Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 9;66(Pt 2):o333. doi: 10.1107/S1600536810000668

Methyl 2-methyl-4-(oxiran-2-ylmeth­oxy)-2H-1,2-benzothia­zine-3-carboxyl­ate 1,1-dioxide

Matloob Ahmad a,b, Hamid Latif Siddiqui a, Muhammad Zia-ur-Rehman b,*, Mark R J Elsegood c, George W Weaver c
PMCID: PMC2979684  PMID: 21579762

Abstract

In the title compound, C14H15NO6S, the thia­zine ring adopts a distorted half-chair conformation. The structure displays several cooperative weak inter­molecular C—H⋯O hydrogen-bonding inter­actions, giving rise to a two-dimensional sheet packing motif. The CH2 group in the meth­oxy linker to the oxirane ring, and the CH group in that ring, exhibit twofold positional disorder. The three-membered oxirane ring is twisted approximately perpendicular with respect to thia­zine ring (dihedral angle = 60/86° for the major/minor disorder components). 1,2-Benzothia­zines of this kind have a wide range of biological activities and are mainly used as medicines in the treatment of inflammation and rheumatoid arthritis.

Related literature

For the synthesis of related mol­ecules, see: Zia-ur-Rehman et al. (2006, 2007, 2009). For the biological activity of 1,2-benzothia­zine 1,1-dioxides, see: Bihovsky et al. (2004); Fabiola et al. (1998); Kojić-Prodić & Rużić-Toroš (1982). For similar mol­ecules, see: Ahmad et al. (2008); Arshad et al. (2009). For reference bond-length data, see: Weast et al. (1984).graphic file with name e-66-0o333-scheme1.jpg

Experimental

Crystal data

  • C14H15NO6S

  • M r = 325.33

  • Monoclinic, Inline graphic

  • a = 7.2007 (3) Å

  • b = 12.8435 (6) Å

  • c = 15.7820 (7) Å

  • β = 96.5250 (7)°

  • V = 1450.10 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 300 K

  • 0.44 × 0.37 × 0.24 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.897, T max = 0.942

  • 11439 measured reflections

  • 4516 independent reflections

  • 3651 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.155

  • S = 1.08

  • 4516 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000668/bt5151sup1.cif

e-66-0o333-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000668/bt5151Isup2.hkl

e-66-0o333-Isup2.hkl (221.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O6i 0.93 2.49 3.377 (3) 158
C15—H15⋯O3ii 0.98 2.50 3.317 (4) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to Loughborough University for the analysis of the title compound.

supplementary crystallographic information

Comment

Due to the verstaile applications of 1,2-benzothiazine 1,1-dioxides, much attention has been given to their synthesis. Some derivatives act as potent calpain I inhibitors (Bihovsky et al., 2004) while others possess anti-bacterial, anti-fungal and anti-oxidant properties (Zia-ur-Rehman et al., 2006, 2009). In continuation of our work on the synthesis (Zia-ur-Rehman et al., 2006), biological activity (Zia-ur-Rehman et al., 2009) and crystal structures (Zia-ur-Rehman et al., 2007; Ahmad et al., 2008; Arshad et al., 2009) of various 1,2-benzothiazine-1,1-dioxides, we herein report the crystal structure of the title compound (I) (scheme and Fig. 1). Like the previously reported 1,2-benzothiazine1,1-dioxides (Zia-ur-Rehman et al., 2007; Ahmad et al., 2008; Arshad et al., 2009), the thiazine ring involving two double bonds, exhibits a distorted half-chair conformation; with atoms S1/C10/C5/C4 coplanar within ±0.022 Å and N2 and C3 lying 0.961 and 0.525 Å respectively out of this plane. The geometry at N2 is pyramidal. The C10—S1 [1.7484 (17) Å] bond is shorter than a normal C—S single bond (1.81–2.55 Å) (Weast et al., 1984) due to partial double bond character and this value is in agreement with similar, partially delocalized, bonds (Kojić-Prodić & Rużić-Toroš, 1982; Fabiola et al., 1998]. The

positions the partially disordered oxirane group approximately perpendicular to the planar portion of the thiazine ring; dihedral angles between C4/C5/C10/S1 and the two diordered oxirane positions: 103 (major) and 108° (minor). There are two significant, intermolecular C—H···O interactions (Fig 2 & Table 1). Each molecule makes a total of four such interactions, two as donor and two as acceptor, resulting in a two-dimensional thick sheet structure, where the depth of the sheet is due to the elevation of the methoxy-oxirane group with respect to the thiazine ring system.

Experimental

A mixture of methyl 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide (1.33 g, 5.0 mmol), 1-chloro-2,3-epoxypropane (2.313 g, 25.0 mmol), anhydrous potassium carbonate (10.0 g) and acetonitrile (100 ml) was stirred and refluxed for a period of 7 h. After removal of acetonitrile and excess 1-chloro-2,3-epoxypropane under vacuum, chloroform (30 ml) was added and the resultant mixture was filtered. The filtrate was washed with water to remove potassium carbonate, dried with anhydrous sodium sulfate and filtered. Slow evaporation of the solvent afforded the crystalline product.

Refinement

H atoms were refined using a riding model with Ueq set to be 1.2 times that of the carrier atom (1.5 times for methyl H, and refined with rotational freedom). Atoms C14, C15, and that H atoms on C16 were refined over two sets of positions with major occupancy 64.8 (6)%.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids at the 40% probability level. The minor occupied site of the disordered atoms has been omitted.

Fig. 2.

Fig. 2.

Perspective view of one thick layer of the crystal packing showing weak hydrogen-bonding interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. i = 1 - x, y - 1/2, 1.5 - z; ii = x, 1/2 - y, z - 1/2

Crystal data

C14H15NO6S F(000) = 680
Mr = 325.33 Dx = 1.490 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4610 reflections
a = 7.2007 (3) Å θ = 2.6–31.4°
b = 12.8435 (6) Å µ = 0.25 mm1
c = 15.7820 (7) Å T = 300 K
β = 96.5250 (7)° Block, colourless
V = 1450.10 (11) Å3 0.44 × 0.37 × 0.24 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4516 independent reflections
Radiation source: fine-focus sealed tube 3651 reflections with I > 2σ(I)
graphite Rint = 0.016
ω rotation with narrow frames scans θmax = 31.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −10→10
Tmin = 0.897, Tmax = 0.942 k = −18→14
11439 measured reflections l = −22→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0788P)2 + 0.4338P] where P = (Fo2 + 2Fc2)/3
4516 reflections (Δ/σ)max = 0.001
220 parameters Δρmax = 0.70 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.34508 (6) 0.47351 (3) 0.61034 (2) 0.04004 (14)
O1 0.53323 (19) 0.44619 (11) 0.64070 (9) 0.0512 (3)
O2 0.2622 (2) 0.43268 (12) 0.53097 (8) 0.0601 (4)
N2 0.2133 (2) 0.44064 (11) 0.68409 (9) 0.0387 (3)
C3 0.2671 (2) 0.48744 (13) 0.76543 (10) 0.0373 (3)
C4 0.3247 (2) 0.58822 (13) 0.76958 (10) 0.0368 (3)
C5 0.3205 (2) 0.65332 (13) 0.69280 (10) 0.0366 (3)
C6 0.3032 (3) 0.76159 (14) 0.69774 (14) 0.0481 (4)
H6 0.3046 0.7937 0.7506 0.058*
C7 0.2842 (3) 0.82078 (16) 0.62423 (17) 0.0594 (5)
H7 0.2724 0.8927 0.6283 0.071*
C8 0.2823 (3) 0.77530 (17) 0.54444 (16) 0.0571 (5)
H8 0.2684 0.8163 0.4956 0.069*
C9 0.3014 (3) 0.66804 (16) 0.53801 (12) 0.0465 (4)
H9 0.3006 0.6364 0.4850 0.056*
C10 0.3215 (2) 0.60897 (13) 0.61187 (10) 0.0364 (3)
C11 0.0099 (3) 0.43184 (18) 0.65850 (14) 0.0550 (5)
H11A −0.0408 0.4996 0.6443 0.082*
H11B −0.0493 0.4034 0.7048 0.082*
H11C −0.0121 0.3869 0.6098 0.082*
C12 0.2533 (3) 0.42003 (16) 0.84103 (11) 0.0456 (4)
O3 0.2713 (3) 0.44879 (15) 0.91356 (10) 0.0813 (6)
O4 0.2175 (2) 0.32170 (12) 0.81730 (9) 0.0546 (3)
C13 0.2062 (3) 0.2467 (2) 0.88466 (17) 0.0661 (6)
H13A 0.1027 0.2636 0.9154 0.099*
H13B 0.3199 0.2482 0.9229 0.099*
H13C 0.1885 0.1783 0.8605 0.099*
O5 0.37071 (18) 0.63669 (11) 0.84539 (8) 0.0469 (3)
C14 0.5579 (4) 0.6871 (3) 0.8572 (2) 0.0451 (8) 0.646 (6)
H14A 0.5811 0.7217 0.8049 0.054* 0.646 (6)
H14B 0.5605 0.7392 0.9018 0.054* 0.646 (6)
C15 0.7068 (5) 0.6087 (3) 0.8807 (2) 0.0500 (8) 0.646 (6)
H15 0.6875 0.5604 0.9270 0.060* 0.646 (6)
C16 0.8933 (4) 0.6281 (2) 0.8656 (2) 0.0836 (8)
H16A 0.9917 0.5941 0.9028 0.100* 0.646 (6)
H16B 0.9238 0.6977 0.8477 0.100* 0.646 (6)
H16C 0.9273 0.5999 0.9223 0.100* 0.354 (6)
H16D 0.9886 0.6711 0.8444 0.100* 0.354 (6)
O6 0.7826 (3) 0.56506 (15) 0.80605 (13) 0.0782 (5)
C14X 0.5510 (8) 0.6227 (7) 0.8916 (4) 0.057 (2) 0.354 (6)
H14C 0.5688 0.5497 0.9059 0.069* 0.354 (6)
H14D 0.5578 0.6618 0.9444 0.069* 0.354 (6)
C15X 0.7008 (8) 0.6571 (6) 0.8428 (5) 0.0577 (19) 0.354 (6)
H15X 0.6761 0.7179 0.8057 0.069* 0.354 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0542 (3) 0.0363 (2) 0.0306 (2) 0.00076 (16) 0.00890 (16) −0.00584 (14)
O1 0.0530 (7) 0.0515 (7) 0.0514 (8) 0.0115 (6) 0.0160 (6) −0.0025 (6)
O2 0.0911 (11) 0.0555 (8) 0.0335 (6) −0.0064 (7) 0.0059 (7) −0.0133 (6)
N2 0.0468 (7) 0.0380 (7) 0.0313 (6) −0.0071 (6) 0.0045 (5) −0.0030 (5)
C3 0.0402 (8) 0.0430 (8) 0.0289 (7) −0.0018 (6) 0.0050 (6) −0.0006 (6)
C4 0.0378 (7) 0.0428 (8) 0.0304 (7) −0.0006 (6) 0.0065 (5) −0.0093 (6)
C5 0.0362 (7) 0.0358 (7) 0.0384 (8) −0.0005 (6) 0.0070 (6) −0.0037 (6)
C6 0.0459 (9) 0.0390 (8) 0.0603 (11) 0.0014 (7) 0.0103 (8) −0.0083 (8)
C7 0.0552 (11) 0.0375 (9) 0.0866 (16) 0.0056 (8) 0.0125 (10) 0.0097 (10)
C8 0.0519 (10) 0.0546 (11) 0.0655 (13) 0.0047 (9) 0.0095 (9) 0.0221 (10)
C9 0.0444 (9) 0.0561 (10) 0.0393 (8) −0.0004 (8) 0.0062 (7) 0.0092 (8)
C10 0.0398 (7) 0.0362 (7) 0.0336 (7) −0.0002 (6) 0.0064 (6) −0.0001 (6)
C11 0.0496 (10) 0.0624 (12) 0.0509 (11) −0.0095 (9) −0.0028 (8) −0.0024 (9)
C12 0.0443 (9) 0.0565 (10) 0.0362 (8) −0.0017 (8) 0.0059 (6) 0.0082 (7)
O3 0.1263 (17) 0.0833 (12) 0.0346 (7) −0.0132 (11) 0.0108 (9) 0.0083 (7)
O4 0.0625 (8) 0.0499 (8) 0.0511 (8) −0.0061 (6) 0.0045 (6) 0.0157 (6)
C13 0.0581 (12) 0.0672 (14) 0.0722 (15) −0.0055 (10) 0.0040 (10) 0.0354 (12)
O5 0.0506 (7) 0.0567 (8) 0.0339 (6) −0.0054 (6) 0.0068 (5) −0.0157 (5)
C14 0.0521 (16) 0.0411 (16) 0.0413 (15) −0.0052 (11) 0.0025 (11) −0.0107 (13)
C15 0.0631 (19) 0.0476 (18) 0.0383 (15) 0.0020 (14) 0.0021 (12) −0.0019 (13)
C16 0.0560 (13) 0.0798 (17) 0.112 (2) 0.0020 (12) −0.0028 (14) −0.0217 (17)
O6 0.0746 (11) 0.0750 (11) 0.0880 (13) 0.0021 (9) 0.0224 (10) −0.0291 (10)
C14X 0.043 (3) 0.092 (6) 0.035 (3) 0.005 (3) −0.003 (2) −0.016 (3)
C15X 0.049 (3) 0.057 (4) 0.067 (4) −0.002 (3) 0.007 (3) −0.010 (3)

Geometric parameters (Å, °)

S1—O2 1.4249 (14) C12—O4 1.334 (3)
S1—O1 1.4285 (15) O4—C13 1.444 (2)
S1—N2 1.6384 (14) C13—H13A 0.9600
S1—C10 1.7484 (17) C13—H13B 0.9600
N2—C3 1.430 (2) C13—H13C 0.9600
N2—C11 1.478 (2) O5—C14X 1.426 (6)
C3—C4 1.358 (2) O5—C14 1.488 (3)
C3—C12 1.487 (2) C14—C15 1.486 (5)
C4—O5 1.3559 (18) C14—H14A 0.9700
C4—C5 1.470 (2) C14—H14B 0.9700
C5—C6 1.399 (2) C15—C16 1.413 (5)
C5—C10 1.399 (2) C15—O6 1.465 (4)
C6—C7 1.381 (3) C15—H15 0.9800
C6—H6 0.9300 C16—O6 1.416 (3)
C7—C8 1.387 (3) C16—C15X 1.441 (7)
C7—H7 0.9300 C16—H16A 0.9700
C8—C9 1.389 (3) C16—H16B 0.9700
C8—H8 0.9300 C16—H16C 0.9699
C9—C10 1.385 (2) C16—H16D 0.9701
C9—H9 0.9300 O6—C15X 1.469 (7)
C11—H11A 0.9600 C14X—C15X 1.462 (11)
C11—H11B 0.9600 C14X—H14C 0.9700
C11—H11C 0.9600 C14X—H14D 0.9700
C12—O3 1.196 (2) C15X—H15X 0.9800
O2—S1—O1 119.39 (9) H13B—C13—H13C 109.5
O2—S1—N2 108.14 (9) C4—O5—C14X 120.7 (3)
O1—S1—N2 107.59 (8) C4—O5—C14 115.97 (16)
O2—S1—C10 110.29 (9) C15—C14—O5 110.7 (3)
O1—S1—C10 109.25 (8) C15—C14—H14A 109.5
N2—S1—C10 100.47 (7) O5—C14—H14A 109.5
C3—N2—C11 115.86 (14) C15—C14—H14B 109.5
C3—N2—S1 114.17 (11) O5—C14—H14B 109.5
C11—N2—S1 117.46 (12) H14A—C14—H14B 108.1
C4—C3—N2 119.59 (14) C16—C15—O6 58.9 (2)
C4—C3—C12 124.33 (15) C16—C15—C14 120.8 (4)
N2—C3—C12 116.07 (15) O6—C15—C14 112.5 (3)
O5—C4—C3 121.52 (15) C16—C15—H15 117.0
O5—C4—C5 116.50 (15) O6—C15—H15 117.0
C3—C4—C5 121.65 (14) C14—C15—H15 117.0
C6—C5—C10 117.72 (16) C15—C16—O6 62.37 (18)
C6—C5—C4 120.88 (15) O6—C16—C15X 61.9 (3)
C10—C5—C4 121.28 (14) C15—C16—H16A 117.5
C7—C6—C5 120.10 (19) O6—C16—H16A 117.5
C7—C6—H6 120.0 C15X—C16—H16A 152.0
C5—C6—H6 120.0 C15—C16—H16B 117.5
C6—C7—C8 121.39 (19) O6—C16—H16B 117.5
C6—C7—H7 119.3 C15X—C16—H16B 86.1
C8—C7—H7 119.3 H16A—C16—H16B 114.6
C7—C8—C9 119.55 (19) C15—C16—H16C 85.6
C7—C8—H8 120.2 O6—C16—H16C 117.6
C9—C8—H8 120.2 C15X—C16—H16C 117.5
C10—C9—C8 118.92 (18) H16B—C16—H16C 124.8
C10—C9—H9 120.5 C15—C16—H16D 151.9
C8—C9—H9 120.5 O6—C16—H16D 117.6
C9—C10—C5 122.31 (16) C15X—C16—H16D 117.7
C9—C10—S1 122.33 (13) H16A—C16—H16D 88.2
C5—C10—S1 115.35 (12) H16C—C16—H16D 114.7
N2—C11—H11A 109.5 C16—O6—C15 58.70 (19)
N2—C11—H11B 109.5 C16—O6—C15X 59.9 (3)
H11A—C11—H11B 109.5 O5—C14X—C15X 112.1 (6)
N2—C11—H11C 109.5 O5—C14X—H14C 109.2
H11A—C11—H11C 109.5 C15X—C14X—H14C 109.2
H11B—C11—H11C 109.5 O5—C14X—H14D 109.2
O3—C12—O4 123.89 (18) C15X—C14X—H14D 109.2
O3—C12—C3 125.4 (2) H14C—C14X—H14D 107.9
O4—C12—C3 110.75 (15) C16—C15X—C14X 122.4 (8)
C12—O4—C13 116.76 (18) C16—C15X—O6 58.2 (3)
O4—C13—H13A 109.5 C14X—C15X—O6 108.5 (7)
O4—C13—H13B 109.5 C16—C15X—H15X 117.4
H13A—C13—H13B 109.5 C14X—C15X—H15X 117.4
O4—C13—H13C 109.5 O6—C15X—H15X 117.4
H13A—C13—H13C 109.5
O2—S1—N2—C3 −172.61 (13) N2—S1—C10—C5 39.59 (14)
O1—S1—N2—C3 57.18 (14) C4—C3—C12—O3 8.5 (3)
C10—S1—N2—C3 −57.04 (13) N2—C3—C12—O3 −170.9 (2)
O2—S1—N2—C11 −32.06 (16) C4—C3—C12—O4 −171.60 (16)
O1—S1—N2—C11 −162.27 (14) N2—C3—C12—O4 9.0 (2)
C10—S1—N2—C11 83.50 (14) O3—C12—O4—C13 −2.0 (3)
C11—N2—C3—C4 −101.63 (19) C3—C12—O4—C13 178.12 (16)
S1—N2—C3—C4 39.6 (2) C3—C4—O5—C14X 81.6 (5)
C11—N2—C3—C12 77.8 (2) C5—C4—O5—C14X −104.9 (5)
S1—N2—C3—C12 −141.04 (13) C3—C4—O5—C14 126.8 (2)
N2—C3—C4—O5 177.68 (14) C5—C4—O5—C14 −59.7 (2)
C12—C3—C4—O5 −1.7 (3) C4—O5—C14—C15 −79.8 (3)
N2—C3—C4—C5 4.5 (2) C14X—O5—C14—C15 27.8 (4)
C12—C3—C4—C5 −174.86 (15) O5—C14—C15—C16 157.0 (3)
O5—C4—C5—C6 −20.4 (2) O5—C14—C15—O6 90.8 (3)
C3—C4—C5—C6 153.18 (17) C14—C15—C16—O6 −99.3 (3)
O5—C4—C5—C10 163.78 (14) O6—C15—C16—C15X 79.6 (5)
C3—C4—C5—C10 −22.7 (2) C14—C15—C16—C15X −19.7 (5)
C10—C5—C6—C7 1.3 (3) C15X—C16—O6—C15 −39.9 (4)
C4—C5—C6—C7 −174.71 (17) C15—C16—O6—C15X 39.9 (4)
C5—C6—C7—C8 −0.2 (3) C14—C15—O6—C16 113.4 (4)
C6—C7—C8—C9 −0.5 (3) C16—C15—O6—C15X −81.5 (5)
C7—C8—C9—C10 0.1 (3) C14—C15—O6—C15X 31.9 (5)
C8—C9—C10—C5 1.0 (3) C4—O5—C14X—C15X 60.1 (8)
C8—C9—C10—S1 179.64 (14) C14—O5—C14X—C15X −34.6 (5)
C6—C5—C10—C9 −1.7 (2) C15—C16—C15X—C14X 11.7 (5)
C4—C5—C10—C9 174.28 (15) O6—C16—C15X—C14X 92.8 (6)
C6—C5—C10—S1 179.57 (13) C15—C16—C15X—O6 −81.2 (5)
C4—C5—C10—S1 −4.4 (2) O5—C14X—C15X—C16 −164.2 (5)
O2—S1—C10—C9 −25.20 (17) O5—C14X—C15X—O6 −100.7 (7)
O1—S1—C10—C9 107.90 (15) C15—O6—C15X—C16 77.6 (5)
N2—S1—C10—C9 −139.14 (15) C16—O6—C15X—C14X −117.2 (7)
O2—S1—C10—C5 153.53 (13) C15—O6—C15X—C14X −39.7 (5)
O1—S1—C10—C5 −73.37 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O6i 0.93 2.49 3.377 (3) 158
C15—H15···O3ii 0.98 2.50 3.317 (4) 140

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5151).

References

  1. Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788. [DOI] [PMC free article] [PubMed]
  2. Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596. [DOI] [PMC free article] [PubMed]
  3. Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett.14, 1035–1038. [DOI] [PubMed]
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.
  6. Kojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948–2951.
  7. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Weast, R. C., Astle, M. J. & Beyer, W. H. (1984). Handbook of Chemistry and Physics, 65th ed., pp. 134–135. Boca Raton: CRC Press.
  10. Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [DOI] [PubMed]
  11. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Ahmad, S. (2007). Acta Cryst. E63, o900–o901.
  12. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem.44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000668/bt5151sup1.cif

e-66-0o333-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000668/bt5151Isup2.hkl

e-66-0o333-Isup2.hkl (221.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES