Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 23;66(Pt 2):o430. doi: 10.1107/S1600536810002217

Diethyl 1,4-bis­(4-nitro­phen­yl)-1,4-dihydro-1,2,4,5-tetra­zine-3,6-dicarboxyl­ate

Abdesselam Baouid a, Aicha Boudina a, El Hassane Soumhi b,*
PMCID: PMC2979708  PMID: 21579845

Abstract

The complete mol­ecule of the title compound, C20H18N6O8, is generated by a crystallographic twofold axis. The dihedral angle between the nitrobenzene rings is 43.5 (2)°. The central six-membered ring exhibits a boat conformation. In the crystal structure, weak inter­molecular C—H⋯O inter­actions are observed.

Related literature

For related literature on diazepine and triazepine derivatives, see: Barltrop et al. (1959); Boudina et al. (2006); El Hazazi et al. (2003); Huisgen & Koch (1955); Nabih et al. (2003); Sharp & Hamilton (1946). For related structures, see: Chiaroni et al. (1995); El Hazazi et al. (2000).graphic file with name e-66-0o430-scheme1.jpg

Experimental

Crystal data

  • C20H18N6O8

  • M r = 470.40

  • Monoclinic, Inline graphic

  • a = 20.739 (4) Å

  • b = 7.487 (2) Å

  • c = 14.587 (3) Å

  • β = 104.00 (2)°

  • V = 2197.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 300 K

  • 0.30 × 0.15 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • 3158 measured reflections

  • 2389 independent reflections

  • 1352 reflections with I > 2σ(I)

  • R int = 0.022

  • 2 standard reflections every 60 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.173

  • S = 1.04

  • 2389 reflections

  • 155 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002217/is2514sup1.cif

e-66-0o430-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002217/is2514Isup2.hkl

e-66-0o430-Isup2.hkl (115.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H4⋯O2i 0.93 2.57 3.400 (4) 149
C9—H6⋯O1ii 0.97 2.60 3.294 (4) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

In order to prepare a new heterocyclic systems, our research team have been interested in the 1,3-dipolar cycloaddition reaction of nitrile oxides and nitrilimines toward diazepines, benzodiazepines, triazepines and benzotriazepines (El Hazazi et al., 2003; Nabih et al., 2003; Boudina et al., 2006). In this context, we directed our axe of research to examine reactivity of adducts-obtained from the 1,5-benzodiazepine (Barltrop et al., 1959) via 1,3-dipolar cycloaddition reaction of nitrilimines- with N-paranitrophenylnitrilimine (Sharp & Hamilton, 1946; Huisgen & Koch, 1955). This reaction provided to bicycloadduct and a new heterocycle (A). The new heterocycle (A) resulted from precursor ethyl paranitrophenylhydrazono-α-bromoglyoxylate by the action of triethylamine in dichloromethane at room temperature (Fig. 1).

The structure of product (A) was determined on the basis of NMR spectral data (1H and 13 C) and studied by single-crystal X-ray diffraction (Fig. 2). The asymmetric unit consists of one independent [C10H9N3O4] group that form one half of a molecule compound. The main geometric features of this group are in good agreement with those observed in similar compounds (Chiaroni et al., 1995; El Hazazi et al., 2000). The molecule of nominal compound is localized around a twofold rotation axis and exhibit a boat conformation in which N2 and N2a show the maximum deviation (0.3213 Å) from N3/N2/C7/N3i/N2i/C7i plane [symmetry code: (i) -x + 1, y, -z + 1/2].

Experimental

Triethylamine (0.8 mmol) in dichloromethane (2 ml) was added at room temperature to a stirred solution of ethyl paranitrophenylhydrazono-α-bromoglyoxylate (0.65 mmol) in dichloromethane (20 ml). The mixture was stirred at room temperature, washed with water and the aqueous phase was then extracted with ether (3×20 ml). The organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure and recrystallized from ethanol to afford the reaction product (A) (m.p. = 219–220 °C).

Refinement

All H atoms were located in a difference map and refined using a riding model, with d(C—H) = 0.93–0.97 Å, and with Uiso(H) =1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The reaction scheme of the title compound.

Fig. 2.

Fig. 2.

The molecule structure of the title compound with 50% probability ellipsoids.

Crystal data

C20H18N6O8 F(000) = 976
Mr = 470.40 Dx = 1.422 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 25 reflections
a = 20.739 (4) Å θ = 10–15°
b = 7.487 (2) Å µ = 0.11 mm1
c = 14.587 (3) Å T = 300 K
β = 104.00 (2)° Prism, colourless
V = 2197.7 (9) Å3 0.30 × 0.15 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.022
Radiation source: fine-focus sealed tube θmax = 27.0°, θmin = 2.0°
graphite h = −26→25
ω/2θ scans k = −9→2
3158 measured reflections l = −1→18
2389 independent reflections 2 standard reflections every 60 min
1352 reflections with I > 2σ(I) intensity decay: 1.0%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: difference Fourier map
wR(F2) = 0.173 All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.080P)2 + 0.9509P] where P = (Fo2 + 2Fc2)/3
2389 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.32809 (17) 0.4483 (5) 0.63327 (19) 0.1695 (16)
O2 0.41693 (14) 0.3584 (4) 0.72174 (17) 0.1199 (10)
O3 0.32302 (9) 0.0896 (4) 0.16616 (14) 0.1091 (9)
O4 0.37172 (7) −0.0126 (3) 0.31106 (12) 0.0661 (5)
N1 0.38276 (16) 0.3893 (3) 0.6442 (2) 0.0884 (8)
N2 0.47726 (9) 0.2300 (3) 0.32241 (12) 0.0540 (5)
N3 0.54350 (8) 0.1630 (3) 0.33902 (12) 0.0564 (5)
C1 0.40750 (14) 0.3493 (3) 0.55998 (17) 0.0636 (7)
C2 0.36884 (14) 0.3910 (4) 0.4717 (2) 0.0716 (8)
H1 0.3273 0.4430 0.4653 0.086*
C3 0.39257 (13) 0.3545 (3) 0.39242 (18) 0.0654 (7)
H2 0.3678 0.3856 0.3325 0.078*
C4 0.45413 (11) 0.2706 (3) 0.40419 (15) 0.0520 (5)
C5 0.49295 (12) 0.2332 (3) 0.49362 (16) 0.0590 (6)
H3 0.5346 0.1811 0.5008 0.071*
C6 0.46928 (13) 0.2741 (4) 0.57236 (17) 0.0660 (7)
H4 0.4950 0.2507 0.6328 0.079*
C7 0.43585 (10) 0.1682 (3) 0.23753 (15) 0.0541 (6)
C8 0.36944 (12) 0.0780 (4) 0.23316 (18) 0.0651 (7)
C9 0.30977 (13) −0.0998 (5) 0.3205 (2) 0.0867 (10)
H5 0.3033 −0.2111 0.2854 0.104*
H6 0.2720 −0.0227 0.2954 0.104*
C10 0.31545 (15) −0.1344 (5) 0.4218 (2) 0.1016 (12)
H7 0.2749 −0.1864 0.4299 0.122*
H8 0.3236 −0.0241 0.4562 0.122*
H9 0.3516 −0.2153 0.4453 0.122*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.175 (3) 0.249 (4) 0.118 (2) 0.124 (3) 0.100 (2) 0.043 (2)
O2 0.144 (2) 0.165 (3) 0.0653 (13) 0.0037 (18) 0.0534 (14) −0.0131 (15)
O3 0.0536 (11) 0.199 (3) 0.0711 (12) −0.0147 (14) 0.0087 (10) 0.0158 (15)
O4 0.0476 (9) 0.0843 (12) 0.0706 (10) −0.0101 (8) 0.0223 (7) 0.0018 (9)
N1 0.119 (2) 0.0823 (17) 0.0852 (18) 0.0141 (15) 0.0671 (17) 0.0024 (14)
N2 0.0471 (10) 0.0709 (13) 0.0503 (10) 0.0008 (9) 0.0237 (8) −0.0022 (9)
N3 0.0449 (10) 0.0765 (14) 0.0516 (11) −0.0025 (9) 0.0187 (8) −0.0018 (9)
C1 0.0872 (18) 0.0555 (14) 0.0619 (14) 0.0005 (13) 0.0450 (13) −0.0020 (12)
C2 0.0814 (17) 0.0651 (16) 0.0833 (18) 0.0191 (13) 0.0493 (15) 0.0105 (14)
C3 0.0725 (15) 0.0698 (17) 0.0634 (14) 0.0164 (13) 0.0354 (12) 0.0112 (12)
C4 0.0581 (13) 0.0524 (13) 0.0528 (12) −0.0049 (10) 0.0276 (10) −0.0017 (10)
C5 0.0563 (13) 0.0717 (16) 0.0537 (13) −0.0029 (12) 0.0225 (10) −0.0057 (12)
C6 0.0762 (17) 0.0738 (17) 0.0533 (13) −0.0050 (14) 0.0258 (12) −0.0059 (12)
C7 0.0455 (11) 0.0700 (15) 0.0510 (12) 0.0068 (11) 0.0200 (10) 0.0026 (11)
C8 0.0433 (12) 0.099 (2) 0.0579 (14) 0.0004 (12) 0.0217 (11) −0.0058 (14)
C9 0.0569 (15) 0.121 (3) 0.092 (2) −0.0301 (16) 0.0365 (14) −0.0204 (18)
C10 0.0654 (17) 0.130 (3) 0.110 (2) −0.0187 (18) 0.0216 (17) 0.046 (2)

Geometric parameters (Å, °)

O1—N1 1.191 (3) C3—C4 1.396 (3)
O2—N1 1.202 (3) C3—H2 0.9300
O3—C8 1.198 (3) C4—C5 1.386 (3)
O4—C8 1.314 (3) C5—C6 1.388 (3)
O4—C9 1.477 (3) C5—H3 0.9300
N1—C1 1.473 (3) C6—H4 0.9300
N2—C7 1.403 (3) C7—N3i 1.290 (3)
N2—C4 1.422 (3) C7—C8 1.522 (3)
N2—N3 1.427 (3) C9—C10 1.478 (4)
N3—C7i 1.290 (3) C9—H5 0.9700
C1—C6 1.371 (4) C9—H6 0.9700
C1—C2 1.378 (4) C10—H7 0.9600
C2—C3 1.389 (3) C10—H8 0.9600
C2—H1 0.9300 C10—H9 0.9600
C8—O4—C9 117.3 (2) C6—C5—H3 120.2
O1—N1—O2 121.5 (3) C1—C6—C5 119.2 (2)
O1—N1—C1 118.4 (3) C1—C6—H4 120.4
O2—N1—C1 120.0 (3) C5—C6—H4 120.4
C7—N2—C4 123.50 (18) N3i—C7—N2 120.89 (19)
C7—N2—N3 113.10 (17) N3i—C7—C8 115.9 (2)
C4—N2—N3 116.03 (18) N2—C7—C8 122.52 (19)
C7i—N3—N2 110.49 (18) O3—C8—O4 126.6 (2)
C6—C1—C2 122.0 (2) O3—C8—C7 122.9 (2)
C6—C1—N1 118.5 (2) O4—C8—C7 110.5 (2)
C2—C1—N1 119.5 (2) O4—C9—C10 108.1 (2)
C1—C2—C3 119.4 (2) O4—C9—H5 110.1
C1—C2—H1 120.3 C10—C9—H5 110.1
C3—C2—H1 120.3 O4—C9—H6 110.1
C2—C3—C4 118.9 (2) C10—C9—H6 110.1
C2—C3—H2 120.5 H5—C9—H6 108.4
C4—C3—H2 120.5 C9—C10—H7 109.5
C5—C4—C3 120.8 (2) C9—C10—H8 109.5
C5—C4—N2 120.6 (2) H7—C10—H8 109.5
C3—C4—N2 118.5 (2) C9—C10—H9 109.5
C4—C5—C6 119.6 (2) H7—C10—H9 109.5
C4—C5—H3 120.2 H8—C10—H9 109.5
C7—N2—N3—C7i 42.9 (2) N2—C4—C5—C6 180.0 (2)
C4—N2—N3—C7i −165.9 (2) C2—C1—C6—C5 −2.1 (4)
O1—N1—C1—C6 −177.2 (3) N1—C1—C6—C5 179.1 (2)
O2—N1—C1—C6 1.1 (4) C4—C5—C6—C1 0.6 (4)
O1—N1—C1—C2 3.9 (4) C4—N2—C7—N3i 167.8 (2)
O2—N1—C1—C2 −177.7 (3) N3—N2—C7—N3i −43.5 (3)
C6—C1—C2—C3 0.6 (4) C4—N2—C7—C8 −21.9 (4)
N1—C1—C2—C3 179.4 (2) N3—N2—C7—C8 126.8 (2)
C1—C2—C3—C4 2.3 (4) C9—O4—C8—O3 −4.4 (4)
C2—C3—C4—C5 −3.7 (4) C9—O4—C8—C7 176.5 (2)
C2—C3—C4—N2 178.5 (2) N3i—C7—C8—O3 −40.8 (4)
C7—N2—C4—C5 143.2 (2) N2—C7—C8—O3 148.5 (3)
N3—N2—C4—C5 −4.6 (3) N3i—C7—C8—O4 138.4 (2)
C7—N2—C4—C3 −39.0 (3) N2—C7—C8—O4 −32.3 (3)
N3—N2—C4—C3 173.1 (2) C8—O4—C9—C10 −159.4 (3)
C3—C4—C5—C6 2.3 (4)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H4···O2ii 0.93 2.57 3.400 (4) 149
C9—H6···O1iii 0.97 2.60 3.294 (4) 129

Symmetry codes: (ii) −x+1, y, −z+3/2; (iii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2514).

References

  1. Barltrop, J. A., Richards, C. G., Russel, D. M. & Ryback, G. (1959). J. Chem. Soc. pp. 1132–1142.
  2. Boudina, A., Baouid, A., Hasnaoui, A. & Essaber, M. (2006). Synth. Commun.36, 573–579.
  3. Chiaroni, A., Riche, C., Baouid, A., Hasnaoui, A., Benharref, A. & Lavergne, J.-P. (1995). Acta Cryst. C51, 1352–1355.
  4. El Hazazi, S., Baouid, A., Hasnaoui, A. & Compain, P. (2003). Synth. Commun.33, 19–27.
  5. El Hazazi, S., Baouid, A., Hasnaoui, A. & Pierrot, M. (2000). Acta Cryst. C56, e457–e458. [DOI] [PubMed]
  6. Enraf–Nonius (1989). CAD-4 EXPRESS Enraf–Nonius, Deft, The Netherlands.
  7. Fair, C. K. (1990). MolEN Enraf–Nonius, Delft, The Netherlands.
  8. Huisgen, R. & Koch, H. J. (1955). Ann. Chem.591, 200–231.
  9. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  10. Nabih, K., Baouid, A., Hasnaoui, A., Selkti, M. & Compain, P. (2003). New J. Chem.27, 1644–1648.
  11. Sharp, B. & Hamilton, C. S. (1946). J. Am. Chem. Soc.68, 588–591. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002217/is2514sup1.cif

e-66-0o430-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002217/is2514Isup2.hkl

e-66-0o430-Isup2.hkl (115.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES