi 2.3900 C4···H5Aiv 3.0300
O1···H5C 2.5900 H1A···O1xi 2.5900
O1···H1Ciii 2.8400 H1A···H5Bix 2.4500
O1···H5Aiv 2.8500 H1B···N3viii 2.9100
O1···H5Cv 2.8700 H1C···O1iii 2.8400
O1···H2 2.8900 H2···O1 2.8900
O2···H2vi 2.7300 H2···O2i 2.7300
N2···C3vii 3.438 (5) H2···N3i 2.8100
N2···C4vii 3.439 (5) H5A···O1 2.6300
N3···O2 2.731 (4) H5A···O1iv 2.8500
N3···C1viii 3.434 (6) H5A···C4iv 3.0300
N3···C3vii 3.376 (5) H5B···O1vi 2.3900
N3···H2vi 2.8100 H5B···C1x 2.8500
N3···H1Bviii 2.9100 H5B···H1Ax 2.4500
C1···C5ix 3.435 (6) H5C···O1 2.5900
C1···N3viii 3.434 (6) H5C···O1v 2.8700
C3···N3vii 3.376 (5) H5C···H5Cv 2.5200
C3···N2vii 3.438 (5)
C4—O2—C5 115.6 (3) N1—C1—H1B 109.00
N2—N1—C1 120.4 (3) N1—C1—H1C 110.00
N2—N1—C2 110.7 (3) H1A—C1—H1B 109.00
C1—N1—C2 129.0 (3) H1A—C1—H1C 109.00
N1—N2—N3 107.9 (3) H1B—C1—H1C 109.00
N2—N3—C3 107.9 (3) N1—C2—H2 128.00
N1—C2—C3 105.0 (3) C3—C2—H2 127.00
N3—C3—C2 108.6 (3) O2—C5—H5A 109.00
N3—C3—C4 123.5 (3) O2—C5—H5B 109.00
C2—C3—C4 127.9 (3) O2—C5—H5C 110.00
O1—C4—O2 123.8 (3) H5A—C5—H5B 109.00
O1—C4—C3 123.3 (3) H5A—C5—H5C 109.00
O2—C4—C3 112.9 (3) H5B—C5—H5C 109.00
N1—C1—H1A 109.00
C5—O2—C4—O1 −1.1 (6) N2—N3—C3—C4 178.5 (3)
C5—O2—C4—C3 179.0 (3) N1—C2—C3—N3 0.7 (4)
C1—N1—N2—N3 179.6 (3) N1—C2—C3—C4 −178.0 (3)
C2—N1—N2—N3 0.8 (4) N3—C3—C4—O1 −176.4 (4)
N2—N1—C2—C3 −0.9 (4) N3—C3—C4—O2 3.5 (5)
C1—N1—C2—C3 −179.6 (4) C2—C3—C4—O1 2.1 (6)
N1—N2—N3—C3 −0.3 (4) C2—C3—C4—O2 −178.0 (4)
N2—N3—C3—C2 −0.2 (4)

Symmetry codes: (i) x+1, y, z; (ii) x, y, z−1; (iii) −x+2, −y, −z+2; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) x−1, y, z; (vii) −x+1, −y, −z+2; (viii) −x+1, −y+1, −z+2; (ix) x+1, y, z+1; (x) x−1, y, z−1; (xi) x, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O1xi 0.96 2.59 3.509 (5) 160
C5—H5B···O1vi 0.96 2.39 3.277 (5) 153

Symmetry codes: (xi) x, y, z+1; (vi) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2764).

References

  1. Beitelman, A. D., Sieracki, N. A., Zeller, M. & Ferrence, G. M. (2007). Acta Cryst. E63, o2739–o2741.
  2. Dehne, H. (1994). Editor. Methoden der Organischen Chemie, 8th ed., pp. 305–405. Stuttgart: Thieme.
  3. Fan, W.-Q. & Katritzky, A. R. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1–126. Oxford: Pergamon.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem.43, 953–970. [DOI] [PubMed]
  7. Jabli, H., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o231. [DOI] [PMC free article] [PubMed]
  8. Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
  9. Prabakaran, K., Hathwar, V. R., Maiyalagan, T., Kirthana, M. V. & Khan, F. N. (2009a). Acta Cryst. E65, o1752. [DOI] [PMC free article] [PubMed]
  10. Prabakaran, K., Maiyalagan, T., Hathwar, V. R., Kazak, C. & Khan, F. N. (2009b). Acta Cryst. E65, o300. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Velazquez, S., Alvarez, R., Perez, C., Gago, F., De, C., Balzarini, J. & Camaraza, M. (1998). J. Antivir. Chem. Chemother.9, 481–489. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019173/xu2764sup1.cif

e-66-o1468-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019173/xu2764Isup2.hkl

e-66-o1468-Isup2.hkl (54.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES