Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 13;66(Pt 2):o336. doi: 10.1107/S1600536810000760

3-Ethyl­sulfanyl-2-(4-fluoro­phen­yl)-5-phenyl-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2979704  PMID: 21579765

Abstract

In the title compound, C22H17FOS, the crystal studied was an inversion twin with a 0.42 (18):0.58 (18) domain ratio. The 4-fluoro­phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 17.82 (6)°, and the dihedral angle between the 5-phenyl ring and the benzofuran plane is 29.45 (7)°.

Related literature

For the crystal structures of similar 2,5-diaryl-1-benzofuran derivatives, see: Choi et al. (2006, 2009). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003); von Reuss & König (2004).graphic file with name e-66-0o336-scheme1.jpg

Experimental

Crystal data

  • C22H17FOS

  • M r = 348.42

  • Monoclinic, Inline graphic

  • a = 10.5799 (2) Å

  • b = 7.1788 (1) Å

  • c = 11.9361 (2) Å

  • β = 110.031 (1)°

  • V = 851.72 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.26 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.685, T max = 0.746

  • 15026 measured reflections

  • 2121 independent reflections

  • 2068 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.079

  • S = 1.14

  • 2121 reflections

  • 227 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983), 1709 Friedel pairs

  • Flack parameter: 0.42 (18)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000760/ng2718sup1.cif

e-66-0o336-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000760/ng2718Isup2.hkl

e-66-0o336-Isup2.hkl (104.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Benzofuran compounds are considerable interesting heterocycles, which are occurring in nature and show diverse biological activities (Akgul & Anil, 2003; Soekamto et al., 2003; von Reuss & König, 2004). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 2,5-diaryl-1-benzofuran analogues (Choi et al., 2006, 2009), we report the crystal structure of the title compound (Fig. 1).

The title compound crystallizes as the monoclinic space P21. The crystal studied was an inversion twin with a 0.42 (18) : 0.58 (18) domain ratio. The benzofuran unit is essentially planar, with a mean deviation of 0.019 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is rotated out of the benzofuran plane, with a dihedral angle of 17.82 (6)°. The dihedral angle between the phenyl ring and the benzofuran plane is 29.45 (7)°.

Experimental

Zinc chloride (273 mg, 2.0 mmol) was added to a stirred solution of 4-phenylphenol (340 mg, 2.0 mmol) and 2-chloro-2-ethylsulfanyl-4'-fluoroacetophenone (465 mg, 2.0 mmol) in dichloromethane (25 ml) at room temperature, and stirring was continued at the same temperature for 40 min. The reaction was quenched by the addition of water and the organic layer separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (carbon tetrachloride) to afford the title compound as a colorless solid [yield 66 %, m.p. 393-394 K; Rf = 0.76 (carbon tetrachloride)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature.

Refinement

The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008). All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.95 Å for aryl, 0.99 Å for methylene, and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for all H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small cycles of arbitrary radius.

Crystal data

C22H17FOS F(000) = 364
Mr = 348.42 Dx = 1.359 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 9177 reflections
a = 10.5799 (2) Å θ = 2.2–27.5°
b = 7.1788 (1) Å µ = 0.21 mm1
c = 11.9361 (2) Å T = 173 K
β = 110.031 (1)° Block, colourless
V = 851.72 (2) Å3 0.26 × 0.23 × 0.20 mm
Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer 2121 independent reflections
Radiation source: Rotating Anode 2068 reflections with I > 2σ(I)
HELIOS Rint = 0.027
Detector resolution: 10.0 pixels mm-1 θmax = 27.6°, θmin = 1.8°
φ and ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −9→8
Tmin = 0.685, Tmax = 0.746 l = −14→15
15026 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1397P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max < 0.001
2121 reflections Δρmax = 0.22 e Å3
227 parameters Δρmin = −0.24 e Å3
1 restraint Absolute structure: Flack (1983), 1709 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.42 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.50045 (5) 0.02884 (16) 0.84349 (4) 0.03160 (13)
O1 0.63181 (12) 0.1017 (2) 0.57201 (11) 0.0289 (3)
F 1.19038 (12) 0.1458 (3) 0.98123 (13) 0.0484 (4)
C1 0.53216 (18) 0.0628 (3) 0.71024 (16) 0.0262 (4)
C2 0.42846 (18) 0.0729 (3) 0.59439 (15) 0.0258 (4)
C3 0.28812 (17) 0.0710 (3) 0.55375 (16) 0.0259 (4)
H3 0.2411 0.0561 0.6082 0.031*
C4 0.21795 (18) 0.0913 (3) 0.43231 (16) 0.0251 (4)
C5 0.29034 (19) 0.1086 (3) 0.35301 (17) 0.0289 (4)
H5 0.2419 0.1183 0.2699 0.035*
C6 0.42947 (19) 0.1118 (3) 0.39222 (17) 0.0301 (4)
H6 0.4773 0.1244 0.3382 0.036*
C7 0.49542 (19) 0.0960 (3) 0.51340 (17) 0.0270 (4)
C8 0.65154 (19) 0.0828 (3) 0.69190 (16) 0.0269 (4)
C9 0.79275 (18) 0.0965 (3) 0.76965 (17) 0.0277 (4)
C10 0.88722 (19) 0.1718 (3) 0.72355 (19) 0.0306 (4)
H10 0.8591 0.2111 0.6427 0.037*
C11 1.0211 (2) 0.1894 (4) 0.7948 (2) 0.0350 (5)
H11 1.0851 0.2415 0.7641 0.042*
C12 1.05873 (19) 0.1296 (3) 0.91040 (19) 0.0343 (5)
C13 0.9699 (2) 0.0546 (4) 0.95918 (18) 0.0373 (5)
H13 0.9997 0.0148 1.0400 0.045*
C14 0.83584 (19) 0.0383 (4) 0.88783 (18) 0.0348 (4)
H14 0.7729 −0.0130 0.9200 0.042*
C15 0.06821 (17) 0.1006 (3) 0.38741 (16) 0.0249 (4)
C16 −0.00642 (18) 0.0113 (3) 0.44819 (17) 0.0286 (4)
H16 0.0385 −0.0622 0.5164 0.034*
C17 −0.14547 (18) 0.0287 (4) 0.40998 (18) 0.0331 (4)
H17 −0.1949 −0.0315 0.4527 0.040*
C18 −0.2123 (2) 0.1335 (4) 0.3099 (2) 0.0363 (5)
H18 −0.3073 0.1466 0.2844 0.044*
C19 −0.1402 (2) 0.2190 (4) 0.2472 (2) 0.0368 (5)
H19 −0.1860 0.2889 0.1775 0.044*
C20 −0.0015 (2) 0.2032 (3) 0.28564 (18) 0.0307 (4)
H20 0.0471 0.2632 0.2420 0.037*
C21 0.4401 (2) 0.2604 (4) 0.86144 (19) 0.0361 (5)
H21A 0.3691 0.2976 0.7862 0.043*
H21B 0.3995 0.2568 0.9248 0.043*
C22 0.5514 (3) 0.4048 (4) 0.8936 (2) 0.0433 (6)
H22A 0.5902 0.4116 0.8300 0.052*
H22B 0.6215 0.3694 0.9686 0.052*
H22C 0.5145 0.5266 0.9030 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0324 (2) 0.0376 (3) 0.0280 (2) −0.0010 (2) 0.01449 (17) 0.0058 (2)
O1 0.0248 (6) 0.0356 (8) 0.0288 (6) 0.0005 (6) 0.0122 (5) 0.0003 (6)
F 0.0268 (6) 0.0558 (10) 0.0544 (8) −0.0006 (6) 0.0034 (5) 0.0004 (7)
C1 0.0282 (8) 0.0254 (11) 0.0271 (8) 0.0006 (7) 0.0121 (7) 0.0024 (8)
C2 0.0308 (9) 0.0228 (10) 0.0263 (8) −0.0002 (7) 0.0129 (7) −0.0009 (7)
C3 0.0273 (8) 0.0256 (11) 0.0277 (8) −0.0010 (7) 0.0133 (7) −0.0004 (8)
C4 0.0265 (8) 0.0217 (9) 0.0288 (8) −0.0015 (7) 0.0117 (7) −0.0014 (8)
C5 0.0328 (9) 0.0305 (10) 0.0249 (8) −0.0011 (8) 0.0117 (7) −0.0019 (8)
C6 0.0324 (9) 0.0344 (11) 0.0290 (9) −0.0016 (9) 0.0177 (7) −0.0008 (9)
C7 0.0253 (7) 0.0273 (9) 0.0311 (9) −0.0004 (8) 0.0133 (7) −0.0011 (8)
C8 0.0303 (8) 0.0245 (10) 0.0283 (8) 0.0019 (7) 0.0131 (7) 0.0002 (8)
C9 0.0256 (8) 0.0244 (9) 0.0344 (9) 0.0021 (8) 0.0120 (7) −0.0005 (8)
C10 0.0294 (9) 0.0272 (10) 0.0361 (10) 0.0021 (8) 0.0124 (7) 0.0030 (9)
C11 0.0283 (9) 0.0319 (11) 0.0483 (12) 0.0001 (8) 0.0175 (9) 0.0021 (10)
C12 0.0250 (9) 0.0302 (12) 0.0433 (11) 0.0018 (8) 0.0062 (8) −0.0024 (9)
C13 0.0349 (10) 0.0405 (15) 0.0330 (10) 0.0042 (10) 0.0072 (8) 0.0028 (10)
C14 0.0305 (9) 0.0375 (12) 0.0374 (9) −0.0001 (10) 0.0131 (7) 0.0043 (10)
C15 0.0261 (8) 0.0220 (9) 0.0277 (8) −0.0020 (7) 0.0105 (7) −0.0044 (8)
C16 0.0309 (8) 0.0259 (10) 0.0310 (8) −0.0015 (9) 0.0131 (7) −0.0001 (9)
C17 0.0314 (9) 0.0309 (10) 0.0416 (10) −0.0051 (10) 0.0184 (7) −0.0042 (11)
C18 0.0245 (8) 0.0356 (13) 0.0460 (11) −0.0019 (8) 0.0087 (8) −0.0036 (10)
C19 0.0338 (10) 0.0332 (12) 0.0378 (11) −0.0010 (9) 0.0049 (8) 0.0034 (9)
C20 0.0330 (10) 0.0285 (11) 0.0317 (10) −0.0037 (8) 0.0123 (8) 0.0014 (8)
C21 0.0332 (10) 0.0446 (13) 0.0331 (10) 0.0050 (9) 0.0148 (8) −0.0020 (10)
C22 0.0565 (14) 0.0429 (14) 0.0339 (11) −0.0064 (11) 0.0197 (10) −0.0062 (10)

Geometric parameters (Å, °)

S—C1 1.751 (2) C11—H11 0.9500
S—C21 1.819 (3) C12—C13 1.373 (3)
O1—C7 1.372 (2) C13—C14 1.387 (3)
O1—C8 1.380 (2) C13—H13 0.9500
F—C12 1.364 (2) C14—H14 0.9500
C1—C8 1.361 (3) C15—C16 1.398 (3)
C1—C2 1.443 (3) C15—C20 1.396 (3)
C2—C7 1.390 (2) C16—C17 1.389 (2)
C2—C3 1.395 (2) C16—H16 0.9500
C3—C4 1.391 (2) C17—C18 1.383 (3)
C3—H3 0.9500 C17—H17 0.9500
C4—C5 1.412 (2) C18—C19 1.381 (3)
C4—C15 1.490 (2) C18—H18 0.9500
C5—C6 1.384 (3) C19—C20 1.384 (3)
C5—H5 0.9500 C19—H19 0.9500
C6—C7 1.379 (3) C20—H20 0.9500
C6—H6 0.9500 C21—C22 1.516 (3)
C8—C9 1.467 (3) C21—H21A 0.9900
C9—C14 1.390 (3) C21—H21B 0.9900
C9—C10 1.404 (3) C22—H22A 0.9800
C10—C11 1.386 (3) C22—H22B 0.9800
C10—H10 0.9500 C22—H22C 0.9800
C11—C12 1.368 (3)
C1—S—C21 99.43 (12) C11—C12—C13 123.07 (18)
C7—O1—C8 106.56 (14) C12—C13—C14 118.5 (2)
C8—C1—C2 106.46 (16) C12—C13—H13 120.8
C8—C1—S 129.62 (15) C14—C13—H13 120.8
C2—C1—S 123.92 (13) C13—C14—C9 120.58 (19)
C7—C2—C3 119.63 (16) C13—C14—H14 119.7
C7—C2—C1 105.73 (16) C9—C14—H14 119.7
C3—C2—C1 134.59 (16) C16—C15—C20 118.04 (16)
C4—C3—C2 119.06 (16) C16—C15—C4 120.86 (17)
C4—C3—H3 120.5 C20—C15—C4 121.07 (17)
C2—C3—H3 120.5 C17—C16—C15 120.76 (19)
C3—C4—C5 119.28 (16) C17—C16—H16 119.6
C3—C4—C15 120.10 (16) C15—C16—H16 119.6
C5—C4—C15 120.59 (16) C18—C17—C16 120.19 (19)
C6—C5—C4 122.21 (17) C18—C17—H17 119.9
C6—C5—H5 118.9 C16—C17—H17 119.9
C4—C5—H5 118.9 C17—C18—C19 119.72 (18)
C7—C6—C5 116.81 (16) C17—C18—H18 120.1
C7—C6—H6 121.6 C19—C18—H18 120.1
C5—C6—H6 121.6 C20—C19—C18 120.2 (2)
O1—C7—C6 126.77 (16) C20—C19—H19 119.9
O1—C7—C2 110.27 (16) C18—C19—H19 119.9
C6—C7—C2 122.96 (18) C19—C20—C15 121.02 (18)
C1—C8—O1 110.98 (16) C19—C20—H20 119.5
C1—C8—C9 134.83 (18) C15—C20—H20 119.5
O1—C8—C9 114.13 (15) C22—C21—S 112.39 (16)
C14—C9—C10 118.91 (17) C22—C21—H21A 109.1
C14—C9—C8 122.06 (17) S—C21—H21A 109.1
C10—C9—C8 119.03 (18) C22—C21—H21B 109.1
C11—C10—C9 120.7 (2) S—C21—H21B 109.1
C11—C10—H10 119.7 H21A—C21—H21B 107.9
C9—C10—H10 119.7 C21—C22—H22A 109.5
C12—C11—C10 118.28 (19) C21—C22—H22B 109.5
C12—C11—H11 120.9 H22A—C22—H22B 109.5
C10—C11—H11 120.9 C21—C22—H22C 109.5
F—C12—C11 118.76 (19) H22A—C22—H22C 109.5
F—C12—C13 118.17 (19) H22B—C22—H22C 109.5
C21—S—C1—C8 105.3 (2) C1—C8—C9—C14 18.7 (4)
C21—S—C1—C2 −75.37 (19) O1—C8—C9—C14 −164.5 (2)
C8—C1—C2—C7 0.9 (2) C1—C8—C9—C10 −160.9 (2)
S—C1—C2—C7 −178.61 (17) O1—C8—C9—C10 15.9 (3)
C8—C1—C2—C3 −176.4 (2) C14—C9—C10—C11 −0.5 (3)
S—C1—C2—C3 4.1 (3) C8—C9—C10—C11 179.1 (2)
C7—C2—C3—C4 0.4 (3) C9—C10—C11—C12 0.7 (3)
C1—C2—C3—C4 177.4 (2) C10—C11—C12—F 179.8 (2)
C2—C3—C4—C5 1.6 (3) C10—C11—C12—C13 −0.5 (4)
C2—C3—C4—C15 −176.53 (18) F—C12—C13—C14 179.8 (2)
C3—C4—C5—C6 −2.0 (3) C11—C12—C13—C14 0.1 (4)
C15—C4—C5—C6 176.1 (2) C12—C13—C14—C9 0.1 (4)
C4—C5—C6—C7 0.4 (3) C10—C9—C14—C13 0.1 (4)
C8—O1—C7—C6 179.2 (2) C8—C9—C14—C13 −179.5 (2)
C8—O1—C7—C2 −0.3 (2) C3—C4—C15—C16 −28.7 (3)
C5—C6—C7—O1 −177.8 (2) C5—C4—C15—C16 153.2 (2)
C5—C6—C7—C2 1.6 (3) C3—C4—C15—C20 149.3 (2)
C3—C2—C7—O1 177.43 (17) C5—C4—C15—C20 −28.8 (3)
C1—C2—C7—O1 −0.4 (2) C20—C15—C16—C17 −1.7 (3)
C3—C2—C7—C6 −2.1 (3) C4—C15—C16—C17 176.4 (2)
C1—C2—C7—C6 −179.9 (2) C15—C16—C17—C18 0.8 (4)
C2—C1—C8—O1 −1.1 (2) C16—C17—C18—C19 0.8 (4)
S—C1—C8—O1 178.35 (17) C17—C18—C19—C20 −1.3 (4)
C2—C1—C8—C9 175.8 (2) C18—C19—C20—C15 0.3 (3)
S—C1—C8—C9 −4.8 (4) C16—C15—C20—C19 1.2 (3)
C7—O1—C8—C1 0.9 (2) C4—C15—C20—C19 −176.9 (2)
C7—O1—C8—C9 −176.69 (18) C1—S—C21—C22 −70.70 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2718).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Choi, H. D., Seo, P. J., Kang, B. W., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4796–o4797.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000760/ng2718sup1.cif

e-66-0o336-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000760/ng2718Isup2.hkl

e-66-0o336-Isup2.hkl (104.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES