Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 9;66(Pt 2):o328. doi: 10.1107/S160053681000067X

2-Ethyl-6,6-ethyl­enedisulfanediyl-7-methoxy­methyl-1,2,3,4,5,6-hexa­hydro-1,5-methano­azocino[4,3-b]indol-3-one

Barış Tercan a, Ertan Şahin b, Süleyman Patır c, Tuncer Hökelek d,*
PMCID: PMC2979738  PMID: 21579758

Abstract

The title compound, C20H24N2O2S2, consists of a tetra­cyclic ring system containing an azocino skeleton with ethyl, dithiol­ane and methoxy­methyl groups as substituents. The benzene and five-membered rings are nearly coplanar, with a dihedral angle of 2.78 (11)°. The dithiol­ane ring adopts an envelope conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains nearly parallel to the c axis. Two C—H⋯π inter­actions are also present.

Related literature

For considerations of the hexahydro-1,5-methanoazo­cino[4,3-b]indole core structure as a synthetic precursor for most of the pentacyclic and tetracyclic indole alkaloids of biological interest, see: Hesse (2002); Bosch & Bonjoch (1988); Saxton (1983). For related structures, see: Hökelek et al. (2004, 2006, 2007); Uludağ et al. (2006).graphic file with name e-66-0o328-scheme1.jpg

Experimental

Crystal data

  • C20H24N2O2S2

  • M r = 388.53

  • Monoclinic, Inline graphic

  • a = 14.0409 (3) Å

  • b = 6.8916 (2) Å

  • c = 20.2820 (4) Å

  • β = 109.783 (2)°

  • V = 1846.74 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 294 K

  • 0.35 × 0.25 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.910, T max = 0.941

  • 24759 measured reflections

  • 3794 independent reflections

  • 2746 reflections with I > 2σ(I)

  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.161

  • S = 1.05

  • 3794 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000067X/xu2717sup1.cif

e-66-0o328-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000067X/xu2717Isup2.hkl

e-66-0o328-Isup2.hkl (182.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18C⋯O1i 0.96 2.43 3.365 (5) 165
C11—H11⋯Cg1ii 0.93 2.80 3.569 (4) 141
C16—H16ACg1iii 0.96 2.66 3.514 (5) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the C7A/C8–C11/C11A ring.

Acknowledgments

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

supplementary crystallographic information

Comment

The hexahydro-1,5-methano-azocino[4,3-b]indole core structure can be considered to be synthetic precursor for most of the pentacyclic and tetracyclic indole alkaloids of biological interests (Hesse, 2002; Bosch & Bonjoch, 1988; Saxton, 1983), such as akuminicine and uleine. Most of them have the pentacyclic ring system as a common element and include a large group of naturally occurring compounds such as strychnine, a consulvant poison.

The structures of tricyclic, tetracyclic and pentacyclic ring systems with different substituents of azocino[4,3-b]indole core have been determined, previously. These include N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan- 2yl)-1,2,3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indole-2-one, (II) (Hökelek et al., 2004), 12-ethyl-2-methyl-6,6-ethylenedithio-1,2,3,4,5,6 -hexahydro-1,5-methano-2-azocino[4,3-b]indole-3-one, (III) (Uludağ et al., 2006), 4-ethyl-6,6-ethylenedithio-2-(2-methoxymethyl)-7-methoxymethylene-2, 3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indole-3-one, (IV) (Hökelek et al., 2006) and 2-(2,2-dimethoxyethyl)-3-oxo-1,2,3,4,5,6 -hexahydro-1,5-methano-7H-azocino[4,3-b]indole, (V) (Hökelek et al., 2007). The present study was undertaken to ascertain the crystal structure of the title compound, (I).

The molecule of the title compound, (I), (Fig. 1) consists of a tetracyclic system containing an azocino skeleton with ethyl, dithiolane and methoxy methylene groups as substituents at positions N2, 6 and N7, respectively. The bonds N7—C6a [1.398 (3) Å] and N7—C7a [1.387 (3) Å] agree well with those in compounds (II) [1.392 (8) and 1.370 (8) Å], (IV) [1.393 (4) and 1.386 (5) Å] and (V) [1.377 (3) and 1.376 (3) Å]. In all four structures atom N7 is substituted. The absolute configurations of C1 and C5 are S and S (Fig. 1). The S atoms of the dithiolane ring have electron-releasing properties, but the N atom at position 7 and the O atom attached to C3 have electron-withdrawing properties, leading to some changes in the bond lengths and angles of the carbazole skeleton.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C7a/C8/C9/C10/C11/C11a) and B (N7/C7a/C11a/C11b/C6a) are planar. They are also coplanar with a dihedral angle of A/B = 2.78 (11)°. Rings C (C1/C11b/C6a/C6/C5/C12), D (C1/N2/C3/C4/C5/C12) and E (C6/S1/S2/C13/C14) are, of course, not planar. Atom C12 deviates from the planes of F(C1/C5/C6/C6a/C11b) and G (C1/N2/C3/C4/C5) by -0.718 (3) Å and 0.747 (3) Å, respectively where the dihedral angle between planes of F and G is F/G = 68.92 (10)°. On the other hand, the dihedral angles between the plane of H (C1/C5/C12) and the planes of F and G are 54.95 (20)° and 56.61 (20)°, respectively. Ring E has a local pseudo-mirror plane running through C13 and the midpoint of the C6—S2 bond. The conformation of ring E is an envelope, with atom C13 at the flap position, 0.729 (3) Å from the mean plane through the other four atoms.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains nearly parallel to c axis (Fig. 2), in which they may be effective in the stabilization of the structure. There are also two C—H···π interactions (Table 1).

Experimental

The title compound, (I), was prepared from sodium hydride (48.0 mg, 2.00 mmol) and 6-(1,3-dithiolan-2-yl)-1,2,3,4,5,6-hexahydro-1,5-methano-azocino[4,3–6] indole-3-one (500.0 mg, 1.38 mmol) in THF (40 ml) and bromoethane (5 ml). The mixture was heated at reflux for 4 h under nitrogen atmosphere. Later the mixture was cooled in an ice bath and methanol (5 ml) and water (25 ml) were added. After extraction with ethyl acetate (30 ml), the organic layer was dried with Na2SO4 and the solvent was evaporated. The residue was crystallized from aceton (yield; 450.0 mg, 83%), m.p. 469 K.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C20H24N2O2S2 F(000) = 824
Mr = 388.53 Dx = 1.397 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6800 reflections
a = 14.0409 (3) Å θ = 2.1–26.4°
b = 6.8916 (2) Å µ = 0.31 mm1
c = 20.2820 (4) Å T = 294 K
β = 109.783 (2)° Block, colorless
V = 1846.74 (8) Å3 0.35 × 0.25 × 0.20 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID-S diffractometer 3794 independent reflections
Radiation source: fine-focus sealed tube 2746 reflections with I > 2σ(I)
graphite Rint = 0.083
ω scans θmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan (Blessing, 1995) h = −17→17
Tmin = 0.910, Tmax = 0.941 k = −8→7
24759 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.9643P] where P = (Fo2 + 2Fc2)/3
3794 reflections (Δ/σ)max < 0.001
237 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.47776 (6) 0.49118 (12) 0.40721 (4) 0.0511 (2)
S2 0.44792 (6) 0.89818 (12) 0.35693 (4) 0.0509 (2)
O1 0.2345 (2) 0.9462 (4) 0.44738 (13) 0.0768 (8)
O2 0.23070 (18) 0.8019 (4) 0.09759 (11) 0.0689 (7)
C1 0.2432 (2) 0.4188 (4) 0.22142 (14) 0.0436 (7)
H1 0.2104 0.2915 0.2114 0.052*
N2 0.20617 (18) 0.5406 (4) 0.15768 (11) 0.0473 (6)
C3 0.2592 (2) 0.6945 (5) 0.14953 (15) 0.0515 (8)
C4 0.3593 (2) 0.7400 (5) 0.20602 (15) 0.0538 (8)
H4A 0.3509 0.8600 0.2284 0.065*
H4B 0.4084 0.7649 0.1831 0.065*
C5 0.4061 (2) 0.5879 (4) 0.26479 (14) 0.0434 (7)
H5 0.4782 0.5755 0.2709 0.052*
C6 0.3979 (2) 0.6464 (4) 0.33652 (13) 0.0407 (6)
C6A 0.2908 (2) 0.6149 (4) 0.33343 (14) 0.0418 (6)
N7 0.25017 (17) 0.6624 (4) 0.38550 (11) 0.0436 (6)
C7A 0.1539 (2) 0.5828 (4) 0.36673 (15) 0.0442 (7)
C8 0.0862 (2) 0.5820 (5) 0.40350 (17) 0.0528 (8)
H8 0.1008 0.6456 0.4462 0.063*
C9 −0.0033 (3) 0.4828 (5) 0.37369 (19) 0.0591 (9)
H9 −0.0499 0.4783 0.3971 0.071*
C10 −0.0259 (2) 0.3890 (5) 0.30934 (18) 0.0576 (8)
H10 −0.0876 0.3251 0.2905 0.069*
C11 0.0409 (2) 0.3887 (5) 0.27301 (16) 0.0509 (7)
H11 0.0251 0.3257 0.2301 0.061*
C11A 0.1336 (2) 0.4859 (4) 0.30238 (14) 0.0413 (6)
C11B 0.2214 (2) 0.5078 (4) 0.28250 (14) 0.0401 (6)
C12 0.3567 (2) 0.3922 (4) 0.24135 (15) 0.0469 (7)
H12A 0.3732 0.3452 0.2015 0.056*
H12B 0.3807 0.2984 0.2790 0.056*
C13 0.5895 (2) 0.6397 (5) 0.42991 (17) 0.0583 (8)
H13A 0.6373 0.6000 0.4748 0.070*
H13B 0.6218 0.6271 0.3948 0.070*
C14 0.5567 (2) 0.8471 (6) 0.43355 (17) 0.0620 (9)
H14A 0.6116 0.9348 0.4353 0.074*
H14B 0.5396 0.8660 0.4756 0.074*
C15 0.2919 (2) 0.7819 (5) 0.44770 (15) 0.0497 (7)
H15A 0.2968 0.7047 0.4887 0.060*
H15B 0.3598 0.8216 0.4514 0.060*
C16 0.2197 (4) 1.0751 (6) 0.3929 (2) 0.0853 (13)
H16A 0.1754 1.1772 0.3968 0.128*
H16B 0.1898 1.0086 0.3492 0.128*
H16C 0.2835 1.1293 0.3948 0.128*
C17 0.1124 (2) 0.4840 (5) 0.10217 (16) 0.0575 (9)
H17A 0.0824 0.5974 0.0746 0.069*
H17B 0.0647 0.4343 0.1232 0.069*
C18 0.1315 (3) 0.3308 (6) 0.05469 (17) 0.0741 (11)
H18A 0.0682 0.2879 0.0219 0.111*
H18B 0.1661 0.2227 0.0824 0.111*
H18C 0.1725 0.3846 0.0297 0.111*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0460 (4) 0.0572 (5) 0.0457 (4) 0.0018 (3) 0.0099 (3) 0.0075 (3)
S2 0.0487 (4) 0.0488 (5) 0.0541 (5) −0.0058 (3) 0.0160 (3) −0.0024 (3)
O1 0.100 (2) 0.0602 (17) 0.0658 (16) 0.0158 (15) 0.0232 (14) −0.0083 (12)
O2 0.0691 (15) 0.0801 (19) 0.0538 (13) −0.0012 (13) 0.0160 (11) 0.0208 (12)
C1 0.0472 (16) 0.0431 (17) 0.0419 (15) −0.0030 (13) 0.0168 (12) −0.0012 (12)
N2 0.0470 (13) 0.0569 (17) 0.0367 (12) −0.0035 (12) 0.0125 (10) −0.0003 (11)
C3 0.0524 (17) 0.063 (2) 0.0435 (16) 0.0038 (15) 0.0217 (13) 0.0023 (14)
C4 0.0538 (17) 0.061 (2) 0.0460 (16) −0.0086 (15) 0.0165 (14) 0.0063 (14)
C5 0.0377 (14) 0.0506 (18) 0.0442 (15) 0.0010 (12) 0.0168 (12) −0.0017 (12)
C6 0.0365 (14) 0.0443 (17) 0.0391 (14) −0.0008 (12) 0.0098 (11) 0.0002 (12)
C6A 0.0386 (14) 0.0500 (18) 0.0384 (14) 0.0034 (12) 0.0149 (11) 0.0026 (12)
N7 0.0419 (13) 0.0487 (15) 0.0428 (12) −0.0032 (11) 0.0178 (10) −0.0072 (10)
C7A 0.0425 (15) 0.0429 (17) 0.0499 (16) −0.0001 (12) 0.0192 (13) 0.0001 (12)
C8 0.0562 (18) 0.055 (2) 0.0564 (18) −0.0026 (15) 0.0308 (15) −0.0066 (14)
C9 0.0571 (19) 0.056 (2) 0.077 (2) −0.0016 (16) 0.0402 (17) −0.0018 (16)
C10 0.0460 (17) 0.056 (2) 0.074 (2) −0.0104 (15) 0.0246 (16) −0.0030 (16)
C11 0.0472 (16) 0.0501 (19) 0.0553 (18) −0.0036 (14) 0.0174 (14) −0.0013 (14)
C11A 0.0418 (14) 0.0400 (16) 0.0442 (15) −0.0020 (12) 0.0171 (12) −0.0002 (12)
C11B 0.0390 (14) 0.0433 (17) 0.0391 (14) 0.0010 (12) 0.0147 (11) 0.0007 (11)
C12 0.0475 (16) 0.052 (2) 0.0429 (15) 0.0015 (14) 0.0180 (13) −0.0029 (13)
C13 0.0432 (16) 0.068 (2) 0.0566 (19) 0.0007 (15) 0.0073 (14) −0.0007 (16)
C14 0.0479 (17) 0.074 (3) 0.0577 (19) −0.0118 (16) 0.0099 (15) −0.0141 (17)
C15 0.0520 (17) 0.0524 (19) 0.0441 (16) 0.0017 (14) 0.0156 (13) −0.0071 (13)
C16 0.119 (4) 0.063 (3) 0.074 (3) 0.027 (2) 0.035 (2) 0.013 (2)
C17 0.0477 (17) 0.074 (2) 0.0442 (17) −0.0052 (16) 0.0076 (13) 0.0027 (15)
C18 0.086 (3) 0.086 (3) 0.0510 (19) −0.031 (2) 0.0245 (18) −0.0132 (19)

Geometric parameters (Å, °)

S1—C6 1.835 (3) C9—H9 0.9300
S1—C13 1.798 (3) C10—C9 1.393 (5)
S2—C6 1.866 (3) C10—H10 0.9300
S2—C14 1.807 (3) C11—C10 1.375 (4)
O1—C15 1.388 (4) C11—H11 0.9300
O1—C16 1.377 (4) C11A—C11 1.405 (4)
O2—C3 1.238 (4) C11B—C1 1.504 (4)
C1—C12 1.516 (4) C11B—C11A 1.429 (4)
C1—H1 0.9800 C12—C5 1.518 (4)
N2—C1 1.480 (4) C12—H12A 0.9700
N2—C3 1.338 (4) C12—H12B 0.9700
N2—C17 1.466 (4) C13—H13A 0.9700
C3—C4 1.515 (4) C13—H13B 0.9700
C4—H4A 0.9700 C14—C13 1.511 (5)
C4—H4B 0.9700 C14—H14A 0.9700
C5—C4 1.556 (4) C14—H14B 0.9700
C5—H5 0.9800 C15—H15A 0.9700
C6—C5 1.551 (4) C15—H15B 0.9700
C6A—C6 1.500 (4) C16—H16A 0.9600
C6A—C11B 1.371 (4) C16—H16B 0.9600
N7—C6A 1.398 (3) C16—H16C 0.9600
N7—C7A 1.387 (3) C17—C18 1.513 (5)
N7—C15 1.454 (4) C17—H17A 0.9700
C7A—C8 1.392 (4) C17—H17B 0.9700
C7A—C11A 1.407 (4) C18—H18A 0.9600
C8—C9 1.378 (5) C18—H18B 0.9600
C8—H8 0.9300 C18—H18C 0.9600
C13—S1—C6 96.77 (14) C10—C11—C11A 118.3 (3)
C14—S2—C6 98.91 (15) C10—C11—H11 120.8
C16—O1—C15 117.4 (3) C11A—C11—H11 120.8
N2—C1—C11B 112.3 (2) C7A—C11A—C11B 106.8 (2)
N2—C1—C12 109.2 (2) C11—C11A—C7A 119.2 (3)
N2—C1—H1 108.9 C11—C11A—C11B 134.0 (3)
C11B—C1—C12 108.6 (2) C6A—C11B—C1 123.3 (2)
C11B—C1—H1 108.9 C6A—C11B—C11A 107.8 (2)
C12—C1—H1 108.9 C11A—C11B—C1 128.7 (2)
C3—N2—C1 120.8 (2) C1—C12—C5 107.7 (2)
C3—N2—C17 120.6 (3) C1—C12—H12A 110.2
C17—N2—C1 118.6 (3) C1—C12—H12B 110.2
O2—C3—N2 123.1 (3) C5—C12—H12A 110.2
O2—C3—C4 118.0 (3) C5—C12—H12B 110.2
N2—C3—C4 118.9 (3) H12A—C12—H12B 108.5
C3—C4—C5 118.9 (3) S1—C13—H13A 110.3
C3—C4—H4A 107.6 S1—C13—H13B 110.3
C3—C4—H4B 107.6 C14—C13—S1 107.3 (2)
C5—C4—H4A 107.6 C14—C13—H13A 110.3
C5—C4—H4B 107.6 C14—C13—H13B 110.3
H4A—C4—H4B 107.0 H13A—C13—H13B 108.5
C4—C5—H5 107.8 S2—C14—H14A 109.9
C6—C5—C4 113.4 (2) S2—C14—H14B 109.9
C6—C5—H5 107.8 C13—C14—S2 109.0 (2)
C12—C5—C4 109.2 (2) C13—C14—H14A 109.9
C12—C5—C6 110.7 (2) C13—C14—H14B 109.9
C12—C5—H5 107.8 H14A—C14—H14B 108.3
S1—C6—S2 106.50 (13) O1—C15—N7 113.3 (2)
C5—C6—S1 111.18 (19) O1—C15—H15A 108.9
C5—C6—S2 107.92 (19) O1—C15—H15B 108.9
C6A—C6—S1 106.70 (19) N7—C15—H15A 108.9
C6A—C6—S2 116.2 (2) N7—C15—H15B 108.9
C6A—C6—C5 108.4 (2) H15A—C15—H15B 107.7
N7—C6A—C6 126.4 (2) O1—C16—H16A 109.5
C11B—C6A—N7 109.2 (2) O1—C16—H16B 109.5
C11B—C6A—C6 123.8 (2) O1—C16—H16C 109.5
C6A—N7—C15 129.9 (2) H16A—C16—H16B 109.5
C7A—N7—C6A 108.0 (2) H16A—C16—H16C 109.5
C7A—N7—C15 122.1 (2) H16B—C16—H16C 109.5
N7—C7A—C8 129.2 (3) N2—C17—C18 111.5 (3)
N7—C7A—C11A 108.4 (2) N2—C17—H17A 109.3
C8—C7A—C11A 122.3 (3) N2—C17—H17B 109.3
C7A—C8—H8 121.5 C18—C17—H17A 109.3
C9—C8—C7A 117.0 (3) C18—C17—H17B 109.3
C9—C8—H8 121.5 H17A—C17—H17B 108.0
C8—C9—C10 121.7 (3) C17—C18—H18A 109.5
C8—C9—H9 119.1 C17—C18—H18B 109.5
C10—C9—H9 119.1 C17—C18—H18C 109.5
C9—C10—H10 119.3 H18A—C18—H18B 109.5
C11—C10—C9 121.5 (3) H18A—C18—H18C 109.5
C11—C10—H10 119.3 H18B—C18—H18C 109.5
C13—S1—C6—S2 −26.72 (17) N7—C6A—C11B—C1 −175.0 (3)
C13—S1—C6—C5 90.6 (2) N7—C6A—C11B—C11A 0.0 (3)
C13—S1—C6—C6A −151.4 (2) C6—C6A—C11B—C1 −3.6 (4)
C6—S1—C13—C14 45.6 (2) C6—C6A—C11B—C11A 171.4 (3)
C14—S2—C6—S1 4.39 (17) C7A—N7—C6A—C6 −170.9 (3)
C14—S2—C6—C5 −115.1 (2) C7A—N7—C6A—C11B 0.2 (3)
C14—S2—C6—C6A 123.0 (2) C15—N7—C6A—C6 12.6 (5)
C6—S2—C14—C13 25.5 (3) C15—N7—C6A—C11B −176.2 (3)
C16—O1—C15—N7 −59.0 (4) C6A—N7—C7A—C8 176.2 (3)
N2—C1—C12—C5 67.7 (3) C6A—N7—C7A—C11A −0.4 (3)
C11B—C1—C12—C5 −55.0 (3) C15—N7—C7A—C8 −7.0 (5)
C3—N2—C1—C11B 80.0 (3) C15—N7—C7A—C11A 176.4 (3)
C3—N2—C1—C12 −40.5 (4) C6A—N7—C15—O1 116.8 (3)
C17—N2—C1—C11B −102.7 (3) C7A—N7—C15—O1 −59.2 (4)
C17—N2—C1—C12 136.8 (3) N7—C7A—C8—C9 −176.8 (3)
C1—N2—C3—O2 −179.1 (3) C11A—C7A—C8—C9 −0.6 (5)
C1—N2—C3—C4 1.3 (4) N7—C7A—C11A—C11 178.5 (3)
C17—N2—C3—O2 3.6 (5) N7—C7A—C11A—C11B 0.4 (3)
C17—N2—C3—C4 −175.9 (3) C8—C7A—C11A—C11 1.6 (5)
C1—N2—C17—C18 −82.9 (3) C8—C7A—C11A—C11B −176.5 (3)
C3—N2—C17—C18 94.4 (4) C7A—C8—C9—C10 −0.7 (5)
O2—C3—C4—C5 −169.0 (3) C11—C10—C9—C8 1.0 (6)
N2—C3—C4—C5 10.6 (4) C11A—C11—C10—C9 0.0 (5)
C6—C5—C4—C3 −106.4 (3) C7A—C11A—C11—C10 −1.3 (5)
C12—C5—C4—C3 17.5 (4) C11B—C11A—C11—C10 176.2 (3)
S1—C6—C5—C4 −167.51 (19) C6A—C11B—C1—N2 −97.1 (3)
S1—C6—C5—C12 69.4 (3) C6A—C11B—C1—C12 23.8 (4)
S2—C6—C5—C4 −51.1 (3) C11A—C11B—C1—N2 89.0 (4)
S2—C6—C5—C12 −174.13 (19) C11A—C11B—C1—C12 −150.2 (3)
C6A—C6—C5—C4 75.5 (3) C1—C11B—C11A—C7A 174.4 (3)
C6A—C6—C5—C12 −47.5 (3) C1—C11B—C11A—C11 −3.3 (5)
N7—C6A—C6—S1 64.9 (3) C6A—C11B—C11A—C7A −0.3 (3)
N7—C6A—C6—S2 −53.6 (4) C6A—C11B—C11A—C11 −177.9 (3)
N7—C6A—C6—C5 −175.3 (3) C1—C12—C5—C4 −54.7 (3)
C11B—C6A—C6—S1 −105.0 (3) C1—C12—C5—C6 70.7 (3)
C11B—C6A—C6—S2 136.5 (3) S2—C14—C13—S1 −46.9 (3)
C11B—C6A—C6—C5 14.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C18—H18C···O1i 0.96 2.43 3.365 (5) 165
C11—H11···Cg1ii 0.93 2.80 3.569 (4) 141
C16—H16A···Cg1iii 0.96 2.66 3.514 (5) 148

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, y−1/2, −z+1/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2717).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Bosch, J. & Bonjoch, J. (1988). Studies in Natural Product Chemistry, edited by A. Rahman. Amsterdam: Elsevier.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Hesse, M. (2002). Alkaloids, edited by P. M. Wallimann & M. V. Kisakürek. Zürich, New York: Verlag Helvetica Chimica Acta, Wiley.
  6. Hökelek, T., Şahin, E., Uludağ, N. & Erdoğan, Ü. I. (2007). Acta Cryst. E63, o3268.
  7. Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27.
  8. Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793.
  9. Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  10. Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Uludağ, N., Hökelek, T. & Patır, S. (2006). J. Heterocycl. Chem.43, 585–591.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000067X/xu2717sup1.cif

e-66-0o328-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000067X/xu2717Isup2.hkl

e-66-0o328-Isup2.hkl (182.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES