Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 23;66(Pt 2):o439. doi: 10.1107/S1600536810001893

1-Bromo-2-(4-methoxy­phen­oxy)ethane

Lei Shen a, Yong-Hong Hu b, Wen-Ge Yang a,*, Xiao-Lei Zhao a, Jin-Feng Yao a
PMCID: PMC2979674  PMID: 21579854

Abstract

In the crystal structure of the title compound, C9H11BrO2, mol­ecules are stacked parallel to the b-axis direction, forming double layers in which the molecules are arranged head-to-head, with the bromo­methyl groups pointing towards each other.

Related literature

For background to the use of the title compound as a pharmaceutical inter­mediate, see: Ran et al. (2000). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-0o439-scheme1.jpg

Experimental

Crystal data

  • C9H11BrO2

  • M r = 231.09

  • Monoclinic, Inline graphic

  • a = 21.112 (4) Å

  • b = 5.4180 (11) Å

  • c = 8.3230 (17) Å

  • β = 94.54 (3)°

  • V = 949.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.29 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.481, T max = 0.674

  • 1759 measured reflections

  • 1713 independent reflections

  • 1050 reflections with I > 2σ(I)

  • R int = 0.073

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.155

  • S = 1.01

  • 1713 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001893/jh2122sup1.cif

e-66-0o439-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001893/jh2122Isup2.hkl

e-66-0o439-Isup2.hkl (84.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The tile compound, (I), contains halogen and methoxy groups, which can react with differen groups to prepare various functional organic compounds as a fine organic intermediate (Ran et al., 2000). we report herein its crystal structure.

In the molecule of the tile compound (Fig.1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The O1 and O2 atoms (Table 1) lie in the benzene ring plane. No intramolecular hydrogen bonds were observed.

In the crystal structure, the molecules are stacked along the b axis and the 'double layers' of molecules lying with all their bromomethyl groups together (Fig.2).

Experimental

4-methoxyphenol (18.6 g,0.15 mol) was dissolved with stirring in water (80 ml) containing sodium hydroxide (9.0 g, 0.25 mol) and TBAB (0.48 g, 0.0015 mol) and then added dropwise to excess refluxing ethylene dibromide (65 g, 0.35 mol). The reaction mixture was heated under reflux for 12 h, cooled and extracted into chloroform. The combined organic extracts were washed with water, dried over Na2SO4, filtered and evaporated to dryness to yield an oil. Fractionation under reduced pressure yielded 1-Bromo-2-(4-methoxyphenoxy)ethane as a colorless oil, then cooled to give 27.3 g white solid (78.9% yield). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I).

Crystal data

C9H11BrO2 F(000) = 464
Mr = 231.09 Dx = 1.617 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 21.112 (4) Å θ = 9–13°
b = 5.4180 (11) Å µ = 4.29 mm1
c = 8.3230 (17) Å T = 293 K
β = 94.54 (3)° Block, colourless
V = 949.0 (3) Å3 0.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1050 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.073
graphite θmax = 25.3°, θmin = 1.9°
ω/2θ scans h = −25→0
Absorption correction: ψ scan (North et al., 1968) k = 0→6
Tmin = 0.481, Tmax = 0.674 l = −9→9
1759 measured reflections 3 standard reflections every 200 reflections
1713 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069 H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.060P)2 + 5.P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
1713 reflections Δρmax = 0.66 e Å3
110 parameters Δρmin = −0.55 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.010 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.43028 (5) 0.39656 (16) 0.68335 (11) 0.0565 (4)
O1 0.0725 (3) 0.4636 (12) 0.1822 (7) 0.0603 (17)
C1 0.0493 (5) 0.2506 (19) 0.0971 (11) 0.068 (3)
H1A 0.0047 0.2689 0.0682 0.102*
H1B 0.0564 0.1077 0.1643 0.102*
H1C 0.0713 0.2313 0.0012 0.102*
O2 0.3246 (3) 0.5406 (10) 0.4019 (5) 0.0443 (14)
C2 0.1538 (4) 0.6649 (13) 0.3366 (8) 0.0344 (18)
H2A 0.1238 0.7785 0.3664 0.041*
C3 0.1353 (3) 0.4740 (14) 0.2328 (8) 0.0305 (17)
C4 0.2150 (3) 0.6877 (13) 0.3951 (8) 0.0317 (17)
H4A 0.2263 0.8141 0.4673 0.038*
C5 0.2602 (3) 0.5311 (12) 0.3510 (7) 0.0266 (16)
C6 0.2427 (4) 0.3359 (14) 0.2494 (8) 0.0374 (19)
H6A 0.2731 0.2239 0.2203 0.045*
C7 0.1801 (4) 0.3076 (14) 0.1914 (8) 0.0361 (19)
H7A 0.1683 0.1755 0.1243 0.043*
C8 0.3458 (4) 0.7249 (14) 0.5127 (8) 0.039 (2)
H8A 0.3222 0.7152 0.6079 0.047*
H8B 0.3387 0.8866 0.4646 0.047*
C9 0.4136 (4) 0.6893 (15) 0.5575 (9) 0.0408 (19)
H9A 0.4299 0.8313 0.6186 0.049*
H9B 0.4360 0.6791 0.4603 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0742 (7) 0.0413 (5) 0.0505 (6) 0.0066 (5) −0.0173 (4) 0.0053 (5)
O1 0.051 (4) 0.066 (4) 0.062 (4) 0.002 (3) −0.011 (3) −0.013 (3)
C1 0.076 (7) 0.069 (7) 0.056 (6) −0.010 (6) −0.021 (5) −0.011 (5)
O2 0.061 (4) 0.051 (4) 0.019 (3) 0.002 (3) −0.006 (2) −0.007 (2)
C2 0.053 (5) 0.026 (4) 0.025 (4) 0.006 (3) 0.006 (3) 0.005 (3)
C3 0.036 (4) 0.037 (4) 0.018 (4) 0.008 (4) 0.000 (3) −0.007 (3)
C4 0.045 (4) 0.022 (4) 0.027 (4) 0.002 (4) 0.001 (3) −0.009 (3)
C5 0.046 (4) 0.023 (4) 0.010 (3) 0.002 (3) −0.001 (3) 0.005 (3)
C6 0.058 (5) 0.033 (5) 0.020 (4) 0.004 (4) −0.003 (3) 0.000 (3)
C7 0.064 (5) 0.026 (4) 0.016 (4) −0.001 (4) −0.011 (3) −0.003 (3)
C8 0.068 (6) 0.029 (4) 0.018 (4) −0.011 (4) −0.008 (3) 0.005 (3)
C9 0.048 (5) 0.040 (5) 0.034 (4) −0.016 (4) 0.000 (4) 0.004 (4)

Geometric parameters (Å, °)

Br—C9 1.918 (8) C4—C5 1.350 (9)
O1—C3 1.360 (9) C4—H4A 0.9300
O1—C1 1.421 (11) C5—C6 1.386 (9)
C1—H1A 0.9600 C6—C7 1.380 (10)
C1—H1B 0.9600 C6—H6A 0.9300
C1—H1C 0.9600 C7—H7A 0.9300
O2—C5 1.393 (8) C8—C9 1.463 (10)
O2—C8 1.408 (9) C8—H8A 0.9700
C2—C4 1.350 (10) C8—H8B 0.9700
C2—C3 1.384 (10) C9—H9A 0.9700
C2—H2A 0.9300 C9—H9B 0.9700
C3—C7 1.370 (10)
C3—O1—C1 118.4 (7) C6—C5—O2 114.9 (6)
O1—C1—H1A 109.5 C7—C6—C5 120.0 (7)
O1—C1—H1B 109.5 C7—C6—H6A 120.0
H1A—C1—H1B 109.5 C5—C6—H6A 120.0
O1—C1—H1C 109.5 C3—C7—C6 120.0 (7)
H1A—C1—H1C 109.5 C3—C7—H7A 120.0
H1B—C1—H1C 109.5 C6—C7—H7A 120.0
C5—O2—C8 118.5 (6) O2—C8—C9 109.1 (7)
C4—C2—C3 120.6 (7) O2—C8—H8A 109.9
C4—C2—H2A 119.7 C9—C8—H8A 109.9
C3—C2—H2A 119.7 O2—C8—H8B 109.9
O1—C3—C7 124.8 (6) C9—C8—H8B 109.9
O1—C3—C2 116.4 (6) H8A—C8—H8B 108.3
C7—C3—C2 118.8 (7) C8—C9—Br 112.4 (5)
C2—C4—C5 121.5 (7) C8—C9—H9A 109.1
C2—C4—H4A 119.3 Br—C9—H9A 109.1
C5—C4—H4A 119.3 C8—C9—H9B 109.1
C4—C5—C6 119.0 (7) Br—C9—H9B 109.1
C4—C5—O2 126.1 (6) H9A—C9—H9B 107.9
C1—O1—C3—C7 8.3 (11) C8—O2—C5—C6 −176.4 (6)
C1—O1—C3—C2 −170.1 (7) C4—C5—C6—C7 1.7 (10)
C4—C2—C3—O1 179.0 (7) O2—C5—C6—C7 179.9 (6)
C4—C2—C3—C7 0.5 (10) O1—C3—C7—C6 179.8 (7)
C3—C2—C4—C5 2.0 (11) C2—C3—C7—C6 −1.8 (10)
C2—C4—C5—C6 −3.1 (10) C5—C6—C7—C3 0.7 (10)
C2—C4—C5—O2 178.9 (6) C5—O2—C8—C9 176.1 (6)
C8—O2—C5—C4 1.6 (9) O2—C8—C9—Br −68.6 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2122).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Ran, C. Z., Xia, L., Ni, P. Z. & Fu, J. H. (2000). J. Chin. Pharm. Univ.31, 246–250.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001893/jh2122sup1.cif

e-66-0o439-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001893/jh2122Isup2.hkl

e-66-0o439-Isup2.hkl (84.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES