Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 27;66(Pt 2):o463. doi: 10.1107/S1600536810002151

cis-N-(2-Hydroxy­cyclo­hexyl)-p-toluene­sulfonamide

Mohamed I Fadlalla a, Holger B Friedrich a, Glenn E M Maguire a, Muhammad D Bala a,*
PMCID: PMC2979744  PMID: 21579875

Abstract

There are two symmetry-independent mol­ecules in the asymmetric unit of the title compound, C13H19NO3S. The cyclo­hexane rings in the two mol­ecules adopt chair configurations. The hydr­oxy and amino groups on the cyclo­hexane ring assume axial and equatorial orientations, respectively, with respect to the plane of the ring. The crystal structure is stabilized by two inter­molecular N—H⋯O and O—H⋯O hydrogen bonds from the two symmetry-independent mol­ecules.

Related literature

For related structures of β-amino alcohols, see: Bergmeier (2000); Krzemiński & Wojtczak (2005). For related structures of tosyl­amino compounds, see: Coote et al. (2008); Liu et al. (2005); Chinnakali et al. (2007); Nan & Xing (2006). For the synthesis of the title compound, see: Naiker et al. (2008).graphic file with name e-66-0o463-scheme1.jpg

Experimental

Crystal data

  • C13H19NO3S

  • M r = 269.35

  • Triclinic, Inline graphic

  • a = 6.3031 (1) Å

  • b = 12.8355 (2) Å

  • c = 17.5367 (3) Å

  • α = 106.645 (1)°

  • β = 93.971 (1)°

  • γ = 100.047 (1)°

  • V = 1327.75 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.51 × 0.31 × 0.25 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 18458 measured reflections

  • 6423 independent reflections

  • 4837 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.111

  • S = 1.07

  • 6423 reflections

  • 343 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002151/lx2131sup1.cif

e-66-0o463-sup1.cif (26.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002151/lx2131Isup2.hkl

e-66-0o463-Isup2.hkl (308KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6i 0.83 (2) 2.00 (2) 2.8255 (17) 175.0 (18)
N2—H2N⋯O3ii 0.82 (2) 2.00 (2) 2.8155 (18) 173.1 (19)
O3—H3O⋯O5iii 0.83 (2) 1.93 (2) 2.7489 (15) 171 (2)
O6—H6O⋯O2iv 0.83 (2) 1.98 (2) 2.8001 (15) 169 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We wish to thank Dr Manuel Fernandes (University of the Witwatersrand) for the data collection, and the NRF, THRIP and the University of KwaZulu-Natal for financial support.

supplementary crystallographic information

Comment

Molecules containing a β-amino alcohol system have been used as precursors for the synthesis of chiral ligands, aziridine and biologically active compounds (Bergmeier, 2000; Krzemiński & Wojtczak, 2005). As a part of study on this family of compounds, we report the crystal structure of the title compound (l) (Fig. 1).

The geometry of the benzenesulfonamide unit in (I) agrees with that for related structures (Chinnakali et al. 2007; Nan & Xing, 2006). The cyclohexane rings in the two molecules adopt the chair configuration. The hydroxy and amino groups on the cyclohexane ring respectively assume axial and equatorial orientations with respect to the plane of the ring. The crystal packing (Fig. 2) is stabilized by intermolecular N—H···O and O—H···O hydrogen bonds from the two neighbouring symmetry-independent molecules (Table 1).

Experimental

The synthesis of the title compound was carried out using a modified literature method (Naiker et al. 2008) using a catalytic process. To a nitrogen saturated Schlenk tube, toluene (6 ml), water (172 µl) chloroamine-T (0.21 g, 0.956 mmol), cyclohexene (0.478 mmol) and catalyst (0.03 g) were added in that order. After the complete conversion of the starting material the catalyst was gravity filtered. The reaction mixture was washed with 15 ml of sodium sulfite (1 g in 15 ml of de-ionized water), followed by 15 ml of ethyl acetate. Then the aqueous layer was separated from the organic layer and washed further with 3 × 15 ml of ethyl acetate. The solvent was removed in vacuo, and the crude product was purified using preparative high pressure liquid chromatography to yield the title compound as a white solid. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetonitrile/water (1:1 v/v) at room temperature. (mp; 414–416 K) Spectroscopic analysis: 13C NMR (400 MHz, CDCl3, δ, p.p.m): = 19.76 (s, 1 C), 21.54 (s, 2 C), 27.98 (s, 1 C), 31.46(s, 1 C), 55.10 (s, 1 C), 68.76 (s, 1 C), 126.97 (s, 2 C), 129.74 (s, 2 C), 137.98(s, 1 C), 143.39 (s, 143.39).. MS m/z –[fragment]–(%): 291.8 (M + Na+) calculated = 291.8 for C13H19NO3SNa+.

FT–IR (cm-1): = 3414(m), (OH), 3137(m), (NH), 2938(w), 2849(w), 1598(m), (ar), 1059(m), (S=O).

Refinement

All H-atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) for NH, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) for OH.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

N—H···O and O—H···O hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x - 1, y - 1, z; (ii) x + 1, y + 1, z; (iii) x, y - 1, z; (iv) x, y + 1, z; (v) x + 1, y + 1, z; (vi) x - 1, y - 1, z; (vii) x, y + 1, z; (viii) x, y - 1, z.]

Crystal data

C13H19NO3S Z = 4
Mr = 269.35 F(000) = 576
Triclinic, P1 Dx = 1.347 Mg m3
Hall symbol: -P 1 Melting point = 414–416 K
a = 6.3031 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.8355 (2) Å Cell parameters from 6946 reflections
c = 17.5367 (3) Å θ = 2.4–28.3°
α = 106.645 (1)° µ = 0.24 mm1
β = 93.971 (1)° T = 173 K
γ = 100.047 (1)° Block, colourless
V = 1327.75 (4) Å3 0.51 × 0.31 × 0.25 mm

Data collection

Bruker APEXII CCD diffractometer 4837 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
graphite θmax = 28.0°, θmin = 1.2°
φ and ω scans h = −8→8
18458 measured reflections k = −16→16
6423 independent reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: difference Fourier map
wR(F2) = 0.111 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.0739P] where P = (Fo2 + 2Fc2)/3
6423 reflections (Δ/σ)max < 0.001
343 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3149 (2) 0.39725 (12) 0.35318 (8) 0.0230 (3)
H1 0.4155 0.4675 0.3860 0.028*
C2 0.4327 (2) 0.30139 (12) 0.34741 (9) 0.0227 (3)
H2 0.5706 0.3156 0.3236 0.027*
C3 0.4842 (3) 0.28788 (14) 0.42986 (9) 0.0303 (4)
H3A 0.5896 0.3543 0.4639 0.036*
H3B 0.5522 0.2225 0.4240 0.036*
C4 0.2795 (3) 0.27272 (15) 0.47095 (10) 0.0344 (4)
H4A 0.1800 0.2022 0.4399 0.041*
H4B 0.3195 0.2684 0.5254 0.041*
C5 0.1644 (3) 0.36911 (14) 0.47692 (9) 0.0337 (4)
H5A 0.2583 0.4384 0.5127 0.040*
H5B 0.0285 0.3557 0.5009 0.040*
C6 0.1107 (3) 0.38351 (13) 0.39456 (9) 0.0266 (3)
H6A 0.0034 0.3178 0.3607 0.032*
H6B 0.0449 0.4497 0.4010 0.032*
C7 0.3445 (2) 0.63056 (12) 0.29981 (8) 0.0212 (3)
C8 0.5061 (2) 0.72537 (12) 0.31511 (9) 0.0238 (3)
H8 0.6421 0.7204 0.2956 0.029*
C9 0.4672 (3) 0.82718 (12) 0.35906 (9) 0.0282 (3)
H9 0.5775 0.8920 0.3693 0.034*
C10 0.2692 (3) 0.83612 (13) 0.38840 (9) 0.0290 (4)
C11 0.1103 (3) 0.74045 (14) 0.37164 (10) 0.0310 (4)
H11 −0.0257 0.7454 0.3911 0.037*
C12 0.1439 (3) 0.63787 (13) 0.32735 (9) 0.0284 (3)
H12 0.0320 0.5735 0.3159 0.034*
C13 0.2270 (4) 0.94682 (16) 0.43611 (11) 0.0459 (5)
H13A 0.0900 0.9582 0.4130 0.069*
H13B 0.3460 1.0061 0.4345 0.069*
H13C 0.2173 0.9480 0.4919 0.069*
N1 0.2596 (2) 0.40722 (10) 0.27298 (8) 0.0243 (3)
O1 0.30664 (19) 0.48034 (9) 0.15979 (6) 0.0319 (3)
O2 0.62179 (17) 0.50634 (9) 0.26023 (7) 0.0322 (3)
O3 0.29042 (18) 0.20373 (9) 0.29512 (6) 0.0262 (2)
S1 0.39239 (6) 0.50145 (3) 0.24179 (2) 0.02302 (10)
H1N 0.134 (3) 0.3817 (15) 0.2496 (11) 0.039 (5)*
H3O 0.364 (3) 0.1556 (18) 0.2813 (12) 0.050 (6)*
C14 0.7984 (3) 1.13220 (12) 0.14293 (9) 0.0260 (3)
H14 0.6960 1.0621 0.1109 0.031*
C15 0.6821 (2) 1.22875 (12) 0.14932 (8) 0.0221 (3)
H15 0.5435 1.2142 0.1726 0.026*
C16 0.6321 (3) 1.24306 (13) 0.06696 (9) 0.0275 (3)
H16A 0.5649 1.3087 0.0729 0.033*
H16B 0.5267 1.1769 0.0325 0.033*
C17 0.8384 (3) 1.25814 (14) 0.02681 (9) 0.0311 (4)
H17A 0.8013 1.2657 −0.0269 0.037*
H17B 0.9405 1.3268 0.0594 0.037*
C18 0.9460 (3) 1.15881 (15) 0.01851 (10) 0.0382 (4)
H18A 1.0803 1.1699 −0.0068 0.046*
H18B 0.8468 1.0909 −0.0167 0.046*
C19 1.0017 (3) 1.14389 (14) 0.10043 (10) 0.0322 (4)
H19A 1.1115 1.2088 0.1339 0.039*
H19B 1.0647 1.0768 0.0934 0.039*
C20 0.7614 (2) 0.89890 (11) 0.20252 (8) 0.0214 (3)
C21 0.5911 (3) 0.82342 (12) 0.15054 (9) 0.0253 (3)
H21 0.4570 0.8445 0.1409 0.030*
C22 0.6186 (3) 0.71642 (13) 0.11252 (9) 0.0290 (3)
H22 0.5021 0.6643 0.0769 0.035*
C23 0.8145 (3) 0.68457 (12) 0.12593 (9) 0.0276 (3)
C24 0.9834 (3) 0.76236 (13) 0.17751 (9) 0.0276 (3)
H24 1.1182 0.7418 0.1867 0.033*
C25 0.9594 (3) 0.86956 (13) 0.21587 (9) 0.0260 (3)
H25 1.0767 0.9221 0.2508 0.031*
C26 0.8384 (3) 0.56743 (14) 0.08535 (11) 0.0414 (4)
H26A 0.7230 0.5151 0.0976 0.062*
H26B 0.9802 0.5569 0.1048 0.062*
H26C 0.8275 0.5541 0.0272 0.062*
N2 0.8567 (2) 1.12308 (11) 0.22299 (8) 0.0285 (3)
O4 0.81390 (19) 1.05591 (9) 0.33850 (6) 0.0326 (3)
O5 0.49416 (18) 1.02921 (9) 0.23866 (7) 0.0345 (3)
O6 0.82296 (18) 1.32622 (9) 0.20231 (6) 0.0246 (2)
S2 0.72262 (6) 1.03181 (3) 0.25663 (2) 0.02444 (11)
H2N 0.981 (3) 1.1520 (16) 0.2453 (11) 0.040 (6)*
H6O 0.751 (4) 1.3754 (19) 0.2141 (13) 0.061 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0245 (8) 0.0189 (7) 0.0237 (7) 0.0036 (6) −0.0012 (6) 0.0050 (6)
C2 0.0177 (7) 0.0233 (7) 0.0270 (8) 0.0037 (6) 0.0014 (6) 0.0080 (6)
C3 0.0286 (9) 0.0345 (9) 0.0307 (8) 0.0111 (7) −0.0005 (7) 0.0128 (7)
C4 0.0389 (10) 0.0442 (10) 0.0277 (8) 0.0158 (8) 0.0068 (7) 0.0177 (7)
C5 0.0375 (10) 0.0382 (9) 0.0257 (8) 0.0127 (8) 0.0057 (7) 0.0068 (7)
C6 0.0293 (9) 0.0256 (8) 0.0260 (8) 0.0117 (7) 0.0049 (6) 0.0054 (6)
C7 0.0221 (8) 0.0212 (7) 0.0237 (7) 0.0071 (6) 0.0046 (6) 0.0099 (6)
C8 0.0237 (8) 0.0256 (8) 0.0240 (7) 0.0051 (6) 0.0049 (6) 0.0099 (6)
C9 0.0337 (9) 0.0227 (8) 0.0275 (8) 0.0039 (7) 0.0026 (7) 0.0080 (6)
C10 0.0394 (10) 0.0282 (8) 0.0226 (8) 0.0152 (7) 0.0027 (7) 0.0080 (6)
C11 0.0286 (9) 0.0383 (9) 0.0344 (9) 0.0170 (7) 0.0114 (7) 0.0164 (7)
C12 0.0235 (8) 0.0280 (8) 0.0382 (9) 0.0074 (6) 0.0069 (7) 0.0153 (7)
C13 0.0564 (13) 0.0389 (10) 0.0413 (11) 0.0240 (9) 0.0051 (9) 0.0021 (8)
N1 0.0210 (7) 0.0224 (6) 0.0285 (7) −0.0005 (5) −0.0031 (5) 0.0106 (5)
O1 0.0401 (7) 0.0300 (6) 0.0254 (6) 0.0060 (5) 0.0061 (5) 0.0087 (5)
O2 0.0210 (6) 0.0244 (6) 0.0502 (7) 0.0075 (5) 0.0079 (5) 0.0073 (5)
O3 0.0234 (6) 0.0204 (5) 0.0322 (6) 0.0070 (5) 0.0023 (5) 0.0026 (4)
S1 0.0216 (2) 0.01999 (19) 0.0284 (2) 0.00532 (14) 0.00508 (15) 0.00776 (15)
C14 0.0291 (8) 0.0184 (7) 0.0274 (8) 0.0021 (6) −0.0020 (6) 0.0051 (6)
C15 0.0173 (7) 0.0232 (7) 0.0245 (7) 0.0023 (6) 0.0009 (6) 0.0069 (6)
C16 0.0258 (8) 0.0306 (8) 0.0256 (8) 0.0063 (7) −0.0013 (6) 0.0084 (6)
C17 0.0329 (9) 0.0383 (9) 0.0236 (8) 0.0084 (7) 0.0055 (6) 0.0106 (7)
C18 0.0422 (11) 0.0415 (10) 0.0282 (9) 0.0140 (8) 0.0095 (8) 0.0022 (7)
C19 0.0356 (10) 0.0278 (8) 0.0343 (9) 0.0167 (7) 0.0075 (7) 0.0045 (7)
C20 0.0232 (8) 0.0187 (7) 0.0243 (7) 0.0055 (6) 0.0056 (6) 0.0085 (6)
C21 0.0230 (8) 0.0252 (8) 0.0289 (8) 0.0071 (6) 0.0026 (6) 0.0090 (6)
C22 0.0328 (9) 0.0240 (8) 0.0274 (8) 0.0046 (7) 0.0011 (7) 0.0048 (6)
C23 0.0380 (9) 0.0250 (8) 0.0261 (8) 0.0130 (7) 0.0150 (7) 0.0112 (6)
C24 0.0256 (8) 0.0324 (8) 0.0333 (8) 0.0140 (7) 0.0107 (6) 0.0167 (7)
C25 0.0219 (8) 0.0279 (8) 0.0302 (8) 0.0050 (6) 0.0033 (6) 0.0119 (6)
C26 0.0559 (13) 0.0276 (9) 0.0450 (11) 0.0177 (8) 0.0194 (9) 0.0092 (8)
N2 0.0258 (8) 0.0223 (7) 0.0366 (8) −0.0015 (6) −0.0052 (6) 0.0133 (6)
O4 0.0412 (7) 0.0254 (6) 0.0288 (6) 0.0038 (5) 0.0057 (5) 0.0059 (5)
O5 0.0235 (6) 0.0230 (6) 0.0539 (8) 0.0081 (5) 0.0060 (5) 0.0047 (5)
O6 0.0234 (6) 0.0209 (5) 0.0268 (6) 0.0066 (5) 0.0010 (4) 0.0023 (4)
S2 0.0242 (2) 0.01775 (18) 0.0308 (2) 0.00465 (15) 0.00403 (15) 0.00618 (15)

Geometric parameters (Å, °)

C1—N1 1.472 (2) C14—N2 1.4690 (19)
C1—C2 1.528 (2) C14—C15 1.528 (2)
C1—C6 1.529 (2) C14—C19 1.532 (2)
C1—H1 1.0000 C14—H14 1.0000
C2—O3 1.4325 (17) C15—O6 1.4316 (17)
C2—C3 1.525 (2) C15—C16 1.526 (2)
C2—H2 1.0000 C15—H15 1.0000
C3—C4 1.531 (2) C16—C17 1.530 (2)
C3—H3A 0.9900 C16—H16A 0.9900
C3—H3B 0.9900 C16—H16B 0.9900
C4—C5 1.522 (2) C17—C18 1.522 (2)
C4—H4A 0.9900 C17—H17A 0.9900
C4—H4B 0.9900 C17—H17B 0.9900
C5—C6 1.530 (2) C18—C19 1.528 (2)
C5—H5A 0.9900 C18—H18A 0.9900
C5—H5B 0.9900 C18—H18B 0.9900
C6—H6A 0.9900 C19—H19A 0.9900
C6—H6B 0.9900 C19—H19B 0.9900
C7—C8 1.390 (2) C20—C21 1.385 (2)
C7—C12 1.393 (2) C20—C25 1.389 (2)
C7—S1 1.7674 (14) C20—S2 1.7665 (14)
C8—C9 1.387 (2) C21—C22 1.391 (2)
C8—H8 0.9500 C21—H21 0.9500
C9—C10 1.393 (2) C22—C23 1.392 (2)
C9—H9 0.9500 C22—H22 0.9500
C10—C11 1.386 (2) C23—C24 1.388 (2)
C10—C13 1.507 (2) C23—C26 1.507 (2)
C11—C12 1.384 (2) C24—C25 1.387 (2)
C11—H11 0.9500 C24—H24 0.9500
C12—H12 0.9500 C25—H25 0.9500
C13—H13A 0.9800 C26—H26A 0.9800
C13—H13B 0.9800 C26—H26B 0.9800
C13—H13C 0.9800 C26—H26C 0.9800
N1—S1 1.5975 (13) N2—S2 1.5982 (13)
N1—H1N 0.83 (2) N2—H2N 0.82 (2)
O1—S1 1.4322 (11) O4—S2 1.4343 (12)
O2—S1 1.4461 (11) O5—S2 1.4452 (12)
O3—H3O 0.83 (2) O6—H6O 0.83 (2)
N1—C1—C2 110.49 (11) N2—C14—C15 110.28 (12)
N1—C1—C6 110.35 (12) N2—C14—C19 109.93 (13)
C2—C1—C6 111.65 (12) C15—C14—C19 112.15 (12)
N1—C1—H1 108.1 N2—C14—H14 108.1
C2—C1—H1 108.1 C15—C14—H14 108.1
C6—C1—H1 108.1 C19—C14—H14 108.1
O3—C2—C3 110.68 (12) O6—C15—C16 110.75 (12)
O3—C2—C1 106.45 (11) O6—C15—C14 107.06 (11)
C3—C2—C1 110.94 (12) C16—C15—C14 110.71 (12)
O3—C2—H2 109.6 O6—C15—H15 109.4
C3—C2—H2 109.6 C16—C15—H15 109.4
C1—C2—H2 109.6 C14—C15—H15 109.4
C2—C3—C4 111.59 (13) C15—C16—C17 111.19 (13)
C2—C3—H3A 109.3 C15—C16—H16A 109.4
C4—C3—H3A 109.3 C17—C16—H16A 109.4
C2—C3—H3B 109.3 C15—C16—H16B 109.4
C4—C3—H3B 109.3 C17—C16—H16B 109.4
H3A—C3—H3B 108.0 H16A—C16—H16B 108.0
C5—C4—C3 110.62 (14) C18—C17—C16 110.11 (14)
C5—C4—H4A 109.5 C18—C17—H17A 109.6
C3—C4—H4A 109.5 C16—C17—H17A 109.6
C5—C4—H4B 109.5 C18—C17—H17B 109.6
C3—C4—H4B 109.5 C16—C17—H17B 109.6
H4A—C4—H4B 108.1 H17A—C17—H17B 108.2
C4—C5—C6 111.54 (13) C17—C18—C19 110.83 (13)
C4—C5—H5A 109.3 C17—C18—H18A 109.5
C6—C5—H5A 109.3 C19—C18—H18A 109.5
C4—C5—H5B 109.3 C17—C18—H18B 109.5
C6—C5—H5B 109.3 C19—C18—H18B 109.5
H5A—C5—H5B 108.0 H18A—C18—H18B 108.1
C1—C6—C5 110.98 (13) C18—C19—C14 110.71 (14)
C1—C6—H6A 109.4 C18—C19—H19A 109.5
C5—C6—H6A 109.4 C14—C19—H19A 109.5
C1—C6—H6B 109.4 C18—C19—H19B 109.5
C5—C6—H6B 109.4 C14—C19—H19B 109.5
H6A—C6—H6B 108.0 H19A—C19—H19B 108.1
C8—C7—C12 120.34 (14) C21—C20—C25 120.81 (14)
C8—C7—S1 119.33 (11) C21—C20—S2 119.75 (11)
C12—C7—S1 120.29 (11) C25—C20—S2 119.36 (11)
C9—C8—C7 119.46 (14) C20—C21—C22 119.29 (14)
C9—C8—H8 120.3 C20—C21—H21 120.4
C7—C8—H8 120.3 C22—C21—H21 120.4
C8—C9—C10 121.16 (15) C21—C22—C23 120.93 (15)
C8—C9—H9 119.4 C21—C22—H22 119.5
C10—C9—H9 119.4 C23—C22—H22 119.5
C11—C10—C9 118.17 (14) C24—C23—C22 118.55 (14)
C11—C10—C13 120.69 (16) C24—C23—C26 121.60 (15)
C9—C10—C13 121.13 (16) C22—C23—C26 119.84 (16)
C12—C11—C10 121.93 (15) C25—C24—C23 121.41 (14)
C12—C11—H11 119.0 C25—C24—H24 119.3
C10—C11—H11 119.0 C23—C24—H24 119.3
C11—C12—C7 118.92 (15) C24—C25—C20 119.00 (14)
C11—C12—H12 120.5 C24—C25—H25 120.5
C7—C12—H12 120.5 C20—C25—H25 120.5
C10—C13—H13A 109.5 C23—C26—H26A 109.5
C10—C13—H13B 109.5 C23—C26—H26B 109.5
H13A—C13—H13B 109.5 H26A—C26—H26B 109.5
C10—C13—H13C 109.5 C23—C26—H26C 109.5
H13A—C13—H13C 109.5 H26A—C26—H26C 109.5
H13B—C13—H13C 109.5 H26B—C26—H26C 109.5
C1—N1—S1 122.50 (10) C14—N2—S2 122.76 (11)
C1—N1—H1N 119.7 (13) C14—N2—H2N 117.8 (13)
S1—N1—H1N 113.8 (13) S2—N2—H2N 116.7 (13)
C2—O3—H3O 107.3 (15) C15—O6—H6O 107.3 (16)
O1—S1—O2 118.31 (7) O4—S2—O5 119.25 (7)
O1—S1—N1 107.26 (7) O4—S2—N2 106.51 (7)
O2—S1—N1 108.38 (7) O5—S2—N2 107.95 (7)
O1—S1—C7 109.32 (7) O4—S2—C20 108.22 (7)
O2—S1—C7 105.55 (7) O5—S2—C20 105.34 (7)
N1—S1—C7 107.60 (7) N2—S2—C20 109.34 (7)
N1—C1—C2—O3 −57.65 (14) N2—C14—C15—O6 56.00 (15)
C6—C1—C2—O3 65.57 (15) C19—C14—C15—O6 −66.87 (15)
N1—C1—C2—C3 −178.14 (12) N2—C14—C15—C16 176.81 (12)
C6—C1—C2—C3 −54.92 (16) C19—C14—C15—C16 53.94 (16)
O3—C2—C3—C4 −62.41 (17) O6—C15—C16—C17 62.91 (16)
C1—C2—C3—C4 55.53 (17) C14—C15—C16—C17 −55.68 (16)
C2—C3—C4—C5 −56.05 (19) C15—C16—C17—C18 58.13 (18)
C3—C4—C5—C6 55.88 (19) C16—C17—C18—C19 −58.33 (19)
N1—C1—C6—C5 178.09 (12) C17—C18—C19—C14 56.40 (19)
C2—C1—C6—C5 54.80 (16) N2—C14—C19—C18 −177.42 (13)
C4—C5—C6—C1 −55.44 (18) C15—C14—C19—C18 −54.35 (17)
C12—C7—C8—C9 0.9 (2) C25—C20—C21—C22 1.2 (2)
S1—C7—C8—C9 178.53 (11) S2—C20—C21—C22 −175.50 (11)
C7—C8—C9—C10 0.2 (2) C20—C21—C22—C23 −0.1 (2)
C8—C9—C10—C11 −0.8 (2) C21—C22—C23—C24 −0.7 (2)
C8—C9—C10—C13 −179.95 (15) C21—C22—C23—C26 178.69 (14)
C9—C10—C11—C12 0.2 (2) C22—C23—C24—C25 0.6 (2)
C13—C10—C11—C12 179.39 (15) C26—C23—C24—C25 −178.82 (14)
C10—C11—C12—C7 0.9 (2) C23—C24—C25—C20 0.4 (2)
C8—C7—C12—C11 −1.5 (2) C21—C20—C25—C24 −1.3 (2)
S1—C7—C12—C11 −179.05 (12) S2—C20—C25—C24 175.38 (11)
C2—C1—N1—S1 −103.58 (13) C15—C14—N2—S2 102.29 (14)
C6—C1—N1—S1 132.45 (12) C19—C14—N2—S2 −133.55 (12)
C1—N1—S1—O1 175.08 (11) C14—N2—S2—O4 −174.30 (12)
C1—N1—S1—O2 46.28 (13) C14—N2—S2—O5 −45.13 (14)
C1—N1—S1—C7 −67.40 (13) C14—N2—S2—C20 68.98 (14)
C8—C7—S1—O1 −95.15 (13) C21—C20—S2—O4 134.13 (12)
C12—C7—S1—O1 82.45 (13) C25—C20—S2—O4 −42.57 (13)
C8—C7—S1—O2 33.11 (14) C21—C20—S2—O5 5.55 (14)
C12—C7—S1—O2 −149.29 (12) C25—C20—S2—O5 −171.15 (11)
C8—C7—S1—N1 148.68 (12) C21—C20—S2—N2 −110.23 (12)
C12—C7—S1—N1 −33.72 (14) C25—C20—S2—N2 73.07 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O6i 0.83 (2) 2.00 (2) 2.8255 (17) 175.0 (18)
N2—H2N···O3ii 0.82 (2) 2.00 (2) 2.8155 (18) 173.1 (19)
O3—H3O···O5iii 0.83 (2) 1.93 (2) 2.7489 (15) 171 (2)
O6—H6O···O2iv 0.83 (2) 1.98 (2) 2.8001 (15) 169 (2)

Symmetry codes: (i) x−1, y−1, z; (ii) x+1, y+1, z; (iii) x, y−1, z; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2131).

References

  1. Bergmeier, S. (2000). Tetrahedron, 56, 2561–2576.
  2. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chinnakali, K., Poornachandran, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o1030–o1031.
  5. Coote, S. C., O’Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem.6, 4299–4314. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Krzemiński, M. P. & Wojtczak, A. (2005). Tetrahedron Lett.46, 8299–8302.
  8. Liu, Z., Fan, Y., Li, R., Zhou, B. & Wu, L. (2005). Tetrahedron Lett.46, 1023–1025.
  9. Naiker, T., Datye, A. & Friedrich, H. B. (2008). Appl. Catal. A, 350, 96–102.
  10. Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978–o1979.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002151/lx2131sup1.cif

e-66-0o463-sup1.cif (26.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002151/lx2131Isup2.hkl

e-66-0o463-Isup2.hkl (308KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES