Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 26;66(Pt 6):o1456. doi: 10.1107/S1600536810018660

N-[(E)-(9-Ethyl-9H-carbazol-3-yl)methyl­idene]aniline

Nuray Yeksan a, Ece Uzkara a, Orhan Zeybek a, Erol Asker b,*
PMCID: PMC2979658  PMID: 21579525

Abstract

The title compound, C21H18N2, was obtained as the product of the reaction between 9-ethyl-9H-carbazole-3-carbaldehyde and aniline in ethanol. The crystal packing is stabilized mainly by C—H⋯π inter­actions between the carbazole benzene rings and the methyl­ene H atoms.

Related literature

For background to photoconductive properties see: Segura (1998); Grigoras & Antonoaia (2005). For geometrical parameters in related structures, see: Wang et al. (2008); Huang et al. (2008). graphic file with name e-66-o1456-scheme1.jpg

Experimental

Crystal data

  • C21H18N2

  • M r = 298.37

  • Monoclinic, Inline graphic

  • a = 15.3350 (3) Å

  • b = 5.9692 (10) Å

  • c = 17.5447 (3) Å

  • β = 91.162 (1)°

  • V = 1605.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.6 × 0.4 × 0.2 mm

Data collection

  • Rigaku R-AXIS RAPID S diffractometer

  • 28963 measured reflections

  • 2838 independent reflections

  • 2821 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.148

  • S = 1.41

  • 2838 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrystalStructure (Rigaku & Rigaku/MSC, 2003); cell refinement: CrystalStructure; data reduction: SORTAV (Blessing, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018660/om2337sup1.cif

e-66-o1456-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018660/om2337Isup2.hkl

e-66-o1456-Isup2.hkl (136.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C4/C4A/C9A and C4B/C5–C8/C8A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.93 2.87 3.587 (3) 135
C12—H12⋯Cg2i 0.93 2.98 3.660 (3) 131
C10—H10ACg2ii 0.97 3.25 4.050 (4) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Scientific Research Projects Department (BAP) at Balikesir University for financial support (Project No. 08/06).

supplementary crystallographic information

Comment

The structure of the title compound is depicted in (Fig. 1). The bond lengths and internal bond angles of the carbazole skeleton are comparable to those of related molecules (Wang et al., 2008; Huang et al., 2008). The carbazole and phenyl skeletons are essentially planar with r.m.s deviations of 0.021Å (carbazole ring) and 0.008Å (phenyl ring). The phenyl ring is twisted away from the carbazole ring by 67.45 (05)°. The ethyl group protrudes out of the plane of the carbazole skeleton as indicated by the C9A—N9—C10—C11 torsion angle of 86.0 (3)°. The only force that stack the molecules appears to be π-ring C—H···Cg intermolecular interactions among the benzene rings of carbazole and the hydrogen atoms H5, H10A and H12 (Fig. 2).

Experimental

The title compound was synthesized via the imine reaction between aniline and 9-ethyl-9H-carbazol-3-carbaldehyde in ethanol. In a round bottom flask fitted with a magnetic stirrer a solution was prepared from 9-ethyl-9H-carbazol-3-carbaldehyde (1.116 g, 5 mmol) and aniline (0.70 g, 7.5 mmol) in 50 ml ethanol at ambient temperature. After stirring for 2 h, the solution was left for crystallization overnight, after which time the product was precipitated as yellow crystals. The crude product was separated by filtration and washed with ethanol. Yellow, transparent crystals suitable for the X-ray diffraction analysis were grown from tetrahydrofuran by slow evaporation technique at ambient temperature, mp. 407 K. FT—IR (KBr) νmax (cm-1): 3048 (Ar—H), 2973 (-CH3), 2930 (-CH2-), 1618 (C=N), 1587, 1567 (Ar—N), 1489, 1473, 1461 (Ar C=C); 1HNMR (300 MHz, CDCl3, ppm): 1.46 (t, J = 7.3 Hz, 3H, CH3), 4.38 (q, J = 7.3 Hz, 2H, -CH2-), 7.21-7.59 (m, 9H, ArH), 8.07 (dd, J = 8.5 and 1.8 Hz, 1H, H2), 8.18 (dt, J = 7.9 and 0.8 Hz, 1H, H5), 8.64 (s, 1H, H12), 8.65 (d, J= 1.8, 1H, H4). UV-Vis, [EtOH, λmax (nm), (ε)] = 238 (25800), 293 (22100), 338 (18500).

Refinement

All non-hydrogen atoms were refined anisotropically; the hydrogen atoms were positioned geometrically and allowed to ride on their corresponding parent atoms with C—H distances of 0.93Å (aromatic), 0.96Å (methyl), and 0.97Å (methylene) with Uiso(H) =1.5Ueq(C) of the parent atom for the methyl group and 1.2Ueq(C) for the rest.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level and arbitrary spheres are shown for the H atoms.

Fig. 2.

Fig. 2.

Packing diagram of showing C—H···Cg intermolecular interactions; red spheres represent ring centroids.

Crystal data

C21H18N2 F(000) = 632
Mr = 298.37 Dx = 1.234 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 8828 reflections
a = 15.3350 (3) Å θ = 2.3–25.3°
b = 5.9692 (10) Å µ = 0.07 mm1
c = 17.5447 (3) Å T = 295 K
β = 91.162 (1)° Prism, yellow
V = 1605.7 (3) Å3 0.6 × 0.4 × 0.2 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID S diffractometer Rint = 0.030
graphite θmax = 25.2°, θmin = 2.3°
ω scans h = −18→18
28963 measured reflections k = −6→7
2838 independent reflections l = −20→20
2821 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062 H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.4831P] where P = (Fo2 + 2Fc2)/3
S = 1.41 (Δ/σ)max = 0.002
2838 reflections Δρmax = 0.14 e Å3
209 parameters Δρmin = −0.12 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0123 (17)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.53644 (12) −0.2326 (3) 0.39241 (11) 0.0627 (5)
N9 0.15252 (12) 0.1918 (3) 0.39179 (10) 0.0567 (5)
C1 0.31091 (15) 0.1662 (4) 0.42835 (13) 0.0583 (6)
H1 0.3127 0.2991 0.456 0.07*
C2 0.38396 (14) 0.0359 (4) 0.42111 (12) 0.0580 (6)
H2 0.436 0.0829 0.444 0.07*
C3 0.38256 (14) −0.1669 (4) 0.38000 (12) 0.0530 (5)
C4 0.30554 (14) −0.2380 (4) 0.34500 (12) 0.0531 (5)
H4 0.304 −0.3717 0.3178 0.064*
C4A 0.23047 (13) −0.1080 (4) 0.35070 (11) 0.0511 (5)
C4B 0.14167 (13) −0.1318 (4) 0.32328 (11) 0.0520 (5)
C5 0.09773 (15) −0.2925 (4) 0.27965 (12) 0.0611 (6)
H5 0.1274 −0.4154 0.2605 0.073*
C6 0.00979 (16) −0.2669 (5) 0.26525 (14) 0.0678 (7)
H6 −0.0202 −0.3737 0.2364 0.081*
C7 −0.03468 (16) −0.0827 (5) 0.29346 (14) 0.0684 (7)
H7 −0.0942 −0.0697 0.2833 0.082*
C8 0.00672 (15) 0.0809 (4) 0.33593 (13) 0.0636 (6)
H8 −0.0235 0.2044 0.354 0.076*
C8A 0.09549 (14) 0.0541 (4) 0.35072 (11) 0.0542 (5)
C9A 0.23398 (14) 0.0931 (4) 0.39289 (11) 0.0522 (5)
C10 0.12624 (16) 0.3717 (4) 0.44220 (14) 0.0651 (6)
H10A 0.0808 0.4594 0.4171 0.078*
H10B 0.1757 0.4697 0.452 0.078*
C11 0.0931 (2) 0.2849 (5) 0.51707 (15) 0.0874 (9)
H11A 0.0766 0.4088 0.5486 0.131*
H11B 0.1382 0.2003 0.5425 0.131*
H11C 0.0434 0.1904 0.5077 0.131*
C12 0.46110 (14) −0.3017 (4) 0.37283 (12) 0.0553 (5)
H12 0.4557 −0.4456 0.3529 0.066*
C13 0.60811 (14) −0.3801 (4) 0.38491 (12) 0.0550 (5)
C14 0.61128 (15) −0.5881 (4) 0.41922 (13) 0.0636 (6)
H14 0.5646 −0.6363 0.448 0.076*
C15 0.68271 (18) −0.7249 (5) 0.41133 (16) 0.0767 (7)
H15 0.6844 −0.8639 0.4352 0.092*
C16 0.75146 (18) −0.6566 (5) 0.36830 (18) 0.0818 (8)
H16 0.7992 −0.7505 0.362 0.098*
C17 0.74958 (16) −0.4498 (5) 0.33467 (16) 0.0795 (8)
H17 0.7964 −0.4032 0.3057 0.095*
C18 0.67877 (15) −0.3096 (4) 0.34333 (14) 0.0674 (6)
H18 0.6786 −0.1679 0.3212 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0557 (11) 0.0652 (12) 0.0671 (12) 0.0002 (9) −0.0018 (9) −0.0068 (10)
N9 0.0579 (11) 0.0550 (11) 0.0573 (10) 0.0052 (9) 0.0051 (8) −0.0043 (9)
C1 0.0646 (13) 0.0538 (13) 0.0566 (12) −0.0033 (11) 0.0010 (10) −0.0071 (10)
C2 0.0570 (12) 0.0616 (14) 0.0553 (12) −0.0056 (11) −0.0028 (10) −0.0016 (11)
C3 0.0549 (12) 0.0564 (13) 0.0477 (11) 0.0000 (10) 0.0020 (9) 0.0005 (10)
C4 0.0592 (12) 0.0516 (12) 0.0485 (11) −0.0004 (10) 0.0014 (9) −0.0044 (9)
C4A 0.0549 (12) 0.0514 (12) 0.0470 (11) −0.0026 (10) 0.0012 (9) 0.0000 (9)
C4B 0.0558 (12) 0.0567 (12) 0.0435 (10) −0.0015 (10) 0.0022 (9) 0.0047 (9)
C5 0.0686 (14) 0.0626 (14) 0.0519 (12) −0.0042 (11) −0.0041 (10) −0.0013 (11)
C6 0.0647 (14) 0.0795 (17) 0.0589 (13) −0.0129 (13) −0.0095 (11) 0.0054 (12)
C7 0.0551 (13) 0.0889 (19) 0.0611 (14) −0.0045 (13) −0.0032 (11) 0.0162 (13)
C8 0.0590 (13) 0.0738 (16) 0.0582 (13) 0.0065 (12) 0.0053 (10) 0.0093 (12)
C8A 0.0573 (12) 0.0593 (13) 0.0461 (11) −0.0012 (10) 0.0037 (9) 0.0062 (10)
C9A 0.0569 (12) 0.0518 (12) 0.0480 (11) 0.0003 (10) 0.0051 (9) 0.0009 (9)
C10 0.0702 (15) 0.0567 (13) 0.0688 (15) 0.0077 (12) 0.0092 (12) −0.0066 (11)
C11 0.101 (2) 0.102 (2) 0.0603 (15) 0.0029 (18) 0.0132 (14) −0.0073 (15)
C12 0.0577 (13) 0.0579 (13) 0.0505 (12) −0.0021 (10) 0.0031 (9) −0.0029 (10)
C13 0.0519 (12) 0.0608 (13) 0.0524 (12) −0.0049 (10) −0.0024 (9) −0.0068 (10)
C14 0.0626 (14) 0.0665 (15) 0.0619 (14) −0.0044 (12) 0.0076 (11) −0.0003 (11)
C15 0.0802 (17) 0.0668 (16) 0.0833 (18) 0.0074 (14) 0.0044 (14) 0.0030 (14)
C16 0.0649 (16) 0.082 (2) 0.099 (2) 0.0120 (14) 0.0043 (14) −0.0125 (17)
C17 0.0560 (14) 0.093 (2) 0.0902 (19) −0.0115 (14) 0.0155 (13) −0.0126 (16)
C18 0.0640 (14) 0.0665 (15) 0.0720 (15) −0.0111 (12) 0.0052 (12) −0.0017 (12)

Geometric parameters (Å, °)

N1—C12 1.268 (3) C7—C8 1.376 (3)
N1—C13 1.416 (3) C7—H7 0.93
N9—C9A 1.381 (3) C8—C8A 1.390 (3)
N9—C8A 1.391 (3) C8—H8 0.93
N9—C10 1.453 (3) C10—C11 1.510 (3)
C1—C2 1.372 (3) C10—H10A 0.97
C1—C9A 1.393 (3) C10—H10B 0.97
C1—H1 0.93 C11—H11A 0.96
C2—C3 1.409 (3) C11—H11B 0.96
C2—H2 0.93 C11—H11C 0.96
C3—C4 1.386 (3) C12—H12 0.93
C3—C12 1.456 (3) C13—C14 1.380 (3)
C4—C4A 1.393 (3) C13—C18 1.384 (3)
C4—H4 0.93 C14—C15 1.375 (3)
C4A—C9A 1.411 (3) C14—H14 0.93
C4A—C4B 1.442 (3) C15—C16 1.371 (4)
C4B—C5 1.393 (3) C15—H15 0.93
C4B—C8A 1.407 (3) C16—C17 1.368 (4)
C5—C6 1.376 (3) C16—H16 0.93
C5—H5 0.93 C17—C18 1.382 (4)
C6—C7 1.390 (4) C17—H17 0.93
C6—H6 0.93 C18—H18 0.93
C12—N1—C13 118.5 (2) N9—C9A—C1 129.1 (2)
C9A—N9—C8A 108.32 (18) N9—C9A—C4A 109.32 (18)
C9A—N9—C10 124.65 (19) C1—C9A—C4A 121.6 (2)
C8A—N9—C10 124.95 (19) N9—C10—C11 112.2 (2)
C2—C1—C9A 117.8 (2) N9—C10—H10A 109.2
C2—C1—H1 121.1 C11—C10—H10A 109.2
C9A—C1—H1 121.1 N9—C10—H10B 109.2
C1—C2—C3 122.0 (2) C11—C10—H10B 109.2
C1—C2—H2 119 H10A—C10—H10B 107.9
C3—C2—H2 119 C10—C11—H11A 109.5
C4—C3—C2 119.6 (2) C10—C11—H11B 109.5
C4—C3—C12 119.4 (2) H11A—C11—H11B 109.5
C2—C3—C12 121.0 (2) C10—C11—H11C 109.5
C3—C4—C4A 119.7 (2) H11A—C11—H11C 109.5
C3—C4—H4 120.1 H11B—C11—H11C 109.5
C4A—C4—H4 120.1 N1—C12—C3 123.2 (2)
C4—C4A—C9A 119.24 (19) N1—C12—H12 118.4
C4—C4A—C4B 134.2 (2) C3—C12—H12 118.4
C9A—C4A—C4B 106.53 (18) C14—C13—C18 118.8 (2)
C5—C4B—C8A 119.4 (2) C14—C13—N1 122.6 (2)
C5—C4B—C4A 134.0 (2) C18—C13—N1 118.5 (2)
C8A—C4B—C4A 106.66 (19) C15—C14—C13 120.7 (2)
C6—C5—C4B 119.1 (2) C15—C14—H14 119.6
C6—C5—H5 120.5 C13—C14—H14 119.6
C4B—C5—H5 120.5 C16—C15—C14 120.1 (3)
C5—C6—C7 120.6 (2) C16—C15—H15 119.9
C5—C6—H6 119.7 C14—C15—H15 119.9
C7—C6—H6 119.7 C17—C16—C15 119.7 (3)
C8—C7—C6 122.0 (2) C17—C16—H16 120.1
C8—C7—H7 119 C15—C16—H16 120.1
C6—C7—H7 119 C16—C17—C18 120.6 (2)
C7—C8—C8A 117.3 (2) C16—C17—H17 119.7
C7—C8—H8 121.3 C18—C17—H17 119.7
C8A—C8—H8 121.3 C17—C18—C13 119.9 (2)
N9—C8A—C8 129.2 (2) C17—C18—H18 120
N9—C8A—C4B 109.14 (18) C13—C18—H18 120
C8—C8A—C4B 121.7 (2)
C9A—C1—C2—C3 −0.6 (3) C8A—N9—C9A—C1 −178.4 (2)
C1—C2—C3—C4 0.5 (3) C10—N9—C9A—C1 −14.2 (4)
C1—C2—C3—C12 179.7 (2) C8A—N9—C9A—C4A 1.4 (2)
C2—C3—C4—C4A 0.1 (3) C10—N9—C9A—C4A 165.58 (19)
C12—C3—C4—C4A −179.05 (19) C2—C1—C9A—N9 179.7 (2)
C3—C4—C4A—C9A −0.7 (3) C2—C1—C9A—C4A 0.0 (3)
C3—C4—C4A—C4B −178.9 (2) C4—C4A—C9A—N9 −179.11 (19)
C4—C4A—C4B—C5 −1.2 (4) C4B—C4A—C9A—N9 −0.5 (2)
C9A—C4A—C4B—C5 −179.6 (2) C4—C4A—C9A—C1 0.7 (3)
C4—C4A—C4B—C8A 177.8 (2) C4B—C4A—C9A—C1 179.34 (19)
C9A—C4A—C4B—C8A −0.6 (2) C9A—N9—C10—C11 −86.0 (3)
C8A—C4B—C5—C6 −0.8 (3) C8A—N9—C10—C11 75.7 (3)
C4A—C4B—C5—C6 178.0 (2) C13—N1—C12—C3 178.29 (19)
C4B—C5—C6—C7 0.3 (3) C4—C3—C12—N1 168.4 (2)
C5—C6—C7—C8 0.5 (4) C2—C3—C12—N1 −10.7 (3)
C6—C7—C8—C8A −0.8 (3) C12—N1—C13—C14 −56.6 (3)
C9A—N9—C8A—C8 178.3 (2) C12—N1—C13—C18 125.4 (2)
C10—N9—C8A—C8 14.1 (4) C18—C13—C14—C15 −1.0 (3)
C9A—N9—C8A—C4B −1.7 (2) N1—C13—C14—C15 −179.1 (2)
C10—N9—C8A—C4B −165.92 (19) C13—C14—C15—C16 −0.8 (4)
C7—C8—C8A—N9 −179.8 (2) C14—C15—C16—C17 1.5 (4)
C7—C8—C8A—C4B 0.3 (3) C15—C16—C17—C18 −0.4 (4)
C5—C4B—C8A—N9 −179.41 (18) C16—C17—C18—C13 −1.5 (4)
C4A—C4B—C8A—N9 1.4 (2) C14—C13—C18—C17 2.1 (3)
C5—C4B—C8A—C8 0.5 (3) N1—C13—C18—C17 −179.7 (2)
C4A—C4B—C8A—C8 −178.60 (19)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C4/C4A/C9A and C4B/C5–C8/C8A rings, respectively.
D—H···A D—H H···A D···A D—H···A
C5—H5···Cg1i 0.93 2.87 3.587 (3) 135
C12—H12···Cg2i 0.93 2.98 3.660 (3) 131
C10—H10A···Cg2ii 0.97 3.25 4.050 (4) 142

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2337).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Grigoras, M. & Antonoaia, N. C. (2005). Eur. Polym. J.41, 1079–1089.
  6. Huang, P.-H., Chen, G.-J. & Wen, Y.-S. (2008). Acta Cryst. E64, o2407. [DOI] [PMC free article] [PubMed]
  7. Rigaku & Rigaku/MSC (2003). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  8. Segura, J. L. (1998). Acta Polym.49, 319–344.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wang, J. J., Zhang, X., Zhang, B. Q., Wang, G. & Yu, X. Q. (2008). Acta Cryst. E64, o1293.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018660/om2337sup1.cif

e-66-o1456-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018660/om2337Isup2.hkl

e-66-o1456-Isup2.hkl (136.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES