Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 16;66(Pt 2):o383. doi: 10.1107/S1600536810001352

1-(1,3-Benzodioxol-5-yl)ethanone

Jerry P Jasinski a,*, Ray J Butcher b, Q N M Hakim Al-arique c, H S Yathirajan c, B Narayana d
PMCID: PMC2979689  PMID: 21579805

Abstract

In the title compound, C9H8O3, the dihedral angle between the mean planes of the benzene and dioxole rings is 1.4 (8)°, with the dioxole group in a slightly distorted envelope configuration with the flap C atom displaced by 0.0645 Å from the plane through the other four atoms. In the crystal, weak inter­molecular C—H⋯O hydrogen-bond inter­actions link the mol­ecules into chains propagating in [011]. The crystal packing exhibits weak π–π inter­actions as evidenced by the relatively short distances [3.801 (9) Å] between the centroids of adjacent benzene rings.

Related literature

For the pharmaceutical properties of compounds containing the 1,3-dioxolyl group, see: Gabrielsen et al. (1992); Krause & Goeber (1972); Ma et al. (1987a ,b ); Ohta & Kimoto (1976); For bond-length data, see: Allen et al. (1987). For related structures, see: Jasinski et al. (2008); Yathirajan et al. (2007). For puckering parameters, see: Cremer & Pople (1975). For MOPAC AM1 calculations, see: Schmidt & Polik (2007).graphic file with name e-66-0o383-scheme1.jpg

Experimental

Crystal data

  • C9H8O3

  • M r = 164.15

  • Monoclinic, Inline graphic

  • a = 9.4697 (3) Å

  • b = 10.8445 (3) Å

  • c = 7.5148 (3) Å

  • β = 105.973 (3)°

  • V = 741.93 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.58 × 0.45 × 0.26 mm

Data collection

  • Oxford Diffraction R Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.909, T max = 0.972

  • 12470 measured reflections

  • 3061 independent reflections

  • 2215 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.133

  • S = 1.03

  • 3061 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001352/im2174sup1.cif

e-66-0o383-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001352/im2174Isup2.hkl

e-66-0o383-Isup2.hkl (150.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O3i 0.95 2.50 3.423 (1) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

QNMHA thanks the University of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Acetophenone is the simplest aromatic ketone. It is used as a polymerization catalyst for the manufacture of olefins, as an intermediate for pharmaceuticals, agrochemicals and other organic compounds, as a drug to induce sleep and as a solvent for plastics, resins, cellulose ethers, and esters. Acetophenone and its derivatives are ingredients of flavor and fragrance for soaps, detergents, cosmetics, and perfumes as well as in foods, beverages, and tobacco. Many synthetic or naturally occurring compounds containing the 1,3-dioxolyl group are very important because of their pharmacological properties (Ma et al. 1987a,b; Ohta & Kimoto 1976; Krause & Goeber 1972; Gabrielsen et al. 1992). The crystal structure of 1,3-benzodioxol-5-ylmethanol (Yathirajan et al., 2007) is reported. The title compound, (I), was used recently for the synthesis of (2E)-1-(1,3-benzodioxol-5-yl)-3-(4-chlorophenyl)prop-2-en-1-one and (2E)-1-(1,3-benzodioxol-5-yl)-3-(3,4-dimethoxyphenyl) prop-2-en-1-one (Jasinski et al., 2008). In view of the importance of the title compound, C9H8O3, (I), we report the crystal structure.

The molecular structure consists of an ethanoyl group bonded to a benzene group which is fused to a 1,3-dioxol ring in a nearly planar fashion (Fig. 1). The dihedral angle between the mean planes of the benzene and dioxol ring is 1.4 (8)°, as the dioxol group maintains itself in a slightly distorted envelope configuration (Cremer & Pople, 1975) with puckering parameters Q(2) and Phi(2) of 0.1020 and 34.7750, respectively. For an ideal envelope, Phi(2) has a value of k x 36. Bond lengths and bond angles are all within expected ranges (Allen et al. 1987).

Weak intermolecular C—H···O hydrogen bond interactions link the molecules into chains propagating in the [011] direction (Fig. 2). Crystal packing exhibits weak Cg2—Cg2 π-π interactions as evidenced by relatively short distances between the centroids of nearby aromatic rings (Cg2—Cg2: 3.8019 Å; slippage = 1.630 Å; 1 - x, -y, -z; Cg2 = ring centroid for C2—C7). A geometry optimized MOPAC AM1 computational calculation (Schmidt & Polik 2007) on (I) (AM1 (Austin Model 1 approximation), in vacuo, results in a completely planar molecule. This observation supports a suggestion that intermolecular forces influence the molecular conformation in the crystal.

Experimental

The title compound (I) was obtained from Aldrich Chemical Company and was recrystallized from DMF by slow evaporation (m.p.: 360–362 K). Analysis for the title compound C9H8O3: Found (calculated): C: 65.85 (65.91); H: 4.91(4.86).

Refinement

All H atoms were placed in calculated positions and wer refined using the riding model with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.17–1.50Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), C9H8O3, showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The molecular packing for (I) viewed down the a axis. Dashed lines indicate weak C—H···O intermolecular hydrogen bond interactions which link the molecule into chains propagating along the [011].

Crystal data

C9H8O3 F(000) = 344
Mr = 164.15 Dx = 1.470 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5168 reflections
a = 9.4697 (3) Å θ = 4.8–34.7°
b = 10.8445 (3) Å µ = 0.11 mm1
c = 7.5148 (3) Å T = 200 K
β = 105.973 (3)° Irregular plate, colorless
V = 741.93 (4) Å3 0.58 × 0.45 × 0.26 mm
Z = 4

Data collection

Oxford Diffraction R Gemini diffractometer 3061 independent reflections
Radiation source: fine-focus sealed tube 2215 reflections with I > 2σ(I)
graphite Rint = 0.024
Detector resolution: 10.5081 pixels mm-1 θmax = 34.8°, θmin = 4.9°
φ and ω scans h = −14→14
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −17→15
Tmin = 0.909, Tmax = 0.972 l = −11→11
12470 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0852P)2] where P = (Fo2 + 2Fc2)/3
3061 reflections (Δ/σ)max < 0.001
110 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.19844 (7) 0.26081 (7) 0.45409 (11) 0.03260 (19)
O2 0.12787 (7) 0.42705 (7) 0.60401 (10) 0.02944 (17)
O3 0.76739 (8) 0.26971 (7) 0.62415 (11) 0.03273 (18)
C1 0.07627 (10) 0.31692 (10) 0.50175 (15) 0.0315 (2)
H1A −0.0023 0.3370 0.3882 0.038*
H1B 0.0357 0.2596 0.5777 0.038*
C2 0.27739 (9) 0.42276 (8) 0.64441 (11) 0.02067 (17)
C3 0.37564 (9) 0.50450 (8) 0.74958 (12) 0.02310 (18)
H3A 0.3448 0.5732 0.8079 0.028*
C4 0.52406 (9) 0.48140 (8) 0.76650 (12) 0.02156 (17)
H4A 0.5960 0.5353 0.8397 0.026*
C5 0.56965 (8) 0.38161 (8) 0.67914 (11) 0.01868 (16)
C6 0.46499 (9) 0.30025 (8) 0.56785 (12) 0.02042 (17)
H6A 0.4936 0.2329 0.5048 0.024*
C7 0.32064 (9) 0.32334 (8) 0.55556 (11) 0.02051 (17)
C8 0.72805 (9) 0.35800 (8) 0.70045 (12) 0.02201 (18)
C9 0.84055 (10) 0.44275 (10) 0.82066 (14) 0.0293 (2)
H9A 0.9373 0.4250 0.8032 0.044*
H9B 0.8436 0.4298 0.9507 0.044*
H9C 0.8139 0.5286 0.7863 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0185 (3) 0.0348 (4) 0.0419 (4) −0.0031 (3) 0.0041 (3) −0.0136 (3)
O2 0.0162 (3) 0.0337 (4) 0.0373 (4) 0.0036 (2) 0.0055 (3) −0.0046 (3)
O3 0.0236 (3) 0.0311 (4) 0.0461 (4) 0.0029 (3) 0.0140 (3) −0.0052 (3)
C1 0.0180 (4) 0.0394 (5) 0.0362 (5) −0.0029 (4) 0.0061 (4) −0.0063 (4)
C2 0.0166 (3) 0.0237 (4) 0.0217 (4) 0.0032 (3) 0.0054 (3) 0.0019 (3)
C3 0.0227 (4) 0.0221 (4) 0.0248 (4) 0.0030 (3) 0.0071 (3) −0.0028 (3)
C4 0.0204 (4) 0.0209 (4) 0.0227 (4) −0.0010 (3) 0.0048 (3) −0.0013 (3)
C5 0.0172 (3) 0.0191 (4) 0.0201 (4) 0.0006 (3) 0.0056 (3) 0.0024 (3)
C6 0.0203 (4) 0.0188 (4) 0.0230 (4) 0.0013 (3) 0.0075 (3) −0.0009 (3)
C7 0.0178 (3) 0.0210 (4) 0.0217 (4) −0.0014 (3) 0.0036 (3) −0.0005 (3)
C8 0.0186 (3) 0.0227 (4) 0.0261 (4) 0.0004 (3) 0.0084 (3) 0.0039 (3)
C9 0.0186 (4) 0.0328 (5) 0.0353 (5) −0.0031 (3) 0.0056 (3) −0.0003 (4)

Geometric parameters (Å, °)

O1—C7 1.3765 (10) C4—C5 1.3945 (12)
O1—C1 1.4370 (12) C4—H4A 0.9500
O2—C2 1.3648 (10) C5—C6 1.4157 (11)
O2—C1 1.4314 (12) C5—C8 1.4862 (11)
O3—C8 1.2256 (11) C6—C7 1.3676 (11)
C1—H1A 0.9900 C6—H6A 0.9500
C1—H1B 0.9900 C8—C9 1.5053 (12)
C2—C3 1.3679 (12) C9—H9A 0.9800
C2—C7 1.3879 (12) C9—H9B 0.9800
C3—C4 1.3985 (11) C9—H9C 0.9800
C3—H3A 0.9500
C7—O1—C1 105.37 (7) C4—C5—C8 121.13 (7)
C2—O2—C1 105.72 (7) C6—C5—C8 118.56 (7)
O2—C1—O1 107.93 (7) C7—C6—C5 116.75 (8)
O2—C1—H1A 110.1 C7—C6—H6A 121.6
O1—C1—H1A 110.1 C5—C6—H6A 121.6
O2—C1—H1B 110.1 C6—C7—O1 128.28 (8)
O1—C1—H1B 110.1 C6—C7—C2 122.11 (8)
H1A—C1—H1B 108.4 O1—C7—C2 109.56 (7)
O2—C2—C3 127.26 (8) O3—C8—C5 120.79 (8)
O2—C2—C7 110.18 (7) O3—C8—C9 120.11 (8)
C3—C2—C7 122.51 (8) C5—C8—C9 119.09 (8)
C2—C3—C4 116.31 (8) C8—C9—H9A 109.5
C2—C3—H3A 121.8 C8—C9—H9B 109.5
C4—C3—H3A 121.8 H9A—C9—H9B 109.5
C5—C4—C3 121.99 (8) C8—C9—H9C 109.5
C5—C4—H4A 119.0 H9A—C9—H9C 109.5
C3—C4—H4A 119.0 H9B—C9—H9C 109.5
C4—C5—C6 120.31 (7)
C2—O2—C1—O1 −10.84 (10) C5—C6—C7—C2 1.19 (13)
C7—O1—C1—O2 10.94 (10) C1—O1—C7—C6 175.70 (9)
C1—O2—C2—C3 −175.94 (9) C1—O1—C7—C2 −6.94 (10)
C1—O2—C2—C7 6.63 (10) O2—C2—C7—C6 177.78 (8)
O2—C2—C3—C4 −178.36 (8) C3—C2—C7—C6 0.21 (14)
C7—C2—C3—C4 −1.22 (13) O2—C2—C7—O1 0.22 (10)
C2—C3—C4—C5 0.83 (13) C3—C2—C7—O1 −177.35 (8)
C3—C4—C5—C6 0.55 (13) C4—C5—C8—O3 179.58 (8)
C3—C4—C5—C8 −179.39 (8) C6—C5—C8—O3 −0.36 (12)
C4—C5—C6—C7 −1.54 (12) C4—C5—C8—C9 0.81 (12)
C8—C5—C6—C7 178.40 (7) C6—C5—C8—C9 −179.12 (8)
C5—C6—C7—O1 178.26 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O3i 0.95 2.50 3.423 (1) 165

Symmetry codes: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2174).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97 1354–1355.
  3. Gabrielsen, B., Monath, Th., Huggins, J., Kefauver, D., Pettit, G., Groszek, G., Hollingshead, M., Kirsi, J. & Shannon, W. (1992). J. Nat. Prod.55, 1569–1581. [DOI] [PubMed]
  4. Jasinski, J. P., Butcher, R. J., Sreevidya, T. V., Yathirajan, H. S. & Narayana, B. (2008). Anal. Sci.24, x245–x246.
  5. Krause, W. & Goeber, B. (1972). Pharmazie, 27 419–420. [PubMed]
  6. Ma, G., Li, H,, Huang, H., Yan, L., Sh. Hong (1987a). Zhongcaoyao18 342–345.
  7. Ma, G., Li, H,, Huang, H., Yan, L., Sh. Hong (1987b). Chem. Abstr.107, 242490e.
  8. Ohta, S. & Kimoto, S. (1976). Chem. Pharm. Bull 24, 2977-2984
  9. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  10. Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Yathirajan, H. S., Bindya, S., Ashok, M. A., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2349. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001352/im2174sup1.cif

e-66-0o383-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001352/im2174Isup2.hkl

e-66-0o383-Isup2.hkl (150.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES