Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 16;66(Pt 2):o361–o362. doi: 10.1107/S1600536810001224

4-(Methyl­sulfon­yl)piperazin-1-ium chloride

Hoong-Kun Fun a,*,, Chin Sing Yeap a,§, C S Chidan Kumar b, H S Yathirajan b, B Narayana c
PMCID: PMC2979749  PMID: 21579786

Abstract

In the title mol­ecular salt, C5H13N2O2S+·Cl, the complete cation is generated by crystallographic mirror symmetry, with both N atoms, the S atom and one C atom lying on the reflecting plane. The chloride ion also lies on the mirror plane. The piperazinium ring adopts a chair conformation and the N—S bond adopts an equatorial orientation. In the crystal structure, the component ions are linked into a three-dimensional framework by inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds.

Related literature

For medicinal background to piperazine derivatives, see: Dinsmore & Beshore (2002); Berkheij et al. (2005); Humle & Cherrier (1999). For related structures, see: Bart et al. (1978); Girisha et al. (2008); Homrighausen & Krause Bauer (2002); Jin et al. (2007); Kubo et al. (2007); Parkin et al. (2004); Shen et al. (2006), Wang et al. (2006). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-0o361-scheme1.jpg

Experimental

Crystal data

  • C5H13N2O2S+·Cl

  • M r = 200.68

  • Monoclinic, Inline graphic

  • a = 6.0231 (1) Å

  • b = 9.1097 (2) Å

  • c = 7.9852 (2) Å

  • β = 100.700 (1)°

  • V = 430.52 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 100 K

  • 0.36 × 0.32 × 0.05 mm

Data collection

  • Bruker APEX Duo CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.801, T max = 0.968

  • 10626 measured reflections

  • 2790 independent reflections

  • 2419 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.072

  • S = 1.10

  • 2790 reflections

  • 87 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001224/hb5306sup1.cif

e-66-0o361-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001224/hb5306Isup2.hkl

e-66-0o361-Isup2.hkl (137KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯Cl1i 0.92 (2) 2.40 (2) 3.1341 (8) 137 (1)
N1—H2N1⋯Cl1ii 0.93 (2) 2.19 (2) 3.0966 (8) 164 (1)
C1—H1A⋯Cl1iii 0.953 (12) 2.700 (12) 3.5251 (6) 145.2 (9)
C3—H3A⋯Cl1 0.94 (2) 2.65 (2) 3.5487 (10) 160 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship. CSC thanks University of Mysore for research facilities.

supplementary crystallographic information

Comment

Piperazines are among the most important building blocks in today's drug discovery. The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure (Dinsmore & Beshore, 2002). They are found in biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005) such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Humle & Cherrier, 1999). The piperazines are a broad class of chemical compounds, many with important pharmacological properties, which contain a core piperazine functional group. 1-(Methylsulfonyl)piperazine is an important intermediate in synthetic organic chemistry, mainly used as a pharmaceutical intermediate.

The crystal structures of trans-2,5-dimethylpiperazine dihydrochloride (Bart et al., 1978), 1-(3-chlorophenyl)-4-(3-chloropropyl)piperazinium chloride (Homrighausen & Krause Bauer, 2002), piperazine (Parkin et al., 2004), 2,2'-(piperazine-1,4-diium-1,4-diyl)diacetate dehydrate (Shen et al., 2006), 1,4-bis(chloroacetyl)piperazine (Wang et al., 2006), 1,4-bis(1-naphthylmethyl) piperazine (Kubo et al., 2007), 1,4-bis(4-chlorobenzo-yl)piperazine (Jin et al., 2007) and 1-benzhydryl-4-(4-chlorophenylsulfonyl) piperazine (Girisha et al., 2008) have been reported. In view of the importance of the title compound, this paper reports its crystal structure.

The asymmetric unit of the title compound contains one-half of a cation and half of a cloride anion (Fig. 1). The Cl1, S1, N1, N2, and C3 atoms are lying on a mirror plane. The piperazinium ring adopts a chair conformation with puckering amplitude Q = 0.5680 (7) Å, θ = 179.90 (7)°, φ = 180 (7)° (Cremer & Pople, 1975). In the crystal structure (Fig. 2), the molecules are linked into a three-dimensional framework by intermolecular hydrogen bonds (Table 1).

Experimental

The title compound was obtained as a gift sample from R. L. Fine Chem., Bangalore, India. The compound was used without further purification. Colourless plates of (I) were obtained from slow evaporation of a methanol solution (m.p.: 489–492 K).

Refinement

All H atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 50% probability ellipsoids for the non-H atoms. Atoms with suffix A are generated by the symmetry operation (x, 1/2 - y, z).

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed down the a axis, showing the hydrogen-bonded (dashed lines) three-dimensional framework.

Crystal data

C5H13N2O2S+·Cl F(000) = 212
Mr = 200.68 Dx = 1.548 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yb Cell parameters from 4890 reflections
a = 6.0231 (1) Å θ = 3.4–40.1°
b = 9.1097 (2) Å µ = 0.64 mm1
c = 7.9852 (2) Å T = 100 K
β = 100.700 (1)° Plate, colourless
V = 430.52 (2) Å3 0.36 × 0.32 × 0.05 mm
Z = 2

Data collection

Bruker APEX Duo CCD diffractometer 2790 independent reflections
Radiation source: fine-focus sealed tube 2419 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 40.1°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.801, Tmax = 0.968 k = −14→16
10626 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.0922P] where P = (Fo2 + 2Fc2)/3
2790 reflections (Δ/σ)max = 0.001
87 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.30674 (3) 0.2500 0.93448 (3) 0.01195 (5)
S1 0.69091 (3) 0.2500 0.56598 (2) 0.00951 (5)
N1 0.82854 (12) 0.2500 0.03611 (9) 0.01007 (11)
N2 0.79320 (12) 0.2500 0.38830 (9) 0.00974 (11)
O1 0.75935 (9) 0.11396 (6) 0.65235 (6) 0.01498 (9)
C1 0.87784 (10) 0.11522 (7) 0.14202 (8) 0.01165 (9)
C2 0.74465 (10) 0.11465 (7) 0.28537 (8) 0.01168 (9)
C3 0.39411 (15) 0.2500 0.50705 (12) 0.01332 (13)
H1A 0.8351 (18) 0.0315 (13) 0.0719 (14) 0.012 (2)*
H1B 1.040 (2) 0.1186 (13) 0.1845 (16) 0.016 (3)*
H2A 0.583 (2) 0.1017 (14) 0.2371 (15) 0.018 (3)*
H2B 0.789 (2) 0.0335 (16) 0.3554 (17) 0.027 (3)*
H3A 0.331 (3) 0.2500 0.606 (2) 0.019 (4)*
H3B 0.350 (2) 0.3381 (15) 0.4460 (16) 0.025 (3)*
H1N1 0.914 (3) 0.2500 −0.048 (2) 0.019 (4)*
H2N1 0.677 (3) 0.2500 −0.017 (2) 0.021 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.00886 (7) 0.01261 (8) 0.01485 (9) 0.000 0.00346 (6) 0.000
S1 0.01110 (8) 0.01033 (8) 0.00696 (8) 0.000 0.00128 (6) 0.000
N1 0.0098 (2) 0.0115 (3) 0.0095 (3) 0.000 0.00316 (19) 0.000
N2 0.0126 (2) 0.0084 (2) 0.0087 (2) 0.000 0.0032 (2) 0.000
O1 0.01874 (19) 0.01499 (19) 0.01109 (18) 0.00356 (16) 0.00245 (15) 0.00480 (15)
C1 0.0148 (2) 0.00900 (19) 0.0122 (2) 0.00097 (17) 0.00547 (17) −0.00041 (17)
C2 0.0162 (2) 0.0083 (2) 0.0117 (2) −0.00109 (16) 0.00571 (17) −0.00060 (16)
C3 0.0115 (3) 0.0166 (3) 0.0121 (3) 0.000 0.0027 (2) 0.000

Geometric parameters (Å, °)

S1—O1i 1.4408 (5) N2—C2i 1.4806 (7)
S1—O1 1.4408 (5) C1—C2 1.5148 (8)
S1—N2 1.6484 (7) C1—H1A 0.953 (11)
S1—C3 1.7621 (9) C1—H1B 0.976 (12)
N1—C1 1.4892 (7) C2—H2A 0.983 (13)
N1—C1i 1.4892 (7) C2—H2B 0.935 (14)
N1—H1N1 0.920 (17) C3—H3A 0.941 (18)
N1—H2N1 0.933 (19) C3—H3B 0.951 (14)
N2—C2 1.4806 (7)
O1i—S1—O1 118.67 (4) N1—C1—C2 110.75 (5)
O1i—S1—N2 107.01 (2) N1—C1—H1A 108.8 (7)
O1—S1—N2 107.01 (2) C2—C1—H1A 108.5 (6)
O1i—S1—C3 108.28 (3) N1—C1—H1B 104.6 (7)
O1—S1—C3 108.29 (3) C2—C1—H1B 112.1 (7)
N2—S1—C3 107.03 (4) H1A—C1—H1B 112.0 (9)
C1—N1—C1i 111.07 (7) N2—C2—C1 109.81 (5)
C1—N1—H1N1 109.7 (5) N2—C2—H2A 113.4 (7)
C1i—N1—H1N1 109.7 (5) C1—C2—H2A 109.1 (7)
C1—N1—H2N1 109.5 (5) N2—C2—H2B 108.7 (8)
C1i—N1—H2N1 109.5 (5) C1—C2—H2B 108.7 (7)
H1N1—N1—H2N1 107.3 (15) H2A—C2—H2B 107.1 (10)
C2—N2—C2i 112.77 (7) S1—C3—H3A 108.9 (11)
C2—N2—S1 114.27 (4) S1—C3—H3B 108.1 (8)
C2i—N2—S1 114.27 (4) H3A—C3—H3B 108.3 (9)
O1i—S1—N2—C2 178.10 (5) C3—S1—N2—C2i 66.00 (5)
O1—S1—N2—C2 49.91 (6) C1i—N1—C1—C2 56.95 (8)
C3—S1—N2—C2 −65.99 (5) C2i—N2—C2—C1 56.73 (8)
O1i—S1—N2—C2i −49.91 (6) S1—N2—C2—C1 −170.56 (4)
O1—S1—N2—C2i −178.10 (5) N1—C1—C2—N2 −55.89 (7)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···Cl1ii 0.92 (2) 2.40 (2) 3.1341 (8) 137 (1)
N1—H2N1···Cl1iii 0.93 (2) 2.19 (2) 3.0966 (8) 164 (1)
C1—H1A···Cl1iv 0.953 (12) 2.700 (12) 3.5251 (6) 145.2 (9)
C3—H3A···Cl1 0.94 (2) 2.65 (2) 3.5487 (10) 160 (2)

Symmetry codes: (ii) x+1, y, z−1; (iii) x, y, z−1; (iv) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5306).

References

  1. Bart, J. C. J., Bassi, I. W. & Scordamaglia, R. (1978). Acta Cryst. B34, 2760–2764.
  2. Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. & van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369–2371.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Dinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297–3312.
  7. Girisha, H. R., Naveen, S., Vinaya, K., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2008). Acta Cryst. E64, o358. [DOI] [PMC free article] [PubMed]
  8. Homrighausen, C. L. & Krause Bauer, J. A. (2002). Acta Cryst. E58, o1395–o1396.
  9. Humle, C. & Cherrier, M. P. (1999). Tetrahedron Lett.40, 5295–5299.
  10. Jin, H.-M., Li, P.-F., Li, C.-Y. & Liu, B. (2007). Acta Cryst. E63, o3689.
  11. Kubo, K., Yamamoto, E., Hayakawa, A., Sakurai, T. & Mori, A. (2007). Acta Cryst. E63, o1347–o1348.
  12. Parkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219–227. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Shen, L., Wang, F.-W., Cheng, A.-B. & Yang, S. (2006). Acta Cryst. E62, o2242–o2244.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Wang, J., Zeng, T., Li, M.-L., Duan, E.-H. & Li, J.-S. (2006). Acta Cryst. E62, o2912–o2913.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001224/hb5306sup1.cif

e-66-0o361-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001224/hb5306Isup2.hkl

e-66-0o361-Isup2.hkl (137KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES