Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 23;66(Pt 2):o443. doi: 10.1107/S1600536810002424

1-(Hydroxy­meth­yl)pyrene

Tobias Gruber a,, Wilhelm Seichter a, Edwin Weber a,*
PMCID: PMC2979693  PMID: 21579858

Abstract

The asymmetric unit of the title compound, C17H12O, contains two molecules, in which the fused aromatic ring systems are almost planar [maximum deviations = 0.0529 (9) and 0.0256 (9) Å]. In the crystal, aromatic π–π stacking inter­actions (perpendicular distance of centroids of about 3.4 Å) and strong O—H⋯O hydrogen bonds result in a helical arrangement of pyrenyl dimers.

Related literature

For the solid–state structures of pyrenes, see: Robertson & White (1947); Camerman & Trotter (1965); Allmann (1970); Hazell et al. (1972); Kai et al. (1978); Frampton et al. (2000). For the synthesis and structures of pyrene derivatives, see: Steward (1960); Gruber et al. (2006, 2008, 2009). For the use of pyrenes in fluorescence sensors, see: Bren (2001).graphic file with name e-66-0o443-scheme1.jpg

Experimental

Crystal data

  • C17H12O

  • M r = 232.27

  • Monoclinic, Inline graphic

  • a = 19.9182 (6) Å

  • b = 8.8880 (3) Å

  • c = 13.0882 (4) Å

  • β = 91.719 (2)°

  • V = 2316.00 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 153 K

  • 0.59 × 0.29 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • 29632 measured reflections

  • 5051 independent reflections

  • 3801 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.111

  • S = 1.06

  • 5051 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002424/rk2186sup1.cif

e-66-0o443-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002424/rk2186Isup2.hkl

e-66-0o443-Isup2.hkl (242.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1Ai 0.84 1.87 2.6972 (12) 167
O1A—H1A⋯O1ii 0.84 1.89 2.7163 (12) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are indebted to F. Eissmann for his swift assistance. Financial support from the German Federal Ministry of Economics and Technolgy (BMWi) under grant No. 16IN0218 ‘ChemoChips’ is gratefully acknowledged.

supplementary crystallographic information

Comment

Owing to their electronic, optical and geometric properties, monofunctionalized pyrenes, attachable to a receptor platform, are of special interest for fluorescent sensor development (Bren, 2001). In this respect, 1–(hydroxymethyl)pyrene was prepared as part of our studies on the solid state structure of fluorogenic calixarenes with possible analytical applications (Gruber et al., 2008; Gruber et al., 2009).

Being composed of a plane aromatic region and a methylene bridged hydroxy group, the hybrid nature of the title compound is striking. The pyrene moiety alone shows no significant deviations of bond lengths and angles compared with those of the unsubstituted analogue (Robertson & White, 1947; Camerman & Trotter, 1965; Allmann, 1970; Hazell et al., 1972; Kai et al., 1978), and is almost planar. The largest deviation from the mean plane through the carbon framework of the pyrene unit is observed for atoms C2 [0.0529 (9)Å] and C1A [0.0256 (9)Å], respectively. Similiar to the unsubstituted parent substance, the pyrene moities of two molecules of 1–(hydroxymethyl)pyrene are forming a slightly displaced face–to–face dimer with an average distance of the aromatic units of about 3.4Å, though the latter are not arranged entirely coplanar [2.43 (3)°]. Additionally, within the dimer a strong hydrogen bond involving the two hydroxy groups can be observed [d(O···O) = 2.6972 (12)Å]. Worth mentoining is the varying conformation of the hydroxymethyl residue in both molecules of the asymmetrtic unit. In molecule 1, a nearly coplanar arrangement with regard to the aromatic plane can be observed [C2–C1–C17–O1 = 3.46 (15)°], whereas in molecule 2 the same torsion angle of 116.54 (12)° is adopted (Fig. 1). These findings are explained by the sterical demands of a strong hydrogen bond between two hydroxy groups [d(O···O) = 2.7163 (12)Å], which links the pyrene dimers mentioned above in a helical manner in the direction of the crystallographic b axis. Considering the packing, two of these helices, each in the opposite direction, are connected by edge–to–face interactions of the pyrenyl groups as shown in Fig. 2.

Experimental

The title compound was synthesized from commercially available pyrene–1–carbaldehyde, which was reduced with sodium borohydride in boiling methanol, following an analogous procedure described for the reduction of anthracene–9–carbaldehyde (Steward, 1960; Gruber et al., 2006). Colourless plates (m.p. 393–394 K) of the solvent–free 1–(hydroxymethyl)pyrene suitable for X–ray diffraction were obtained by recrystallization from n–hexane/dichloromethane (1:2).

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.84Å, C—H = 0.95–0.99Å and Uiso = 1.2–1.5 Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small cyrcles of arbitrary radius.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, viewed down the a axis. Hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C17H12O F(000) = 976
Mr = 232.27 Dx = 1.332 Mg m3
Monoclinic, P21/c Melting point: 393 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 19.9182 (6) Å Cell parameters from 8740 reflections
b = 8.8880 (3) Å θ = 2.5–32.3°
c = 13.0882 (4) Å µ = 0.08 mm1
β = 91.719 (2)° T = 153 K
V = 2316.00 (13) Å3 Plate, colourless
Z = 8 0.59 × 0.29 × 0.12 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 3801 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tube Rint = 0.026
graphite θmax = 27.0°, θmin = 3.0°
φ and ω scans h = −25→25
29632 measured reflections k = −11→10
5051 independent reflections l = −16→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.2704P] where P = (Fo2 + 2Fc2)/3
5051 reflections (Δ/σ)max < 0.001
327 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.53989 (4) −0.02633 (10) 0.21742 (7) 0.0412 (2)
H1 0.5295 −0.0899 0.2617 0.062*
C1 0.65534 (6) 0.05248 (12) 0.26246 (8) 0.0262 (2)
C2 0.63001 (6) 0.15072 (13) 0.33402 (8) 0.0316 (3)
H2 0.5828 0.1582 0.3409 0.038*
C3 0.67218 (6) 0.23825 (13) 0.39567 (8) 0.0336 (3)
H3 0.6534 0.3036 0.4447 0.040*
C4 0.74142 (6) 0.23177 (12) 0.38682 (8) 0.0296 (3)
C5 0.78651 (7) 0.32180 (13) 0.44853 (9) 0.0392 (3)
H5 0.7688 0.3864 0.4989 0.047*
C6 0.85288 (7) 0.31708 (14) 0.43697 (10) 0.0444 (3)
H6 0.8812 0.3781 0.4794 0.053*
C7 0.88234 (7) 0.22197 (14) 0.36198 (10) 0.0388 (3)
C8 0.95132 (7) 0.21558 (18) 0.34778 (12) 0.0540 (4)
H8 0.9807 0.2747 0.3899 0.065*
C9 0.97759 (7) 0.1249 (2) 0.27363 (13) 0.0606 (5)
H9 1.0247 0.1236 0.2645 0.073*
C10 0.93612 (7) 0.03560 (18) 0.21215 (11) 0.0494 (4)
H10 0.9550 −0.0256 0.1609 0.059*
C11 0.86674 (6) 0.03471 (14) 0.22482 (9) 0.0334 (3)
C12 0.82208 (6) −0.05924 (13) 0.16581 (9) 0.0334 (3)
H12 0.8400 −0.1256 0.1167 0.040*
C13 0.75524 (6) −0.05603 (12) 0.17800 (8) 0.0282 (3)
H13 0.7272 −0.1204 0.1374 0.034*
C14 0.72512 (5) 0.04227 (11) 0.25087 (7) 0.0236 (2)
C15 0.76866 (6) 0.13372 (11) 0.31289 (8) 0.0250 (2)
C16 0.83916 (6) 0.12977 (12) 0.29987 (8) 0.0296 (3)
C17 0.60896 (6) −0.04252 (14) 0.19512 (9) 0.0335 (3)
H17A 0.6153 −0.0146 0.1228 0.040*
H17B 0.6218 −0.1496 0.2032 0.040*
O1A 0.48228 (4) 0.26209 (9) 0.65830 (6) 0.0368 (2)
H1A 0.4998 0.3385 0.6859 0.055*
C1A 0.41705 (5) 0.19195 (13) 0.50620 (8) 0.0286 (3)
C2A 0.43258 (6) 0.08575 (14) 0.43237 (9) 0.0343 (3)
H2A 0.4781 0.0724 0.4148 0.041*
C3A 0.38356 (6) −0.00083 (14) 0.38391 (8) 0.0337 (3)
H3A 0.3959 −0.0728 0.3342 0.040*
C4A 0.31636 (6) 0.01636 (12) 0.40716 (8) 0.0277 (2)
C5A 0.26394 (7) −0.06959 (13) 0.35757 (8) 0.0341 (3)
H5A 0.2754 −0.1425 0.3080 0.041*
C6A 0.19914 (7) −0.04986 (13) 0.37933 (9) 0.0360 (3)
H6A 0.1658 −0.1081 0.3442 0.043*
C7A 0.17913 (6) 0.05748 (13) 0.45456 (8) 0.0308 (3)
C8A 0.11218 (6) 0.08017 (15) 0.47954 (10) 0.0397 (3)
H8A 0.0779 0.0234 0.4455 0.048*
C9A 0.09507 (6) 0.18397 (16) 0.55308 (10) 0.0426 (3)
H9A 0.0492 0.1978 0.5688 0.051*
C10A 0.14416 (6) 0.26767 (15) 0.60382 (9) 0.0371 (3)
H10A 0.1317 0.3383 0.6543 0.045*
C11A 0.21194 (6) 0.24959 (12) 0.58179 (8) 0.0281 (3)
C12A 0.26408 (6) 0.33496 (13) 0.63165 (8) 0.0305 (3)
H12A 0.2526 0.4059 0.6826 0.037*
C13A 0.32911 (6) 0.31781 (12) 0.60855 (8) 0.0286 (3)
H13A 0.3622 0.3777 0.6429 0.034*
C14A 0.34959 (5) 0.21105 (12) 0.53313 (8) 0.0245 (2)
C15A 0.29880 (5) 0.12329 (11) 0.48278 (7) 0.0232 (2)
C16A 0.23004 (5) 0.14309 (12) 0.50639 (8) 0.0250 (2)
C17A 0.47224 (6) 0.28837 (15) 0.55113 (9) 0.0370 (3)
H17C 0.5145 0.2669 0.5159 0.044*
H17D 0.4609 0.3956 0.5397 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0302 (5) 0.0379 (5) 0.0551 (6) −0.0008 (4) −0.0045 (4) 0.0141 (4)
C1 0.0342 (6) 0.0209 (5) 0.0234 (5) 0.0014 (5) −0.0018 (4) 0.0054 (4)
C2 0.0356 (6) 0.0297 (6) 0.0297 (6) 0.0062 (5) 0.0051 (5) 0.0060 (5)
C3 0.0529 (8) 0.0252 (6) 0.0231 (6) 0.0098 (5) 0.0058 (5) −0.0004 (5)
C4 0.0489 (7) 0.0184 (6) 0.0211 (5) 0.0018 (5) −0.0035 (5) 0.0024 (4)
C5 0.0675 (9) 0.0225 (6) 0.0269 (6) −0.0012 (6) −0.0102 (6) −0.0014 (5)
C6 0.0669 (10) 0.0280 (7) 0.0369 (7) −0.0142 (6) −0.0201 (6) 0.0039 (5)
C7 0.0451 (7) 0.0328 (7) 0.0377 (7) −0.0109 (6) −0.0120 (5) 0.0143 (5)
C8 0.0460 (8) 0.0608 (10) 0.0545 (9) −0.0216 (7) −0.0128 (7) 0.0200 (8)
C9 0.0329 (7) 0.0859 (12) 0.0627 (10) −0.0102 (8) −0.0017 (7) 0.0288 (9)
C10 0.0401 (8) 0.0603 (9) 0.0481 (8) 0.0083 (7) 0.0065 (6) 0.0171 (7)
C11 0.0344 (6) 0.0344 (7) 0.0316 (6) 0.0045 (5) 0.0012 (5) 0.0120 (5)
C12 0.0445 (7) 0.0297 (6) 0.0262 (6) 0.0108 (5) 0.0044 (5) 0.0020 (5)
C13 0.0392 (7) 0.0224 (6) 0.0229 (5) 0.0024 (5) −0.0027 (4) −0.0003 (4)
C14 0.0342 (6) 0.0176 (5) 0.0188 (5) 0.0018 (4) −0.0016 (4) 0.0033 (4)
C15 0.0371 (6) 0.0177 (5) 0.0202 (5) 0.0015 (4) −0.0030 (4) 0.0050 (4)
C16 0.0374 (7) 0.0244 (6) 0.0268 (6) −0.0026 (5) −0.0049 (5) 0.0102 (4)
C17 0.0322 (6) 0.0327 (7) 0.0351 (6) −0.0021 (5) −0.0036 (5) 0.0026 (5)
O1A 0.0400 (5) 0.0354 (5) 0.0342 (5) −0.0092 (4) −0.0105 (3) 0.0040 (4)
C1A 0.0319 (6) 0.0281 (6) 0.0257 (6) −0.0012 (5) −0.0023 (4) 0.0072 (4)
C2A 0.0324 (6) 0.0411 (7) 0.0297 (6) 0.0056 (5) 0.0043 (5) 0.0065 (5)
C3A 0.0468 (7) 0.0307 (6) 0.0236 (6) 0.0090 (5) 0.0033 (5) −0.0016 (5)
C4A 0.0420 (7) 0.0206 (5) 0.0202 (5) 0.0009 (5) −0.0029 (4) 0.0029 (4)
C5A 0.0568 (8) 0.0233 (6) 0.0219 (6) −0.0028 (5) −0.0059 (5) −0.0013 (4)
C6A 0.0508 (8) 0.0282 (6) 0.0281 (6) −0.0129 (6) −0.0143 (5) 0.0037 (5)
C7A 0.0358 (7) 0.0281 (6) 0.0279 (6) −0.0056 (5) −0.0083 (5) 0.0104 (5)
C8A 0.0346 (7) 0.0413 (7) 0.0425 (7) −0.0083 (6) −0.0101 (5) 0.0161 (6)
C9A 0.0292 (6) 0.0506 (8) 0.0481 (8) 0.0017 (6) 0.0014 (5) 0.0206 (7)
C10A 0.0387 (7) 0.0384 (7) 0.0345 (6) 0.0106 (5) 0.0069 (5) 0.0104 (5)
C11A 0.0341 (6) 0.0257 (6) 0.0244 (5) 0.0044 (5) −0.0002 (4) 0.0070 (4)
C12A 0.0430 (7) 0.0244 (6) 0.0239 (5) 0.0067 (5) −0.0017 (5) −0.0022 (4)
C13A 0.0383 (6) 0.0214 (6) 0.0257 (6) −0.0009 (5) −0.0080 (4) −0.0012 (4)
C14A 0.0315 (6) 0.0197 (5) 0.0220 (5) 0.0001 (4) −0.0032 (4) 0.0042 (4)
C15A 0.0330 (6) 0.0174 (5) 0.0190 (5) 0.0002 (4) −0.0033 (4) 0.0036 (4)
C16A 0.0321 (6) 0.0205 (5) 0.0221 (5) −0.0002 (4) −0.0043 (4) 0.0072 (4)
C17A 0.0349 (6) 0.0411 (7) 0.0349 (7) −0.0081 (6) −0.0028 (5) 0.0093 (5)

Geometric parameters (Å, °)

O1—C17 1.4222 (14) O1A—C17A 1.4301 (14)
O1—H1 0.8400 O1A—H1A 0.8400
C1—C2 1.3865 (15) C1A—C2A 1.3922 (17)
C1—C14 1.4056 (15) C1A—C14A 1.4094 (15)
C1—C17 1.5146 (15) C1A—C17A 1.5000 (16)
C2—C3 1.3860 (17) C2A—C3A 1.3824 (17)
C2—H2 0.9500 C2A—H2A 0.9500
C3—C4 1.3887 (17) C3A—C4A 1.3900 (16)
C3—H3 0.9500 C3A—H3A 0.9500
C4—C15 1.4218 (15) C4A—C15A 1.4232 (15)
C4—C5 1.4338 (16) C4A—C5A 1.4334 (16)
C5—C6 1.3356 (19) C5A—C6A 1.3415 (18)
C5—H5 0.9500 C5A—H5A 0.9500
C6—C7 1.434 (2) C6A—C7A 1.4360 (17)
C6—H6 0.9500 C6A—H6A 0.9500
C7—C8 1.393 (2) C7A—C8A 1.3971 (17)
C7—C16 1.4247 (16) C7A—C16A 1.4233 (15)
C8—C9 1.377 (2) C8A—C9A 1.383 (2)
C8—H8 0.9500 C8A—H8A 0.9500
C9—C10 1.386 (2) C9A—C10A 1.3825 (19)
C9—H9 0.9500 C9A—H9A 0.9500
C10—C11 1.3969 (18) C10A—C11A 1.3983 (16)
C10—H10 0.9500 C10A—H10A 0.9500
C11—C16 1.4187 (17) C11A—C16A 1.4216 (15)
C11—C12 1.4295 (17) C11A—C12A 1.4281 (16)
C12—C13 1.3459 (16) C12A—C13A 1.3476 (16)
C12—H12 0.9500 C12A—H12A 0.9500
C13—C14 1.4377 (15) C13A—C14A 1.4371 (15)
C13—H13 0.9500 C13A—H13A 0.9500
C14—C15 1.4246 (14) C14A—C15A 1.4235 (14)
C15—C16 1.4201 (16) C15A—C16A 1.4241 (15)
C17—H17A 0.9900 C17A—H17C 0.9900
C17—H17B 0.9900 C17A—H17D 0.9900
C17—O1—H1 109.5 C17A—O1A—H1A 109.5
C2—C1—C14 119.64 (10) C2A—C1A—C14A 119.25 (10)
C2—C1—C17 121.08 (10) C2A—C1A—C17A 118.94 (11)
C14—C1—C17 119.28 (10) C14A—C1A—C17A 121.74 (11)
C3—C2—C1 121.36 (11) C3A—C2A—C1A 121.82 (11)
C3—C2—H2 119.3 C3A—C2A—H2A 119.1
C1—C2—H2 119.3 C1A—C2A—H2A 119.1
C2—C3—C4 120.94 (10) C2A—C3A—C4A 120.66 (11)
C2—C3—H3 119.5 C2A—C3A—H3A 119.7
C4—C3—H3 119.5 C4A—C3A—H3A 119.7
C3—C4—C15 118.84 (10) C3A—C4A—C15A 118.95 (10)
C3—C4—C5 122.47 (11) C3A—C4A—C5A 122.37 (10)
C15—C4—C5 118.69 (11) C15A—C4A—C5A 118.68 (10)
C6—C5—C4 121.60 (12) C6A—C5A—C4A 121.78 (11)
C6—C5—H5 119.2 C6A—C5A—H5A 119.1
C4—C5—H5 119.2 C4A—C5A—H5A 119.1
C5—C6—C7 121.51 (11) C5A—C6A—C7A 121.40 (10)
C5—C6—H6 119.2 C5A—C6A—H6A 119.3
C7—C6—H6 119.2 C7A—C6A—H6A 119.3
C8—C7—C16 118.77 (13) C8A—C7A—C16A 118.86 (11)
C8—C7—C6 122.73 (12) C8A—C7A—C6A 122.87 (11)
C16—C7—C6 118.50 (12) C16A—C7A—C6A 118.27 (11)
C9—C8—C7 121.00 (13) C9A—C8A—C7A 121.06 (12)
C9—C8—H8 119.5 C9A—C8A—H8A 119.5
C7—C8—H8 119.5 C7A—C8A—H8A 119.5
C8—C9—C10 120.81 (13) C10A—C9A—C8A 120.51 (12)
C8—C9—H9 119.6 C10A—C9A—H9A 119.7
C10—C9—H9 119.6 C8A—C9A—H9A 119.7
C9—C10—C11 120.59 (14) C9A—C10A—C11A 120.82 (12)
C9—C10—H10 119.7 C9A—C10A—H10A 119.6
C11—C10—H10 119.7 C11A—C10A—H10A 119.6
C10—C11—C16 118.93 (12) C10A—C11A—C16A 119.09 (11)
C10—C11—C12 122.74 (12) C10A—C11A—C12A 122.55 (11)
C16—C11—C12 118.32 (10) C16A—C11A—C12A 118.36 (10)
C13—C12—C11 121.68 (11) C13A—C12A—C11A 121.88 (10)
C13—C12—H12 119.2 C13A—C12A—H12A 119.1
C11—C12—H12 119.2 C11A—C12A—H12A 119.1
C12—C13—C14 121.70 (10) C12A—C13A—C14A 121.56 (10)
C12—C13—H13 119.2 C12A—C13A—H13A 119.2
C14—C13—H13 119.2 C14A—C13A—H13A 119.2
C1—C14—C15 119.25 (9) C1A—C14A—C15A 119.19 (10)
C1—C14—C13 122.99 (10) C1A—C14A—C13A 122.93 (10)
C15—C14—C13 117.76 (10) C15A—C14A—C13A 117.87 (10)
C16—C15—C4 119.72 (10) C4A—C15A—C14A 120.12 (10)
C16—C15—C14 120.31 (10) C4A—C15A—C16A 119.43 (10)
C4—C15—C14 119.95 (10) C14A—C15A—C16A 120.44 (9)
C11—C16—C15 120.17 (10) C11A—C16A—C7A 119.67 (10)
C11—C16—C7 119.86 (11) C11A—C16A—C15A 119.90 (10)
C15—C16—C7 119.96 (11) C7A—C16A—C15A 120.43 (10)
O1—C17—C1 113.64 (10) O1A—C17A—C1A 111.75 (9)
O1—C17—H17A 108.8 O1A—C17A—H17C 109.3
C1—C17—H17A 108.8 C1A—C17A—H17C 109.3
O1—C17—H17B 108.8 O1A—C17A—H17D 109.3
C1—C17—H17B 108.8 C1A—C17A—H17D 109.3
H17A—C17—H17B 107.7 H17C—C17A—H17D 107.9
C14—C1—C2—C3 −0.83 (16) C14A—C1A—C2A—C3A 0.59 (17)
C17—C1—C2—C3 −179.82 (10) C17A—C1A—C2A—C3A −176.38 (10)
C1—C2—C3—C4 0.83 (17) C1A—C2A—C3A—C4A 0.44 (18)
C2—C3—C4—C15 0.19 (16) C2A—C3A—C4A—C15A −0.83 (16)
C2—C3—C4—C5 179.32 (10) C2A—C3A—C4A—C5A 179.05 (10)
C3—C4—C5—C6 −178.12 (11) C3A—C4A—C5A—C6A −178.71 (11)
C15—C4—C5—C6 1.01 (17) C15A—C4A—C5A—C6A 1.17 (16)
C4—C5—C6—C7 0.19 (18) C4A—C5A—C6A—C7A −0.76 (17)
C5—C6—C7—C8 179.54 (12) C5A—C6A—C7A—C8A −179.58 (11)
C5—C6—C7—C16 −0.77 (18) C5A—C6A—C7A—C16A −0.22 (16)
C16—C7—C8—C9 1.55 (19) C16A—C7A—C8A—C9A 0.14 (17)
C6—C7—C8—C9 −178.76 (13) C6A—C7A—C8A—C9A 179.50 (11)
C7—C8—C9—C10 −1.0 (2) C7A—C8A—C9A—C10A −0.13 (18)
C8—C9—C10—C11 −0.6 (2) C8A—C9A—C10A—C11A 0.17 (18)
C9—C10—C11—C16 1.65 (19) C9A—C10A—C11A—C16A −0.23 (16)
C9—C10—C11—C12 −177.77 (12) C9A—C10A—C11A—C12A 179.31 (11)
C10—C11—C12—C13 −178.69 (11) C10A—C11A—C12A—C13A −179.03 (10)
C16—C11—C12—C13 1.88 (16) C16A—C11A—C12A—C13A 0.50 (16)
C11—C12—C13—C14 0.14 (17) C11A—C12A—C13A—C14A −0.75 (17)
C2—C1—C14—C15 −0.18 (15) C2A—C1A—C14A—C15A −1.18 (15)
C17—C1—C14—C15 178.83 (9) C17A—C1A—C14A—C15A 175.69 (9)
C2—C1—C14—C13 −179.59 (10) C2A—C1A—C14A—C13A 179.92 (10)
C17—C1—C14—C13 −0.58 (15) C17A—C1A—C14A—C13A −3.20 (16)
C12—C13—C14—C1 177.38 (10) C12A—C13A—C14A—C1A 179.07 (10)
C12—C13—C14—C15 −2.04 (15) C12A—C13A—C14A—C15A 0.15 (15)
C3—C4—C15—C16 177.55 (9) C3A—C4A—C15A—C14A 0.21 (15)
C5—C4—C15—C16 −1.62 (15) C5A—C4A—C15A—C14A −179.68 (9)
C3—C4—C15—C14 −1.19 (15) C3A—C4A—C15A—C16A 179.28 (9)
C5—C4—C15—C14 179.65 (9) C5A—C4A—C15A—C16A −0.60 (14)
C1—C14—C15—C16 −177.54 (9) C1A—C14A—C15A—C4A 0.80 (15)
C13—C14—C15—C16 1.90 (14) C13A—C14A—C15A—C4A 179.75 (9)
C1—C14—C15—C4 1.18 (14) C1A—C14A—C15A—C16A −178.27 (9)
C13—C14—C15—C4 −179.38 (9) C13A—C14A—C15A—C16A 0.68 (14)
C10—C11—C16—C15 178.59 (10) C10A—C11A—C16A—C7A 0.24 (15)
C12—C11—C16—C15 −1.96 (15) C12A—C11A—C16A—C7A −179.32 (9)
C10—C11—C16—C7 −1.12 (16) C10A—C11A—C16A—C15A 179.89 (9)
C12—C11—C16—C7 178.33 (10) C12A—C11A—C16A—C15A 0.34 (15)
C4—C15—C16—C11 −178.65 (9) C8A—C7A—C16A—C11A −0.19 (15)
C14—C15—C16—C11 0.08 (15) C6A—C7A—C16A—C11A −179.58 (9)
C4—C15—C16—C7 1.05 (15) C8A—C7A—C16A—C15A −179.84 (9)
C14—C15—C16—C7 179.78 (9) C6A—C7A—C16A—C15A 0.77 (15)
C8—C7—C16—C11 −0.46 (16) C4A—C15A—C16A—C11A 180.00 (9)
C6—C7—C16—C11 179.84 (10) C14A—C15A—C16A—C11A −0.92 (15)
C8—C7—C16—C15 179.83 (10) C4A—C15A—C16A—C7A −0.35 (15)
C6—C7—C16—C15 0.13 (16) C14A—C15A—C16A—C7A 178.73 (9)
C2—C1—C17—O1 −3.46 (15) C2A—C1A—C17A—O1A −116.54 (12)
C14—C1—C17—O1 177.53 (9) C14A—C1A—C17A—O1A 66.57 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O1Ai 0.84 1.87 2.6972 (12) 167
O1A—H1A···O1ii 0.84 1.89 2.7163 (12) 167

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2186).

References

  1. Allmann, R. (1970). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem.132, 129–151.
  2. Bren, V. A. (2001). Russ. Chem. Rev.70, 1017–1036.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Camerman, A. & Trotter, J. (1965). Acta Cryst.18, 636–643.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Frampton, C. S., Knight, K. S., Shankland, N. & Shankland, K. (2000). J. Mol. Struct.520, 29–32.
  7. Gruber, T., Fischer, C., Felsmann, M., Seichter, W. & Weber, E. (2009). Org. Biomol. Chem.7, 4904–4917. [DOI] [PubMed]
  8. Gruber, T., Seichter, W. & Weber, E. (2006). Acta Cryst. E62, o2569–o2570.
  9. Gruber, T., Seichter, W. & Weber, E. (2008). Supramol. Chem.20, 753–760.
  10. Hazell, A. C., Larsen, F. K. & Lehmann, M. S. (1972). Acta Cryst. B28, 2977–2984.
  11. Kai, Y., Hama, F., Yasuoka, N. & Kasai, N. (1978). Acta Cryst. B34, 1263–1270.
  12. Robertson, J. M. & White, J. G. (1947). J. Chem. Soc. pp. 358–368.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Steward, F. H. L. (1960). Aust. J. Chem.13, 478–487.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002424/rk2186sup1.cif

e-66-0o443-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002424/rk2186Isup2.hkl

e-66-0o443-Isup2.hkl (242.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES