Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 20;66(Pt 2):o397. doi: 10.1107/S1600536810001601

Ethyl 2-(3-acetyl-6-methyl-2-oxo-2H-pyran-4-yl­oxy)acetate

Muhammad Rabnawaz a, Stacy D Benson b, Burhan Khan a, Muhammad Raza Shah a,*
PMCID: PMC2979740  PMID: 21579818

Abstract

The title compound, C12H14O6, features a roughly planar mol­ecule (r.m.s. deviation for all non-H atoms = 0.287 Å). In the crystal, the mol­ecules are held together by C—H⋯O hydrogen bonds.

Related literature

For the use of dehydro­acetic acid as a starting material in the synthesis of heterocyclic ring systems, see: Prakash et al. (2004), and of biologically important mol­ecules such as coumarins, see: Hernandez-Galan et al. (1993).graphic file with name e-66-0o397-scheme1.jpg

Experimental

Crystal data

  • C12H14O6

  • M r = 254.23

  • Triclinic, Inline graphic

  • a = 7.8258 (10) Å

  • b = 8.2722 (11) Å

  • c = 10.0838 (13) Å

  • α = 77.374 (7)°

  • β = 77.759 (6)°

  • γ = 88.857 (7)°

  • V = 622.28 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.72 × 0.13 × 0.11 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.925, T max = 0.988

  • 14279 measured reflections

  • 3039 independent reflections

  • 2330 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.159

  • S = 1.04

  • 3039 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001601/bt5170sup1.cif

e-66-0o397-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001601/bt5170Isup2.hkl

e-66-0o397-Isup2.hkl (149.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6A—H6A1⋯O2i 0.96 2.53 3.462 (2) 165
C5—H5⋯O3Ai 0.93 2.38 3.3053 (19) 174
C2A—H2A1⋯O3Ai 0.97 2.57 3.355 (2) 138
C2E—H2E2⋯O1ii 0.96 2.54 3.484 (3) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Organization for the Prohibition of Chemical Weapons for financial support.

supplementary crystallographic information

Comment

3-Acetyl-4-hydroxy-6-methyl-2-oxo-2H-pyran (dehydroacetic acid) is a versatile starting material for the synthesis of a wide variety of heterocyclic ring systems (Prakash et al., 2004) and biologically important molecules like coumarins (Hernandez-Galan et al., 1993).

Experimental

The dehydroacetic acid (500 mg, 3 mmol) was treated with ethylbromoacetate (2 g, 12 mmol) in acetone in the presence of K2CO3 (1.6 g, 12 mmol). The reaction mixture was refluxed for 3 h monitored with TLC at regular intervals of 30 minutes. The reaction was quenched by addition of 1 N HCl (10 ml) and the aqueous layer was extracted with ethyl acetate three times. The combined organic layers were concentrated under reduced pressure. The crude residue was dissolved in hot ethanol. The slow evaporation of ethanol yielded colorless needle-like crystals (90%, 680 mg).

Refinement

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.96 Å and with Uiso = 1.2Ueq(C) for CH and CH2 and Uiso = 1.5Ueq(C) for CH3 groups.

Figures

Fig. 1.

Fig. 1.

Crystal Structure of Ethyl 2-(3-acetyl-6-methyl-2-oxo-2H-pyran-4-yloxy) acetate (50% ellipsoids).

Crystal data

C12H14O6 Z = 2
Mr = 254.23 F(000) = 268
Triclinic, P1 Dx = 1.357 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8258 (10) Å Cell parameters from 6664 reflections
b = 8.2722 (11) Å θ = 2.1–28.3°
c = 10.0838 (13) Å µ = 0.11 mm1
α = 77.374 (7)° T = 298 K
β = 77.759 (6)° Rectangular prism, clear colourless
γ = 88.857 (7)° 0.72 × 0.13 × 0.11 mm
V = 622.28 (14) Å3

Data collection

Bruker SMART APEXII diffractometer 3039 independent reflections
Radiation source: fine-focus sealed tube 2330 reflections with I > 2σ(I)
graphite Rint = 0.036
Detector resolution: 83.33 pixels mm-1 θmax = 28.3°, θmin = 2.1°
φ scans and ω scans with κ offsets h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −11→10
Tmin = 0.925, Tmax = 0.988 l = −13→13
14279 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.1512P] where P = (Fo2 + 2Fc2)/3
3039 reflections (Δ/σ)max < 0.001
166 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.57091 (13) 0.60585 (14) 1.11130 (11) 0.0528 (3)
C2 0.44227 (18) 0.6846 (2) 1.04378 (17) 0.0494 (4)
C3 0.50118 (17) 0.81700 (18) 0.92489 (15) 0.0438 (3)
C4 0.67613 (17) 0.86621 (18) 0.89085 (15) 0.0419 (3)
C5 0.79728 (17) 0.78287 (18) 0.96663 (16) 0.0445 (3)
H5 0.9142 0.8175 0.9433 0.053*
C6 0.74139 (18) 0.65385 (19) 1.07210 (15) 0.0453 (3)
C6A 0.8505 (2) 0.5494 (2) 1.15859 (19) 0.0626 (5)
H6A1 0.9708 0.5851 1.1248 0.094*
H6A2 0.8379 0.4358 1.1537 0.094*
H6A3 0.8134 0.5597 1.2534 0.094*
C3A 0.36798 (19) 0.8935 (2) 0.84701 (18) 0.0525 (4)
C3B 0.4174 (3) 0.9705 (5) 0.6972 (3) 0.1171 (12)
H3B1 0.3199 0.9630 0.6548 0.176*
H3B2 0.5145 0.9138 0.6542 0.176*
H3B3 0.4499 1.0849 0.6854 0.176*
O3A 0.21609 (15) 0.8898 (2) 0.90547 (17) 0.0803 (5)
O4 0.72493 (13) 0.99457 (14) 0.78399 (13) 0.0576 (3)
C1A 0.9346 (2) 1.1577 (2) 0.60243 (17) 0.0525 (4)
C2A 0.8981 (2) 1.0641 (2) 0.74992 (18) 0.0562 (4)
H2A1 0.9816 0.9768 0.7622 0.067*
H2A2 0.9088 1.1378 0.8106 0.067*
O2 0.29702 (14) 0.62711 (18) 1.09368 (15) 0.0704 (4)
O1A 0.8501 (2) 1.1503 (2) 0.51873 (16) 0.0947 (6)
O1B 1.08032 (15) 1.24797 (15) 0.57701 (11) 0.0587 (3)
C1E 1.1521 (3) 1.3319 (3) 0.43439 (19) 0.0748 (6)
H1E1 1.0694 1.4101 0.3996 0.090*
H1E2 1.1769 1.2523 0.3755 0.090*
C2E 1.3156 (3) 1.4200 (4) 0.4343 (3) 0.1057 (9)
H2E1 1.2882 1.5037 0.4875 0.159*
H2E2 1.3712 1.4710 0.3404 0.159*
H2E3 1.3930 1.3424 0.4747 0.159*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0358 (5) 0.0632 (7) 0.0518 (6) −0.0105 (5) −0.0048 (4) 0.0003 (5)
C2 0.0325 (7) 0.0602 (9) 0.0533 (8) −0.0079 (6) −0.0035 (6) −0.0126 (7)
C3 0.0282 (6) 0.0524 (8) 0.0514 (8) −0.0040 (6) −0.0069 (6) −0.0141 (6)
C4 0.0306 (6) 0.0461 (7) 0.0475 (7) −0.0052 (5) −0.0062 (5) −0.0084 (6)
C5 0.0280 (6) 0.0528 (8) 0.0512 (8) −0.0071 (5) −0.0080 (5) −0.0077 (6)
C6 0.0338 (7) 0.0543 (8) 0.0469 (7) −0.0054 (6) −0.0076 (6) −0.0096 (6)
C6A 0.0500 (9) 0.0741 (11) 0.0578 (10) −0.0051 (8) −0.0168 (7) 0.0039 (8)
C3A 0.0312 (7) 0.0618 (9) 0.0665 (10) −0.0022 (6) −0.0129 (6) −0.0156 (8)
C3B 0.0486 (11) 0.212 (3) 0.0718 (14) 0.0101 (15) −0.0214 (10) 0.0165 (17)
O3A 0.0314 (6) 0.1083 (11) 0.0932 (10) 0.0034 (6) −0.0130 (6) −0.0053 (8)
O4 0.0332 (5) 0.0616 (7) 0.0687 (7) −0.0110 (5) −0.0157 (5) 0.0110 (5)
C1A 0.0461 (8) 0.0541 (9) 0.0544 (9) −0.0057 (7) −0.0108 (7) −0.0052 (7)
C2A 0.0361 (7) 0.0655 (10) 0.0578 (9) −0.0158 (7) −0.0116 (6) 0.0090 (7)
O2 0.0346 (6) 0.0894 (9) 0.0752 (8) −0.0196 (6) −0.0017 (5) −0.0007 (7)
O1A 0.0861 (11) 0.1290 (14) 0.0670 (9) −0.0384 (10) −0.0321 (8) 0.0022 (9)
O1B 0.0544 (7) 0.0653 (7) 0.0469 (6) −0.0197 (5) −0.0051 (5) 0.0040 (5)
C1E 0.0799 (13) 0.0853 (13) 0.0456 (9) −0.0179 (10) −0.0010 (9) 0.0044 (9)
C2E 0.0910 (17) 0.127 (2) 0.0702 (13) −0.0493 (15) 0.0077 (12) 0.0197 (13)

Geometric parameters (Å, °)

O1—C6 1.3501 (16) C3B—H3B1 0.9600
O1—C2 1.404 (2) C3B—H3B2 0.9600
C2—O2 1.2024 (17) C3B—H3B3 0.9600
C2—C3 1.436 (2) O4—C2A 1.4256 (17)
C3—C4 1.3856 (17) C1A—O1A 1.189 (2)
C3—C3A 1.486 (2) C1A—O1B 1.3228 (18)
C4—O4 1.3326 (18) C1A—C2A 1.489 (2)
C4—C5 1.417 (2) C2A—H2A1 0.9700
C5—C6 1.337 (2) C2A—H2A2 0.9700
C5—H5 0.9300 O1B—C1E 1.450 (2)
C6—C6A 1.481 (2) C1E—C2E 1.485 (3)
C6A—H6A1 0.9600 C1E—H1E1 0.9700
C6A—H6A2 0.9600 C1E—H1E2 0.9700
C6A—H6A3 0.9600 C2E—H2E1 0.9600
C3A—O3A 1.2073 (19) C2E—H2E2 0.9600
C3A—C3B 1.476 (3) C2E—H2E3 0.9600
C6—O1—C2 122.89 (12) H3B1—C3B—H3B2 109.5
O2—C2—O1 113.96 (15) C3A—C3B—H3B3 109.5
O2—C2—C3 129.34 (16) H3B1—C3B—H3B3 109.5
O1—C2—C3 116.68 (12) H3B2—C3B—H3B3 109.5
C4—C3—C2 118.59 (13) C4—O4—C2A 121.02 (12)
C4—C3—C3A 124.32 (14) O1A—C1A—O1B 124.77 (16)
C2—C3—C3A 117.09 (12) O1A—C1A—C2A 126.07 (16)
O4—C4—C3 117.09 (13) O1B—C1A—C2A 109.14 (14)
O4—C4—C5 121.74 (12) O4—C2A—C1A 108.53 (13)
C3—C4—C5 121.17 (13) O4—C2A—H2A1 110.0
C6—C5—C4 119.19 (12) C1A—C2A—H2A1 110.0
C6—C5—H5 120.4 O4—C2A—H2A2 110.0
C4—C5—H5 120.4 C1A—C2A—H2A2 110.0
C5—C6—O1 121.31 (13) H2A1—C2A—H2A2 108.4
C5—C6—C6A 126.34 (14) C1A—O1B—C1E 117.97 (14)
O1—C6—C6A 112.35 (13) O1B—C1E—C2E 107.09 (17)
C6—C6A—H6A1 109.5 O1B—C1E—H1E1 110.3
C6—C6A—H6A2 109.5 C2E—C1E—H1E1 110.3
H6A1—C6A—H6A2 109.5 O1B—C1E—H1E2 110.3
C6—C6A—H6A3 109.5 C2E—C1E—H1E2 110.3
H6A1—C6A—H6A3 109.5 H1E1—C1E—H1E2 108.6
H6A2—C6A—H6A3 109.5 C1E—C2E—H2E1 109.5
O3A—C3A—C3B 118.99 (17) C1E—C2E—H2E2 109.5
O3A—C3A—C3 119.99 (16) H2E1—C2E—H2E2 109.5
C3B—C3A—C3 120.99 (14) C1E—C2E—H2E3 109.5
C3A—C3B—H3B1 109.5 H2E1—C2E—H2E3 109.5
C3A—C3B—H3B2 109.5 H2E2—C2E—H2E3 109.5
C6—O1—C2—O2 −179.01 (14) C2—O1—C6—C5 1.2 (2)
C6—O1—C2—C3 2.6 (2) C2—O1—C6—C6A −179.19 (14)
O2—C2—C3—C4 177.25 (16) C4—C3—C3A—O3A −153.29 (17)
O1—C2—C3—C4 −4.6 (2) C2—C3—C3A—O3A 26.1 (2)
O2—C2—C3—C3A −2.2 (3) C4—C3—C3A—C3B 28.5 (3)
O1—C2—C3—C3A 175.96 (13) C2—C3—C3A—C3B −152.2 (2)
C2—C3—C4—O4 −176.87 (13) C3—C4—O4—C2A 173.81 (14)
C3A—C3—C4—O4 2.5 (2) C5—C4—O4—C2A −6.3 (2)
C2—C3—C4—C5 3.3 (2) C4—O4—C2A—C1A 159.18 (14)
C3A—C3—C4—C5 −177.39 (14) O1A—C1A—C2A—O4 −13.5 (3)
O4—C4—C5—C6 −179.39 (14) O1B—C1A—C2A—O4 168.37 (13)
C3—C4—C5—C6 0.5 (2) O1A—C1A—O1B—C1E −6.2 (3)
C4—C5—C6—O1 −2.8 (2) C2A—C1A—O1B—C1E 172.01 (16)
C4—C5—C6—C6A 177.66 (16) C1A—O1B—C1E—C2E −178.72 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6A—H6A1···O2i 0.96 2.53 3.462 (2) 165
C5—H5···O3Ai 0.93 2.38 3.3053 (19) 174
C2A—H2A1···O3Ai 0.97 2.57 3.355 (2) 138
C2E—H2E2···O1ii 0.96 2.54 3.484 (3) 169

Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5170).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2008). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hernandez-Galan, R., Salva, J., Massannet, G. M. & Collado, I. G. (1993). Tetrahedron, 49, 1701–1702.
  4. Prakash, O., Kumar, A. & Singh, S. P. (2004). Heterocycles, 63, 1193–1194.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001601/bt5170sup1.cif

e-66-0o397-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001601/bt5170Isup2.hkl

e-66-0o397-Isup2.hkl (149.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES