Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 12;66(Pt 6):o1311–o1312. doi: 10.1107/S1600536810016302

9-(4-Methyl­phenoxy­carbon­yl)-10-methyl­acridinium trifluoro­methane­sulfonate

Damian Trzybiński a, Karol Krzymiński a, Artur Sikorski a, Jerzy Błażejowski a,*
PMCID: PMC2979660  PMID: 21579406

Abstract

In the crystal structure of the title compound, C22H18NO2 +·CF3SO3 , adjacent cations are linked through C—H⋯π and π–π inter­actions, and the cations and anions are connected by C—H⋯O and C—F⋯π inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 3.0 (1)°. The carboxyl group is twisted at an angle of 83.1 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel or inclined at an angle of 75.2 (1)° in the crystal structure.

Related literature

For background to the chemiluminogenic properties of 9-phenoxy­carbonyl-10-methyl­acridinium trifluoro­methane­sulf­onates, see: Brown et al. (2009); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2006); Trzybiński et al. (2010). For inter­molecular inter­actions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Sikorski et al. (2006); Trzybiński et al. (2010).graphic file with name e-66-o1311-scheme1.jpg

Experimental

Crystal data

  • C22H18NO2 +·CF3O3S

  • M r = 477.45

  • Monoclinic, Inline graphic

  • a = 13.2686 (6) Å

  • b = 8.4788 (4) Å

  • c = 20.4078 (10) Å

  • β = 106.749 (5)°

  • V = 2198.51 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.50 × 0.40 × 0.10 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.869, T max = 1.000

  • 12172 measured reflections

  • 3892 independent reflections

  • 2096 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.137

  • S = 0.95

  • 3892 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016302/ng2760sup1.cif

e-66-o1311-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016302/ng2760Isup2.hkl

e-66-o1311-Isup2.hkl (190.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O27i 0.93 2.57 3.314 (5) 137
C4—H4⋯O29i 0.93 2.44 3.319 (4) 159
C5—H5⋯O28 0.93 2.44 3.364 (5) 171
C6—H6⋯O28ii 0.93 2.56 3.342 (5) 142
C23—H23⋯O27iii 0.93 2.53 3.448 (4) 169
C25—H25A⋯O29 0.96 2.56 3.415 (5) 149
C25—H25BCg4iv 0.96 2.62 3.487 (4) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Table 2. C–F⋯π inter­actions (Å,°).

Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively.

X I J IJ XJ XIJ
C30 F31 Cg2i 3.420 (3) 4.044 (4) 108.9 (2)
C30 F32 Cg1i 3.441 (3) 4.032 (4) 107.1 (2)
C30 F32 Cg2i 3.788 (4) 4.044 (4) 91.5 (2)
C30 F33 Cg1i 3.669 (3) 4.032 (4) 96.2 (2)

Symmetry code: (i) Inline graphic.

Table 3. π–π inter­actions (Å,°).

Cg3 and Cg4 are the centroids of the C5–C8/C13/C14 and C18–C23 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgI_Perp CgI_Offset
3 4v 3.913 (2) 4.80 (17) 3.472 (2) 1.805 (2)
4 3v 3.913 (2) 4.80 (17) 3.565 (2) 1.613 (2)

Symmetry code: (v) Inline graphic.

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32, of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

supplementary crystallographic information

Comment

9-(Phenoxycarbonyl)-10-methylacridinium salts appear to be convenient chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001), which are widely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; Brown et al., 2009). Oxidation of the cations of these salts with hydrogen peroxide in alkaline media is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecule to electronically excited, light emitting 10-methyl-9-acridinone (Rak et al., 1999; Zomer & Jacquemijns, 2001). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). This prompted us to undertake investigations on derivatives substituted in this fragment. Here we present the structure of 9-(4-methylphenoxy)carbonyl-10-methylacridinium trifluoromethanesulfonate, a structural isomer of the 2-methyl substituted salt, whose structure has already been refined (Sikorski et al., 2006).

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2006; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0386 (3) Å and 0.0017 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 3.0 (1)°. The carboxyl group is twisted at an angle of 83.1 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) or inclined at an angle of 75.2 (1)° in the lattice.

In the crystal structure, the adjacent cations are linked through C–H···π (Table 1, Fig. 2) and π–π (involving acridine and phenyl moieties) (Table 3, Fig. 2) interactions, and cations and anions are connected by multidirectional C–H···O (Table 1, Figs. 1 and 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Bianchi et al. 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and π–π (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Experimental

The compound was synthesized as described elsewhere (Sikorski et al., 2006; Trzybiński et al., 2010), i.e., 9-(chlorocarbonyl)acridine obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride was esterified with 4-methylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The product – 4-methylphenyl acridine-9-carboxylate, purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v) – was quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(4-methylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with 25 v/v excess of diethyl ether. Light-orange crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 445 - 447 K).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O hydrogen bonds are represented by dashed lines.

Fig. 2.

Fig. 2.

The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 3/2, y + 1/2, –z + 1/2; (ii) –x + 2, –y + 1, –z + 1; (iii) x – 1, y, z; (iv) –x + 1, –y + 1, –z + 1; (v) –x + 1, –y, –z + 1.]

Crystal data

C22H18NO2+·CF3O3S F(000) = 984
Mr = 477.45 Dx = 1.442 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3355 reflections
a = 13.2686 (6) Å θ = 3.1–29.2°
b = 8.4788 (4) Å µ = 0.21 mm1
c = 20.4078 (10) Å T = 295 K
β = 106.749 (5)° Plate, light-orange
V = 2198.51 (19) Å3 0.50 × 0.40 × 0.10 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer 3892 independent reflections
Radiation source: enhanced (Mo) X-Ray Source 2096 reflections with I > 2σ(I)
graphite Rint = 0.061
Detector resolution: 10.4002 pixels mm-1 θmax = 25.1°, θmin = 3.1°
ω scans h = −15→15
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −10→10
Tmin = 0.869, Tmax = 1.000 l = −24→24
12172 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0678P)2] where P = (Fo2 + 2Fc2)/3
3892 reflections (Δ/σ)max < 0.001
299 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3367 (3) 0.4502 (4) 0.3326 (2) 0.0699 (10)
H1 0.2898 0.4002 0.3519 0.084*
C2 0.2997 (3) 0.5409 (5) 0.2766 (2) 0.0918 (13)
H2 0.2276 0.5502 0.2563 0.110*
C3 0.3705 (3) 0.6211 (5) 0.2491 (2) 0.0957 (14)
H3 0.3441 0.6854 0.2111 0.115*
C4 0.4760 (3) 0.6083 (4) 0.2759 (2) 0.0691 (10)
H4 0.5208 0.6634 0.2565 0.083*
C5 0.7739 (3) 0.3924 (4) 0.44967 (19) 0.0631 (9)
H5 0.8203 0.4433 0.4302 0.076*
C6 0.8115 (3) 0.3064 (5) 0.5083 (2) 0.0735 (10)
H6 0.8838 0.3013 0.5287 0.088*
C7 0.7440 (3) 0.2253 (5) 0.5386 (2) 0.0766 (11)
H7 0.7713 0.1667 0.5783 0.092*
C8 0.6389 (3) 0.2334 (4) 0.50934 (18) 0.0639 (10)
H8 0.5944 0.1786 0.5291 0.077*
C9 0.4876 (3) 0.3337 (4) 0.41922 (16) 0.0479 (8)
N10 0.62352 (19) 0.4910 (3) 0.36094 (13) 0.0486 (7)
C11 0.4461 (2) 0.4303 (4) 0.36217 (16) 0.0498 (8)
C12 0.5177 (2) 0.5109 (4) 0.33342 (16) 0.0495 (8)
C13 0.5948 (3) 0.3229 (4) 0.44951 (16) 0.0507 (8)
C14 0.6651 (2) 0.4037 (4) 0.41908 (16) 0.0473 (8)
C15 0.4137 (3) 0.2312 (4) 0.44360 (17) 0.0548 (9)
O16 0.38896 (18) 0.2932 (3) 0.49667 (12) 0.0648 (7)
O17 0.3828 (2) 0.1080 (3) 0.41764 (13) 0.0858 (9)
C18 0.3185 (3) 0.2065 (4) 0.52390 (16) 0.0500 (8)
C19 0.3597 (3) 0.1129 (4) 0.57992 (17) 0.0609 (9)
H19 0.4321 0.0997 0.5978 0.073*
C20 0.2903 (3) 0.0381 (4) 0.60930 (17) 0.0652 (10)
H20 0.3170 −0.0262 0.6473 0.078*
C21 0.1839 (3) 0.0565 (4) 0.58395 (19) 0.0647 (10)
C22 0.1461 (3) 0.1515 (5) 0.52795 (19) 0.0671 (10)
H22 0.0739 0.1655 0.5102 0.081*
C23 0.2132 (3) 0.2273 (4) 0.49707 (17) 0.0593 (9)
H23 0.1866 0.2908 0.4589 0.071*
C24 0.1088 (4) −0.0241 (5) 0.6176 (2) 0.1041 (15)
H24A 0.0428 0.0309 0.6055 0.156*
H24B 0.1387 −0.0225 0.6664 0.156*
H24C 0.0978 −0.1313 0.6021 0.156*
C25 0.6972 (3) 0.5623 (4) 0.32692 (17) 0.0655 (10)
H25A 0.7583 0.4964 0.3343 0.098*
H25B 0.7180 0.6650 0.3458 0.098*
H25C 0.6632 0.5715 0.2787 0.098*
S26 0.98783 (7) 0.47984 (11) 0.33273 (4) 0.0560 (3)
O27 1.09157 (18) 0.4193 (3) 0.34606 (12) 0.0801 (8)
O28 0.96339 (18) 0.5485 (3) 0.39004 (12) 0.0844 (8)
O29 0.90554 (18) 0.3856 (3) 0.28984 (12) 0.0688 (7)
C30 0.9911 (3) 0.6484 (5) 0.2789 (2) 0.0737 (11)
F31 1.0614 (2) 0.7536 (3) 0.31098 (15) 0.1247 (10)
F32 1.0156 (2) 0.6073 (4) 0.22295 (13) 0.1123 (9)
F33 0.8988 (2) 0.7204 (3) 0.25876 (13) 0.1117 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.057 (2) 0.061 (2) 0.098 (3) −0.003 (2) 0.033 (2) 0.014 (2)
C2 0.050 (2) 0.096 (3) 0.131 (4) 0.012 (2) 0.029 (2) 0.033 (3)
C3 0.078 (3) 0.090 (3) 0.117 (3) 0.012 (3) 0.027 (3) 0.046 (3)
C4 0.056 (2) 0.060 (2) 0.098 (3) −0.0012 (19) 0.032 (2) 0.019 (2)
C5 0.060 (2) 0.052 (2) 0.079 (3) −0.0077 (19) 0.022 (2) −0.011 (2)
C6 0.061 (2) 0.063 (3) 0.085 (3) −0.001 (2) 0.003 (2) −0.010 (2)
C7 0.086 (3) 0.063 (3) 0.073 (3) −0.001 (2) 0.011 (2) 0.004 (2)
C8 0.071 (3) 0.054 (2) 0.067 (2) −0.008 (2) 0.020 (2) −0.003 (2)
C9 0.058 (2) 0.0330 (18) 0.060 (2) −0.0060 (16) 0.0285 (18) −0.0113 (17)
N10 0.0474 (17) 0.0375 (15) 0.0676 (17) −0.0061 (13) 0.0274 (14) −0.0070 (14)
C11 0.048 (2) 0.0370 (18) 0.071 (2) −0.0068 (16) 0.0289 (18) −0.0049 (18)
C12 0.052 (2) 0.0331 (19) 0.067 (2) −0.0010 (16) 0.0229 (17) −0.0037 (17)
C13 0.063 (2) 0.0320 (18) 0.060 (2) −0.0040 (17) 0.0225 (18) −0.0059 (16)
C14 0.046 (2) 0.0351 (18) 0.063 (2) −0.0052 (15) 0.0203 (17) −0.0105 (17)
C15 0.068 (2) 0.040 (2) 0.066 (2) −0.0062 (18) 0.0334 (19) −0.0037 (18)
O16 0.0833 (17) 0.0462 (14) 0.0804 (16) −0.0143 (13) 0.0485 (14) −0.0130 (12)
O17 0.122 (2) 0.0581 (17) 0.1013 (19) −0.0380 (16) 0.0701 (18) −0.0252 (16)
C18 0.066 (2) 0.0374 (19) 0.054 (2) −0.0074 (18) 0.0285 (19) −0.0066 (17)
C19 0.061 (2) 0.057 (2) 0.066 (2) −0.0032 (19) 0.0198 (19) −0.008 (2)
C20 0.091 (3) 0.054 (2) 0.0529 (19) −0.004 (2) 0.024 (2) 0.0038 (18)
C21 0.074 (3) 0.068 (3) 0.060 (2) −0.014 (2) 0.032 (2) −0.014 (2)
C22 0.061 (2) 0.078 (3) 0.068 (2) −0.001 (2) 0.027 (2) −0.004 (2)
C23 0.072 (3) 0.055 (2) 0.053 (2) 0.002 (2) 0.0214 (19) 0.0023 (17)
C24 0.141 (4) 0.097 (3) 0.099 (3) −0.038 (3) 0.074 (3) −0.008 (3)
C25 0.058 (2) 0.068 (2) 0.079 (2) −0.0098 (19) 0.0331 (19) −0.0052 (19)
S26 0.0511 (5) 0.0592 (6) 0.0605 (5) 0.0019 (5) 0.0208 (4) 0.0024 (5)
O27 0.0581 (15) 0.0891 (19) 0.0933 (18) 0.0225 (14) 0.0221 (13) 0.0194 (15)
O28 0.0716 (16) 0.118 (2) 0.0732 (16) −0.0188 (16) 0.0366 (14) −0.0244 (15)
O29 0.0627 (15) 0.0584 (15) 0.0878 (17) −0.0099 (12) 0.0258 (13) −0.0128 (13)
C30 0.062 (3) 0.066 (3) 0.087 (3) −0.012 (2) 0.011 (2) 0.000 (2)
F31 0.122 (2) 0.0878 (19) 0.140 (2) −0.0465 (17) 0.0005 (17) 0.0175 (16)
F32 0.114 (2) 0.147 (2) 0.0809 (15) −0.0172 (17) 0.0356 (14) 0.0272 (16)
F33 0.0992 (18) 0.0718 (16) 0.142 (2) 0.0200 (15) −0.0010 (16) 0.0185 (15)

Geometric parameters (Å, °)

C1—C2 1.347 (5) C15—O16 1.327 (4)
C1—C11 1.412 (4) O16—C18 1.421 (3)
C1—H1 0.9300 C18—C23 1.357 (4)
C2—C3 1.401 (5) C18—C19 1.370 (4)
C2—H2 0.9300 C19—C20 1.388 (5)
C3—C4 1.352 (5) C19—H19 0.9300
C3—H3 0.9300 C20—C21 1.366 (5)
C4—C12 1.411 (5) C20—H20 0.9300
C4—H4 0.9300 C21—C22 1.369 (5)
C5—C6 1.366 (5) C21—C24 1.524 (5)
C5—C14 1.401 (4) C22—C23 1.388 (4)
C5—H5 0.9300 C22—H22 0.9300
C6—C7 1.406 (5) C23—H23 0.9300
C6—H6 0.9300 C24—H24A 0.9600
C7—C8 1.351 (5) C24—H24B 0.9600
C7—H7 0.9300 C24—H24C 0.9600
C8—C13 1.413 (4) C25—H25A 0.9600
C8—H8 0.9300 C25—H25B 0.9600
C9—C13 1.381 (4) C25—H25C 0.9600
C9—C11 1.400 (4) S26—O27 1.420 (2)
C9—C15 1.499 (4) S26—O28 1.425 (2)
N10—C12 1.364 (4) S26—O29 1.430 (2)
N10—C14 1.372 (4) S26—C30 1.811 (4)
N10—C25 1.481 (4) C30—F32 1.321 (4)
C11—C12 1.427 (4) C30—F31 1.321 (4)
C13—C14 1.434 (4) C30—F33 1.324 (4)
C15—O17 1.189 (4)
C2—C1—C11 120.7 (3) O16—C15—C9 112.4 (3)
C2—C1—H1 119.7 C15—O16—C18 117.3 (2)
C11—C1—H1 119.7 C23—C18—C19 121.9 (3)
C1—C2—C3 119.5 (4) C23—C18—O16 119.4 (3)
C1—C2—H2 120.2 C19—C18—O16 118.5 (3)
C3—C2—H2 120.2 C18—C19—C20 118.1 (3)
C4—C3—C2 122.3 (4) C18—C19—H19 121.0
C4—C3—H3 118.9 C20—C19—H19 121.0
C2—C3—H3 118.9 C21—C20—C19 121.8 (3)
C3—C4—C12 119.7 (3) C21—C20—H20 119.1
C3—C4—H4 120.1 C19—C20—H20 119.1
C12—C4—H4 120.1 C20—C21—C22 118.2 (3)
C6—C5—C14 119.7 (3) C20—C21—C24 121.1 (4)
C6—C5—H5 120.1 C22—C21—C24 120.7 (4)
C14—C5—H5 120.1 C21—C22—C23 121.5 (3)
C5—C6—C7 121.8 (4) C21—C22—H22 119.2
C5—C6—H6 119.1 C23—C22—H22 119.2
C7—C6—H6 119.1 C18—C23—C22 118.5 (3)
C8—C7—C6 119.2 (4) C18—C23—H23 120.7
C8—C7—H7 120.4 C22—C23—H23 120.7
C6—C7—H7 120.4 C21—C24—H24A 109.5
C7—C8—C13 121.7 (3) C21—C24—H24B 109.5
C7—C8—H8 119.1 H24A—C24—H24B 109.5
C13—C8—H8 119.1 C21—C24—H24C 109.5
C13—C9—C11 121.2 (3) H24A—C24—H24C 109.5
C13—C9—C15 120.1 (3) H24B—C24—H24C 109.5
C11—C9—C15 118.5 (3) N10—C25—H25A 109.4
C12—N10—C14 122.2 (2) N10—C25—H25B 109.5
C12—N10—C25 119.8 (3) H25A—C25—H25B 109.5
C14—N10—C25 118.0 (3) N10—C25—H25C 109.6
C9—C11—C1 122.4 (3) H25A—C25—H25C 109.5
C9—C11—C12 118.2 (3) H25B—C25—H25C 109.5
C1—C11—C12 119.4 (3) O27—S26—O28 115.33 (16)
N10—C12—C4 121.7 (3) O27—S26—O29 116.23 (16)
N10—C12—C11 120.0 (3) O28—S26—O29 114.60 (14)
C4—C12—C11 118.3 (3) O27—S26—C30 102.13 (17)
C9—C13—C8 122.6 (3) O28—S26—C30 103.11 (19)
C9—C13—C14 119.3 (3) O29—S26—C30 102.54 (16)
C8—C13—C14 118.2 (3) F32—C30—F31 107.0 (3)
N10—C14—C5 121.9 (3) F32—C30—F33 106.9 (3)
N10—C14—C13 118.9 (3) F31—C30—F33 107.5 (3)
C5—C14—C13 119.3 (3) F32—C30—S26 111.8 (3)
O17—C15—O16 125.2 (3) F31—C30—S26 111.7 (3)
O17—C15—C9 122.4 (3) F33—C30—S26 111.7 (3)
C11—C1—C2—C3 −2.5 (6) C6—C5—C14—C13 −0.7 (5)
C1—C2—C3—C4 1.5 (7) C9—C13—C14—N10 0.7 (4)
C2—C3—C4—C12 0.2 (6) C8—C13—C14—N10 180.0 (3)
C14—C5—C6—C7 1.3 (5) C9—C13—C14—C5 −179.8 (3)
C5—C6—C7—C8 −0.5 (5) C8—C13—C14—C5 −0.5 (4)
C6—C7—C8—C13 −0.8 (5) C13—C9—C15—O17 −94.0 (4)
C13—C9—C11—C1 −176.4 (3) C11—C9—C15—O17 81.1 (4)
C15—C9—C11—C1 8.5 (4) C13—C9—C15—O16 85.3 (3)
C13—C9—C11—C12 3.6 (4) C11—C9—C15—O16 −99.6 (3)
C15—C9—C11—C12 −171.5 (3) O17—C15—O16—C18 −1.1 (5)
C2—C1—C11—C9 −178.2 (3) C9—C15—O16—C18 179.6 (3)
C2—C1—C11—C12 1.8 (5) C15—O16—C18—C23 −87.3 (4)
C14—N10—C12—C4 176.3 (3) C15—O16—C18—C19 97.4 (3)
C25—N10—C12—C4 −5.0 (4) C23—C18—C19—C20 0.0 (5)
C14—N10—C12—C11 −4.6 (4) O16—C18—C19—C20 175.2 (3)
C25—N10—C12—C11 174.0 (3) C18—C19—C20—C21 −0.3 (5)
C3—C4—C12—N10 178.1 (3) C19—C20—C21—C22 0.1 (5)
C3—C4—C12—C11 −0.9 (5) C19—C20—C21—C24 −178.9 (3)
C9—C11—C12—N10 0.9 (4) C20—C21—C22—C23 0.3 (5)
C1—C11—C12—N10 −179.1 (3) C24—C21—C22—C23 179.3 (3)
C9—C11—C12—C4 180.0 (3) C19—C18—C23—C22 0.4 (5)
C1—C11—C12—C4 0.0 (4) O16—C18—C23—C22 −174.8 (3)
C11—C9—C13—C8 176.4 (3) C21—C22—C23—C18 −0.5 (5)
C15—C9—C13—C8 −8.6 (4) O27—S26—C30—F32 58.5 (3)
C11—C9—C13—C14 −4.4 (4) O28—S26—C30—F32 178.4 (3)
C15—C9—C13—C14 170.6 (3) O29—S26—C30—F32 −62.3 (3)
C7—C8—C13—C9 −179.4 (3) O27—S26—C30—F31 −61.3 (3)
C7—C8—C13—C14 1.3 (5) O28—S26—C30—F31 58.6 (3)
C12—N10—C14—C5 −175.6 (3) O29—S26—C30—F31 177.9 (3)
C25—N10—C14—C5 5.7 (4) O27—S26—C30—F33 178.2 (3)
C12—N10—C14—C13 3.8 (4) O28—S26—C30—F33 −61.8 (3)
C25—N10—C14—C13 −174.8 (3) O29—S26—C30—F33 57.5 (3)
C6—C5—C14—N10 178.8 (3)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.
D—H···A D—H H···A D···A D—H···A
C3—H3···O27i 0.93 2.57 3.314 (5) 137
C4—H4···O29i 0.93 2.44 3.319 (4) 159
C5—H5···O28 0.93 2.44 3.364 (5) 171
C6—H6···O28ii 0.93 2.56 3.342 (5) 142
C23—H23···O27iii 0.93 2.53 3.448 (4) 169
C25—H25A···O29 0.96 2.56 3.415 (5) 149
C25—H25B···Cg4iv 0.96 2.62 3.487 (4) 151

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+2, −y+1, −z+1; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1.

Table 2 C–F···π interactions (Å,°).

X I J I···J X···J XI···J
C30 F31 Cg2i 3.420 (3) 4.044 (4) 108.9 (2)
C30 F32 Cg1i 3.441 (3) 4.032 (4) 107.1 (2)
C30 F32 Cg2i 3.788 (4) 4.044 (4) 91.5 (2)
C30 F33 Cg1i 3.669 (3) 4.032 (4) 96.2 (2)

Symmetry code: (i) –x + 3/2, y + 1/2, –z + 1/2. Notes: Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively.

Table 3 π–π interactions (Å,°).

I J CgI···CgJ Dihedral angle CgI_Perp CgI_Offset
3 4v 3.913 (2) 4.80 (17) 3.472 (2) 1.805 (2)
4 3v 3.913 (2) 4.80 (17) 3.565 (2) 1.613 (2)

Symmetry code: (v) –x + 1, –y, –z + 1.Notes: Cg3 and Cg4 are the centroids of the C5–C8/C13/C14 and C18–C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2760).

References

  1. Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. [DOI] [PubMed]
  2. Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem.7, 386–394. [DOI] [PubMed]
  3. Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
  6. Novoa, J. J., Mota, F. & D’Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.
  7. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem.64, 3002–3008. [DOI] [PubMed]
  9. Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem.A75, 462–470. [PubMed]
  10. Sato, N. (1996). Tetrahedron Lett.37, 8519–8522.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sikorski, A., Krzymiński, K., Białońska, A., Lis, T. & Błażejowski, J. (2006). Acta Cryst. E62, o822–o824.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  15. Trzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826–o827. [DOI] [PMC free article] [PubMed]
  16. Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A.M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016302/ng2760sup1.cif

e-66-o1311-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016302/ng2760Isup2.hkl

e-66-o1311-Isup2.hkl (190.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES