Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 9;66(Pt 2):o290. doi: 10.1107/S1600536809055330

2-Chloro-N′-(4-nitro­benzyl­idene)benzo­hydrazide

Cong-Shan Zhou a, Tao Yang a,*
PMCID: PMC2979746  PMID: 21579725

Abstract

The title Schiff base compound, C14H10ClN3O3, exists in a trans configuration with respect to the C=N bond. The dihedral angle between the two benzene rings is 15.9 (2)°. In the crystal, the mol­ecules are linked into chains along [101] by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the biological properties of Schiff bases, see: Mohamed et al. (2009); Ritter et al. (2009); Bagihalli et al. (2008). For the crystal structures of Schiff base compounds, see: Fun et al. (2008); Shafiq et al. (2009); Goh et al. (2010). For other related structures, see: Zhou et al. (2009); Zhou & Yang (2009).graphic file with name e-66-0o290-scheme1.jpg

Experimental

Crystal data

  • C14H10ClN3O3

  • M r = 303.70

  • Monoclinic, Inline graphic

  • a = 7.2752 (3) Å

  • b = 26.4081 (9) Å

  • c = 7.7284 (3) Å

  • β = 113.000 (2)°

  • V = 1366.78 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.936, T max = 0.944

  • 7876 measured reflections

  • 2763 independent reflections

  • 1934 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.113

  • S = 1.03

  • 2763 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055330/ci5003sup1.cif

e-66-0o290-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055330/ci5003Isup2.hkl

e-66-0o290-Isup2.hkl (135.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.90 (1) 1.97 (1) 2.855 (2) 169 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Hunan Provincial Natural Science Foundation of China (grant No. 09 J J6022) and the Scientific Research Fund of Hunan Provincial Education Department, China (grant No. 08B031).

supplementary crystallographic information

Comment

Schiff bases are a kind of interesting compounds, which possess excellent biological properties, such as antibacterial, antimicrobial, and antitumor (Mohamed et al., 2009; Ritter et al., 2009; Bagihalli et al., 2008). Recently, a large number of Schiff bases derived from the reaction of aldehydes with benzohydrazides have been reported (Fun et al., 2008; Shafiq et al., 2009; Goh et al., 2010). In this paper, the crystal structure of the title new Schiff base compound is reported.

In the title compound (Fig. 1), bond lengths are comparable with those observed in related structures (Zhou et al., 2009; Zhou & Yang, 2009). The molecule exists in a trans configuration with respect to the acyclic C═N bond. The molecule is distorted from planarity, with a dihedral angle between the two benzene rings of 15.9 (2)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds link adjacent molecules into chains along the [101] (Table 1 and Fig. 2).

Experimental

4-Nitrobenzaldehyde (1.0 mmol, 151.0 mg) and 2-chlorobenzohydrazide (1.0 mmol, 170.0 mg) were dissolved in methanol (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was left in air for a few days, yielding colourless block-shaped crystals.

Refinement

Atom H2A was located in a difference map and refined with a N–H distance restraint of 0.90 (1) Å and Uiso(H) = 0.08 Å2. The remaining H atoms were positioned geometrically (C–H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H10ClN3O3 F(000) = 624
Mr = 303.70 Dx = 1.476 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1518 reflections
a = 7.2752 (3) Å θ = 2.4–24.5°
b = 26.4081 (9) Å µ = 0.29 mm1
c = 7.7284 (3) Å T = 298 K
β = 113.000 (2)° Block, colourless
V = 1366.78 (9) Å3 0.23 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 2763 independent reflections
Radiation source: fine-focus sealed tube 1934 reflections with I > 2σ(I)
graphite Rint = 0.036
ω scans θmax = 26.3°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.936, Tmax = 0.944 k = −29→32
7876 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.233P] where P = (Fo2 + 2Fc2)/3
2763 reflections (Δ/σ)max = 0.003
193 parameters Δρmax = 0.19 e Å3
1 restraint Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.25382 (9) 0.09582 (2) 0.73742 (9) 0.0617 (2)
N1 0.2283 (2) 0.28721 (7) 0.5887 (2) 0.0434 (4)
N2 0.2675 (2) 0.25629 (7) 0.7434 (2) 0.0437 (4)
N3 0.2493 (3) 0.47567 (8) 0.0679 (3) 0.0637 (6)
O1 0.2747 (4) 0.52006 (8) 0.1124 (3) 0.1069 (8)
O2 0.2156 (4) 0.46052 (8) −0.0899 (3) 0.0983 (7)
O3 0.0453 (2) 0.19654 (5) 0.57474 (19) 0.0498 (4)
C1 0.2747 (3) 0.36895 (8) 0.4821 (3) 0.0388 (5)
C2 0.3001 (3) 0.42028 (8) 0.5248 (3) 0.0505 (6)
H2 0.3247 0.4311 0.6464 0.061*
C3 0.2892 (3) 0.45526 (8) 0.3895 (3) 0.0525 (6)
H3 0.3032 0.4896 0.4176 0.063*
C4 0.2573 (3) 0.43846 (8) 0.2119 (3) 0.0447 (5)
C5 0.2344 (3) 0.38808 (8) 0.1647 (3) 0.0469 (5)
H5 0.2143 0.3776 0.0438 0.056*
C6 0.2420 (3) 0.35350 (8) 0.3006 (3) 0.0443 (5)
H6 0.2249 0.3193 0.2704 0.053*
C7 0.2910 (3) 0.33266 (8) 0.6288 (3) 0.0435 (5)
H7 0.3480 0.3427 0.7541 0.052*
C8 0.1706 (3) 0.21195 (8) 0.7239 (3) 0.0396 (5)
C9 0.2232 (3) 0.18436 (8) 0.9059 (3) 0.0392 (5)
C10 0.2608 (3) 0.13269 (8) 0.9245 (3) 0.0452 (5)
C11 0.3086 (3) 0.10918 (10) 1.0973 (4) 0.0612 (7)
H11 0.3399 0.0749 1.1108 0.073*
C12 0.3095 (4) 0.13687 (12) 1.2487 (4) 0.0680 (8)
H12 0.3372 0.1207 1.3631 0.082*
C13 0.2705 (4) 0.18759 (11) 1.2333 (3) 0.0623 (7)
H13 0.2722 0.2058 1.3369 0.075*
C14 0.2289 (3) 0.21163 (9) 1.0648 (3) 0.0496 (6)
H14 0.2042 0.2463 1.0553 0.060*
H2A 0.359 (3) 0.2671 (9) 0.853 (2) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0603 (4) 0.0542 (4) 0.0718 (4) 0.0013 (3) 0.0270 (3) −0.0108 (3)
N1 0.0437 (10) 0.0494 (11) 0.0319 (9) −0.0017 (8) 0.0091 (7) 0.0068 (8)
N2 0.0462 (10) 0.0469 (10) 0.0281 (9) −0.0076 (8) 0.0039 (7) 0.0049 (8)
N3 0.0825 (15) 0.0591 (14) 0.0531 (13) 0.0030 (11) 0.0302 (11) 0.0129 (11)
O1 0.197 (3) 0.0488 (12) 0.0902 (16) −0.0089 (14) 0.0720 (17) 0.0117 (11)
O2 0.160 (2) 0.0860 (15) 0.0546 (12) −0.0099 (14) 0.0489 (13) 0.0119 (11)
O3 0.0535 (9) 0.0502 (9) 0.0318 (8) −0.0070 (7) 0.0017 (7) 0.0008 (7)
C1 0.0362 (10) 0.0422 (12) 0.0357 (11) 0.0003 (9) 0.0117 (9) 0.0005 (9)
C2 0.0632 (14) 0.0485 (13) 0.0383 (12) −0.0032 (11) 0.0182 (10) −0.0059 (10)
C3 0.0667 (15) 0.0382 (12) 0.0521 (14) −0.0037 (10) 0.0228 (11) −0.0026 (10)
C4 0.0457 (12) 0.0454 (12) 0.0444 (12) 0.0019 (10) 0.0190 (10) 0.0082 (10)
C5 0.0524 (13) 0.0518 (13) 0.0360 (11) 0.0026 (11) 0.0167 (10) −0.0014 (10)
C6 0.0502 (12) 0.0402 (11) 0.0407 (12) 0.0004 (9) 0.0156 (10) −0.0030 (10)
C7 0.0436 (12) 0.0493 (13) 0.0337 (11) −0.0019 (10) 0.0108 (9) −0.0021 (9)
C8 0.0395 (11) 0.0454 (12) 0.0303 (10) 0.0019 (9) 0.0096 (9) 0.0013 (9)
C9 0.0333 (10) 0.0472 (13) 0.0329 (10) −0.0032 (9) 0.0084 (8) 0.0005 (9)
C10 0.0351 (11) 0.0488 (13) 0.0479 (13) −0.0033 (9) 0.0120 (9) 0.0057 (10)
C11 0.0505 (14) 0.0609 (16) 0.0635 (16) −0.0018 (11) 0.0129 (12) 0.0220 (13)
C12 0.0601 (15) 0.090 (2) 0.0450 (15) −0.0131 (14) 0.0106 (12) 0.0225 (15)
C13 0.0604 (15) 0.089 (2) 0.0369 (13) −0.0178 (14) 0.0182 (11) −0.0050 (13)
C14 0.0478 (12) 0.0586 (14) 0.0399 (12) −0.0076 (11) 0.0145 (10) 0.0018 (11)

Geometric parameters (Å, °)

Cl1—C10 1.727 (2) C4—C5 1.372 (3)
N1—C7 1.278 (3) C5—C6 1.377 (3)
N1—N2 1.382 (2) C5—H5 0.93
N2—C8 1.344 (3) C6—H6 0.93
N2—H2A 0.895 (10) C7—H7 0.93
N3—O2 1.214 (3) C8—C9 1.495 (3)
N3—O1 1.215 (3) C9—C10 1.388 (3)
N3—C4 1.468 (3) C9—C14 1.410 (3)
O3—C8 1.226 (2) C10—C11 1.388 (3)
C1—C6 1.389 (3) C11—C12 1.378 (4)
C1—C2 1.390 (3) C11—H11 0.93
C1—C7 1.454 (3) C12—C13 1.365 (4)
C2—C3 1.374 (3) C12—H12 0.93
C2—H2 0.93 C13—C14 1.372 (3)
C3—C4 1.373 (3) C13—H13 0.93
C3—H3 0.93 C14—H14 0.93
C7—N1—N2 114.29 (16) N1—C7—C1 121.13 (18)
C8—N2—N1 119.69 (15) N1—C7—H7 119.4
C8—N2—H2A 123.1 (17) C1—C7—H7 119.4
N1—N2—H2A 117.2 (17) O3—C8—N2 124.00 (18)
O2—N3—O1 123.4 (2) O3—C8—C9 123.06 (18)
O2—N3—C4 118.2 (2) N2—C8—C9 112.86 (16)
O1—N3—C4 118.3 (2) C10—C9—C14 118.30 (18)
C6—C1—C2 118.74 (19) C10—C9—C8 122.97 (18)
C6—C1—C7 121.58 (19) C14—C9—C8 118.69 (18)
C2—C1—C7 119.64 (19) C11—C10—C9 120.3 (2)
C3—C2—C1 120.8 (2) C11—C10—Cl1 117.86 (19)
C3—C2—H2 119.6 C9—C10—Cl1 121.83 (16)
C1—C2—H2 119.6 C12—C11—C10 119.7 (2)
C4—C3—C2 118.7 (2) C12—C11—H11 120.1
C4—C3—H3 120.6 C10—C11—H11 120.1
C2—C3—H3 120.6 C13—C12—C11 121.0 (2)
C5—C4—C3 122.3 (2) C13—C12—H12 119.5
C5—C4—N3 118.8 (2) C11—C12—H12 119.5
C3—C4—N3 118.8 (2) C12—C13—C14 119.9 (2)
C4—C5—C6 118.4 (2) C12—C13—H13 120.1
C4—C5—H5 120.8 C14—C13—H13 120.1
C6—C5—H5 120.8 C13—C14—C9 120.7 (2)
C5—C6—C1 121.0 (2) C13—C14—H14 119.6
C5—C6—H6 119.5 C9—C14—H14 119.6
C1—C6—H6 119.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3i 0.90 (1) 1.97 (1) 2.855 (2) 169 (2)

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5003).

References

  1. Bagihalli, G. B., Avaji, P. G., Patil, S. A. & Badami, P. S. (2008). Eur. J. Med. Chem.43, 2639–2649. [DOI] [PubMed]
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fun, H.-K., Chantrapromma, S., Jana, S., Hazra, A. & Goswami, S. (2008). Acta Cryst. E64, o175–o176. [DOI] [PMC free article] [PubMed]
  4. Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66, o24. [DOI] [PMC free article] [PubMed]
  5. Mohamed, G. G., Omar, M. M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem.44, 4801–4812. [DOI] [PubMed]
  6. Ritter, E., Przybylski, P., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem.13, 241–249.
  7. Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2501. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Zhou, C.-S., Hou, H.-Y. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct.224, 37–38.
  11. Zhou, C.-S. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct.224, 39–40.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055330/ci5003sup1.cif

e-66-0o290-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055330/ci5003Isup2.hkl

e-66-0o290-Isup2.hkl (135.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES