Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 16;66(Pt 2):o384–o385. doi: 10.1107/S160053681000142X

[3-(Iodo­acetamido)prop­yl]triphenyl­phospho­nium tetra­phenyl­borate

Cameron Evans a,*
PMCID: PMC2979758  PMID: 21579806

Abstract

The title compound, C23H24INOP+·C24H20B, was prepared by treatment of 3-amino­propyl triphenyl­phospho­nium bromide hydrogen bromide with p-nitro­phenyl iodo­acetate at 203 K. The asymmetric unit contains a single cation and anion, which are linked in the crystal by inter­molecular N—H⋯π and inversion-related R 2 2(14) C—H⋯O inter­actions, which combine to form chains of cations and anions along the c axis.

Related literature

For the development and applications of mitochondrially targeted bio-active compounds, see Murphy & Smith (2007); Porteous et al. (2010). For the use of iodo­acetamides in labelling cysteine residues, see Baty et al. (2002); Kim et al. (2000); Ying et al. (2007). For the synthesis of amino­alkyl triphenyl­phospho­nium salts, see McAllister et al. (1980). For the synthesis of iodo­acetamides, see Trujillo et al. (1991). For related structures see Czerwinski (1986); Dubourg et al. (1986); Kerrigan et al.(1996); Lo et al.(2002). For a review of hydrogen bonding networks, see Bernstein et al.(1995).graphic file with name e-66-0o384-scheme1.jpg

Experimental

Crystal data

  • C23H24INOP+·C24H20B

  • M r = 807.51

  • Monoclinic, Inline graphic

  • a = 14.552 (3) Å

  • b = 12.108 (2) Å

  • c = 21.966 (4) Å

  • β = 99.49 (3)°

  • V = 3817.3 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 89 K

  • 0.22 × 0.20 × 0.2 0mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.661, T max = 0.832

  • 38267 measured reflections

  • 9958 independent reflections

  • 7291 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.103

  • S = 1.11

  • 9958 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.99 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000142X/nc2174sup1.cif

e-66-0o384-sup1.cif (31.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000142X/nc2174Isup2.hkl

e-66-0o384-Isup2.hkl (477.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C61—C66 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cgi 0.86 2.56 3.382 (2) 160
C1—H1B⋯O1ii 0.97 2.48 3.270 (3) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The author thanks Professor Robin Smith for access to materials and research facilities, and the BBSRC for financial support (contract No. BB/D020786/1).

supplementary crystallographic information

Comment

One aspect of our research into mitochondrially targeted bio-active agents (Murphy and Smith, 2007) involves synthesis of a series of targeted iodoacetamides from aminoalkyl-triphenylphosphonium salts (Porteous et al., 2010). The use of iodoacetamides in labelling of cysteine residues in proteins and peptides is well established (Ying et al., 2007) allowing attachment of key markers such as fluorescein (Baty et al., 2002) or biotin (Kim et al., 2000). Given the widespread use of the iodoacetamide functionality it is surprising that there appears to be no structural data available for non-aryl iodoacetamides.

The title compound crystallizes with one cation and anion in the asymmetric unit (Fig. 1). The bond distances within the iodoacetamide functionality [C(5)—I(1) 2.172 (3) Å, N(1)—C(4) 1.344 (3)Å and C(4)—O(1) 1.233 (3) Å] are equivalent to those reported for 4-chloro-7-(iodoacetyl)amino-3-methoxy isocoumarin [2.139 (9) Å, 1.363 (13)Å and 1.209 (14) Å; Kerrigan et al., 1996] and N-(ferrocenyl)iodoacetamide [2.152 (5) Å, 1.348 (6)Å and 1.234 (5) Å; Lo et al., 2002] indicating that the presence of the triphenylphosphonium cation has a negligible effect. The C(1)—P(1) [1.810 (3) Å] and C(3)—N(1) [1.462 (3) Å] distances mirror those observed for both dimethylamino-3-propyl triphenylphosphonium chloride [1.802 (3)Å and 1.496 (9) Å; Dubourg et al., 1986] and 2-aminoethyltriphenylphosphonium bromide hydrogen bromide [1.796 (5)Å and 1.512 (6) Å; Czerwinski, 1986].

The crystal packing is dominated by intermolecular N—H···π and C—H···O interactions (Fig. 2). The H(1)···CT and N(1)···CT distances [2.56Å and 3.382 (3) Å, where CT is the centroid of an adjacent C61—C66 ring on the tetraphenylborate anion] are indicative of a H-bonding interaction. In addition, there are inversion related C(1)—H(1B)···O(1) interactions [H(1B)···O(1) 2.48 Å, C(1)···O(1) 3.270 (3) Å] forming R22 (14) ring motifs (Bernstein et al., 1995). The combination of these two types of interactions form chains of cations and anions as viewed along the c axis.

Experimental

The title compound was prepared from 3-aminopropyl triphenylphosphonium bromide hydrogen bromide (prepared using methods similar to McAllister et al., 1980) using a modified literature procedure (Trujillo et al., 1991). Triethylamine (0.43 mmol) was added to a dichloromethane solution (20 mL) of 3-aminopropyl triphenylphosphonium bromide hydrogen bromide (0.43 mmol), the solution cooled to -70°C and solid p-nitrophenyl iodoacetate (0.43 mmol) added in one portion. The solution was stirred at -70°C for 20 minutes and the solvent removed under vacuum. The solid residue was dissolved in acetone (5 mL), excess sodium tetraphenylborate (1 mmol) added and the solution stirred for 2 h at room temperature. Solvent was removed under vacuum, the compound redissolved in dichloromethane (2 mL) and precipitated by addition to diethylther (20 mL). Crystals were prepared by vapour diffusion of diethylether into an ethanolic solution of the compound at room temperature.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.86 Å, Uiso = 1.2Ueq (N) for the NH atom.

Figures

Fig. 1.

Fig. 1.

View of the two ions in the asymmetric unit showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level with H atoms represented by circles of arbitrary size.

Fig. 2.

Fig. 2.

View along the c axis indicating the N···π and C—H···O R22(14) hydrogen bonding network in the crystal. Hydrogen bonds and the N—H···π interactions are drawn as dotted lines. Black spheres represent the centroids of the C61—C66 rings.

Crystal data

C23H24INOP+·C24H20B F(000) = 1656
Mr = 807.51 Dx = 1.405 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6317 reflections
a = 14.552 (3) Å θ = 2.5–28.7°
b = 12.108 (2) Å µ = 0.92 mm1
c = 21.966 (4) Å T = 89 K
β = 99.49 (3)° Prism, colourless
V = 3817.3 (13) Å3 0.22 × 0.2 × 0.2 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 9958 independent reflections
Radiation source: fine-focus sealed tube 7291 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 29.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −13→19
Tmin = 0.661, Tmax = 0.832 k = −16→16
38267 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0467P)2] where P = (Fo2 + 2Fc2)/3
9958 reflections (Δ/σ)max = 0.002
469 parameters Δρmax = 0.74 e Å3
0 restraints Δρmin = −0.99 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.64225 (17) 0.08981 (19) 0.51219 (11) 0.0171 (5)
H1A 0.6231 0.158 0.5297 0.02*
H1B 0.5865 0.0549 0.4902 0.02*
C2 0.68361 (17) 0.01362 (19) 0.56566 (11) 0.0182 (5)
H2A 0.6959 −0.0584 0.5494 0.022*
H2B 0.7424 0.0439 0.5861 0.022*
C3 0.61750 (18) 0.00073 (19) 0.61254 (11) 0.0204 (5)
H3A 0.5628 −0.0399 0.5936 0.025*
H3B 0.6482 −0.0423 0.6473 0.025*
C4 0.51294 (18) 0.1611 (2) 0.60641 (11) 0.0204 (5)
C5 0.49861 (18) 0.2755 (2) 0.63068 (12) 0.0240 (6)
H5A 0.521 0.2783 0.6748 0.029*
H5B 0.4328 0.2937 0.6235 0.029*
C11 0.73474 (16) 0.00477 (19) 0.41211 (11) 0.0160 (5)
C12 0.78439 (18) −0.08572 (19) 0.44061 (12) 0.0203 (5)
H12 0.8178 −0.0792 0.4804 0.024*
C13 0.78336 (18) −0.1849 (2) 0.40913 (13) 0.0262 (6)
H13 0.815 −0.2457 0.4281 0.031*
C14 0.73523 (18) −0.1936 (2) 0.34938 (13) 0.0269 (6)
H14 0.7342 −0.2608 0.3287 0.032*
C15 0.6888 (2) −0.1039 (2) 0.32005 (13) 0.0258 (6)
H15 0.6585 −0.1098 0.2795 0.031*
C16 0.68773 (18) −0.0041 (2) 0.35196 (11) 0.0204 (5)
H16 0.6555 0.0563 0.3329 0.024*
C21 0.65711 (17) 0.22816 (18) 0.40569 (10) 0.0166 (5)
C22 0.56359 (17) 0.25297 (19) 0.40603 (11) 0.0178 (5)
H22 0.5315 0.2179 0.4338 0.021*
C23 0.51862 (18) 0.3302 (2) 0.36477 (12) 0.0221 (6)
H23 0.4562 0.3466 0.3648 0.026*
C24 0.5667 (2) 0.3832 (2) 0.32344 (12) 0.0239 (6)
H24 0.5361 0.4344 0.2957 0.029*
C25 0.6600 (2) 0.3600 (2) 0.32343 (12) 0.0259 (6)
H25 0.6921 0.3962 0.296 0.031*
C26 0.70566 (18) 0.2824 (2) 0.36446 (11) 0.0221 (6)
H26 0.7682 0.2667 0.3645 0.027*
C31 0.82434 (17) 0.18234 (19) 0.49480 (10) 0.0153 (5)
C32 0.90545 (17) 0.1740 (2) 0.46827 (11) 0.0187 (5)
H32 0.906 0.1311 0.4332 0.022*
C33 0.98484 (18) 0.2306 (2) 0.49516 (11) 0.0224 (6)
H33 1.0388 0.227 0.4777 0.027*
C34 0.98368 (18) 0.2925 (2) 0.54801 (12) 0.0221 (6)
H34 1.0372 0.33 0.5658 0.027*
C35 0.90392 (17) 0.29959 (19) 0.57498 (11) 0.0189 (5)
H35 0.9045 0.3408 0.6108 0.023*
C36 0.82383 (18) 0.24521 (18) 0.54849 (10) 0.0167 (5)
H36 0.77 0.2502 0.566 0.02*
N1 0.58821 (15) 0.10650 (16) 0.63510 (9) 0.0203 (5)
H1 0.6202 0.1347 0.6678 0.024*
O1 0.46005 (13) 0.12292 (14) 0.56173 (8) 0.0247 (4)
P1 0.71663 (4) 0.12487 (5) 0.45667 (3) 0.01393 (14)
I1 0.574759 (12) 0.392989 (13) 0.583303 (8) 0.02472 (7)
C41 0.96560 (17) 0.56909 (19) 0.67978 (10) 0.0158 (5)
C42 0.95432 (17) 0.48566 (19) 0.72216 (10) 0.0158 (5)
H42 0.9033 0.4891 0.7426 0.019*
C43 1.01627 (18) 0.39780 (19) 0.73499 (11) 0.0189 (5)
H43 1.0056 0.3439 0.7632 0.023*
C44 1.09355 (19) 0.3903 (2) 0.70599 (12) 0.0217 (6)
H44 1.1347 0.3314 0.7143 0.026*
C45 1.10912 (18) 0.4726 (2) 0.66406 (11) 0.0215 (6)
H45 1.1613 0.4696 0.6447 0.026*
C46 1.04555 (17) 0.5590 (2) 0.65170 (11) 0.0177 (5)
H46 1.0564 0.6128 0.6235 0.021*
C51 0.82725 (17) 0.64150 (19) 0.59114 (11) 0.0161 (5)
C52 0.85473 (18) 0.5664 (2) 0.54902 (11) 0.0189 (5)
H52 0.9147 0.5374 0.5572 0.023*
C53 0.7963 (2) 0.5332 (2) 0.49554 (12) 0.0258 (6)
H53 0.817 0.4818 0.4694 0.031*
C54 0.7073 (2) 0.5763 (2) 0.48112 (12) 0.0265 (6)
H54 0.6676 0.5533 0.4458 0.032*
C55 0.67821 (19) 0.6545 (2) 0.52008 (12) 0.0269 (6)
H55 0.6193 0.6858 0.5103 0.032*
C56 0.73713 (18) 0.6860 (2) 0.57372 (11) 0.0220 (6)
H56 0.7163 0.7386 0.5991 0.026*
C61 0.81277 (16) 0.67687 (19) 0.70793 (10) 0.0153 (5)
C62 0.74884 (17) 0.58898 (19) 0.71142 (11) 0.0176 (5)
H62 0.7519 0.5276 0.6864 0.021*
C63 0.68308 (18) 0.58957 (19) 0.74946 (11) 0.0190 (5)
H63 0.6448 0.5284 0.7507 0.023*
C64 0.67309 (18) 0.6812 (2) 0.78639 (11) 0.0199 (5)
H64 0.6281 0.6823 0.8119 0.024*
C65 0.73185 (17) 0.7703 (2) 0.78403 (11) 0.0195 (5)
H65 0.7258 0.8328 0.8077 0.023*
C66 0.80049 (17) 0.76719 (19) 0.74611 (11) 0.0177 (5)
H66 0.8398 0.8278 0.7462 0.021*
C71 0.94558 (16) 0.78910 (19) 0.66057 (10) 0.0152 (5)
C72 1.03056 (18) 0.8086 (2) 0.69976 (11) 0.0200 (5)
H72 1.0565 0.7519 0.7256 0.024*
C73 1.07757 (19) 0.9091 (2) 0.70155 (12) 0.0233 (6)
H73 1.1342 0.9178 0.7277 0.028*
C74 1.04013 (19) 0.9965 (2) 0.66442 (11) 0.0220 (6)
H74 1.071 1.0639 0.6656 0.026*
C75 0.95639 (18) 0.9812 (2) 0.62579 (11) 0.0214 (5)
H75 0.9306 1.0386 0.6005 0.026*
C76 0.91000 (18) 0.87998 (18) 0.62445 (11) 0.0179 (5)
H76 0.853 0.8724 0.5985 0.021*
B1 0.8892 (2) 0.6704 (2) 0.66017 (12) 0.0159 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0157 (12) 0.0186 (13) 0.0157 (12) −0.0002 (9) −0.0007 (10) −0.0002 (9)
C2 0.0203 (13) 0.0175 (12) 0.0160 (12) −0.0005 (10) 0.0004 (10) 0.0020 (10)
C3 0.0259 (14) 0.0173 (13) 0.0174 (12) −0.0036 (10) 0.0016 (11) 0.0040 (10)
C4 0.0197 (13) 0.0252 (14) 0.0178 (12) −0.0049 (10) 0.0078 (11) −0.0010 (11)
C5 0.0222 (14) 0.0271 (14) 0.0238 (14) 0.0007 (11) 0.0069 (11) −0.0051 (11)
C11 0.0156 (12) 0.0179 (12) 0.0149 (11) −0.0014 (9) 0.0038 (10) −0.0006 (9)
C12 0.0192 (13) 0.0203 (13) 0.0202 (13) 0.0029 (10) −0.0006 (11) 0.0004 (10)
C13 0.0201 (14) 0.0210 (14) 0.0378 (16) 0.0034 (10) 0.0055 (12) 0.0010 (12)
C14 0.0235 (14) 0.0225 (14) 0.0372 (16) −0.0044 (11) 0.0125 (13) −0.0142 (12)
C15 0.0246 (15) 0.0299 (15) 0.0218 (14) −0.0054 (11) 0.0006 (12) −0.0099 (11)
C16 0.0211 (13) 0.0207 (13) 0.0182 (12) −0.0026 (10) −0.0004 (11) −0.0011 (10)
C21 0.0187 (13) 0.0134 (12) 0.0158 (12) −0.0001 (9) −0.0027 (10) −0.0008 (9)
C22 0.0204 (13) 0.0149 (12) 0.0170 (12) −0.0002 (9) −0.0001 (10) −0.0002 (10)
C23 0.0183 (13) 0.0213 (14) 0.0241 (13) 0.0047 (10) −0.0035 (11) −0.0001 (11)
C24 0.0295 (15) 0.0178 (13) 0.0223 (14) 0.0035 (10) −0.0014 (12) 0.0050 (10)
C25 0.0284 (15) 0.0243 (14) 0.0246 (14) −0.0009 (11) 0.0031 (12) 0.0097 (11)
C26 0.0187 (13) 0.0259 (14) 0.0215 (13) 0.0001 (11) 0.0026 (11) 0.0054 (11)
C31 0.0172 (12) 0.0144 (12) 0.0129 (11) 0.0015 (9) −0.0019 (10) 0.0008 (9)
C32 0.0196 (13) 0.0219 (13) 0.0139 (12) 0.0003 (10) 0.0007 (10) −0.0034 (10)
C33 0.0170 (13) 0.0292 (15) 0.0208 (13) −0.0016 (11) 0.0022 (11) −0.0036 (11)
C34 0.0192 (13) 0.0223 (13) 0.0229 (13) −0.0034 (10) −0.0026 (11) −0.0032 (11)
C35 0.0256 (14) 0.0168 (13) 0.0134 (12) −0.0015 (10) 0.0005 (11) −0.0028 (9)
C36 0.0211 (13) 0.0142 (12) 0.0146 (11) 0.0015 (9) 0.0021 (10) 0.0001 (9)
N1 0.0238 (12) 0.0224 (11) 0.0138 (10) −0.0016 (9) 0.0007 (9) −0.0022 (8)
O1 0.0191 (10) 0.0288 (10) 0.0253 (10) −0.0038 (7) 0.0005 (8) −0.0048 (8)
P1 0.0146 (3) 0.0143 (3) 0.0118 (3) 0.0008 (2) −0.0009 (2) 0.0000 (2)
I1 0.02367 (10) 0.01857 (10) 0.03027 (11) 0.00050 (7) −0.00038 (8) −0.00280 (7)
C41 0.0184 (12) 0.0158 (12) 0.0110 (11) −0.0013 (9) −0.0041 (10) −0.0040 (9)
C42 0.0163 (12) 0.0184 (12) 0.0120 (11) 0.0009 (9) 0.0001 (10) −0.0028 (9)
C43 0.0236 (14) 0.0172 (13) 0.0150 (12) 0.0009 (10) 0.0007 (11) 0.0006 (10)
C44 0.0246 (14) 0.0191 (13) 0.0188 (13) 0.0078 (10) −0.0042 (11) −0.0028 (10)
C45 0.0177 (13) 0.0284 (14) 0.0176 (12) 0.0043 (11) 0.0007 (11) −0.0063 (11)
C46 0.0197 (13) 0.0193 (12) 0.0133 (12) 0.0004 (10) 0.0000 (10) 0.0003 (10)
C51 0.0213 (13) 0.0109 (11) 0.0158 (12) −0.0017 (9) 0.0019 (10) 0.0024 (9)
C52 0.0200 (13) 0.0173 (12) 0.0187 (13) 0.0000 (10) 0.0014 (11) 0.0025 (10)
C53 0.0397 (17) 0.0193 (14) 0.0163 (13) −0.0018 (11) −0.0014 (12) −0.0023 (10)
C54 0.0310 (16) 0.0281 (15) 0.0166 (13) −0.0054 (12) −0.0074 (12) 0.0011 (11)
C55 0.0217 (14) 0.0336 (16) 0.0223 (14) 0.0021 (12) −0.0057 (12) 0.0061 (12)
C56 0.0248 (14) 0.0206 (13) 0.0192 (13) 0.0013 (10) −0.0004 (11) 0.0005 (10)
C61 0.0144 (12) 0.0152 (12) 0.0146 (11) 0.0036 (9) −0.0028 (10) 0.0021 (9)
C62 0.0177 (12) 0.0133 (12) 0.0199 (13) 0.0025 (9) −0.0027 (10) −0.0013 (9)
C63 0.0192 (13) 0.0152 (13) 0.0220 (13) 0.0022 (9) 0.0014 (11) 0.0013 (10)
C64 0.0183 (13) 0.0242 (14) 0.0172 (12) 0.0032 (10) 0.0031 (10) 0.0036 (10)
C65 0.0260 (14) 0.0156 (13) 0.0168 (12) 0.0031 (10) 0.0029 (11) −0.0036 (10)
C66 0.0186 (13) 0.0150 (12) 0.0182 (12) −0.0014 (9) −0.0008 (10) 0.0012 (10)
C71 0.0178 (12) 0.0159 (12) 0.0119 (11) 0.0013 (9) 0.0028 (10) −0.0020 (9)
C72 0.0237 (14) 0.0184 (13) 0.0161 (12) −0.0002 (10) −0.0019 (11) −0.0006 (10)
C73 0.0238 (14) 0.0235 (14) 0.0213 (14) −0.0034 (10) 0.0003 (12) −0.0073 (11)
C74 0.0285 (15) 0.0153 (13) 0.0243 (14) −0.0033 (10) 0.0103 (12) −0.0033 (10)
C75 0.0278 (15) 0.0164 (13) 0.0204 (13) 0.0044 (10) 0.0051 (11) 0.0044 (10)
C76 0.0176 (13) 0.0172 (13) 0.0185 (12) 0.0040 (9) 0.0018 (10) −0.0002 (10)
B1 0.0187 (14) 0.0131 (13) 0.0141 (13) 0.0007 (10) −0.0027 (11) 0.0010 (10)

Geometric parameters (Å, °)

C1—C2 1.536 (3) C36—H36 0.93
C1—P1 1.810 (3) N1—H1 0.86
C1—H1A 0.97 C41—C42 1.402 (3)
C1—H1B 0.97 C41—C46 1.409 (3)
C2—C3 1.529 (3) C41—B1 1.664 (4)
C2—H2A 0.97 C42—C43 1.393 (3)
C2—H2B 0.97 C42—H42 0.93
C3—N1 1.462 (3) C43—C44 1.384 (4)
C3—H3A 0.97 C43—H43 0.93
C3—H3B 0.97 C44—C45 1.400 (4)
C4—O1 1.233 (3) C44—H44 0.93
C4—N1 1.344 (3) C45—C46 1.394 (3)
C4—C5 1.511 (3) C45—H45 0.93
C5—I1 2.172 (3) C46—H46 0.93
C5—H5A 0.97 C51—C52 1.402 (4)
C5—H5B 0.97 C51—C56 1.411 (3)
C11—C16 1.388 (3) C51—B1 1.668 (3)
C11—C12 1.402 (3) C52—C53 1.391 (3)
C11—P1 1.796 (2) C52—H52 0.93
C12—C13 1.384 (3) C53—C54 1.383 (4)
C12—H12 0.93 C53—H53 0.93
C13—C14 1.386 (4) C54—C55 1.389 (4)
C13—H13 0.93 C54—H54 0.93
C14—C15 1.382 (4) C55—C56 1.391 (3)
C14—H14 0.93 C55—H55 0.93
C15—C16 1.398 (3) C56—H56 0.93
C15—H15 0.93 C61—C66 1.407 (3)
C16—H16 0.93 C61—C62 1.424 (3)
C21—C22 1.395 (3) C61—B1 1.652 (4)
C21—C26 1.401 (3) C62—C63 1.370 (4)
C21—P1 1.802 (2) C62—H62 0.93
C22—C23 1.389 (3) C63—C64 1.396 (3)
C22—H22 0.93 C63—H63 0.93
C23—C24 1.391 (4) C64—C65 1.383 (3)
C23—H23 0.93 C64—H64 0.93
C24—C25 1.387 (4) C65—C66 1.403 (3)
C24—H24 0.93 C65—H65 0.93
C25—C26 1.392 (3) C66—H66 0.93
C25—H25 0.93 C71—C76 1.405 (3)
C26—H26 0.93 C71—C72 1.405 (3)
C31—C32 1.404 (3) C71—B1 1.654 (4)
C31—C36 1.405 (3) C72—C73 1.394 (3)
C31—P1 1.791 (2) C72—H72 0.93
C32—C33 1.389 (3) C73—C74 1.391 (4)
C32—H32 0.93 C73—H73 0.93
C33—C34 1.384 (3) C74—C75 1.378 (4)
C33—H33 0.93 C74—H74 0.93
C34—C35 1.390 (4) C75—C76 1.397 (3)
C34—H34 0.93 C75—H75 0.93
C35—C36 1.381 (3) C76—H76 0.93
C35—H35 0.93
C2—C1—P1 116.98 (17) C31—P1—C11 111.93 (11)
C2—C1—H1A 108.1 C31—P1—C21 108.34 (11)
P1—C1—H1A 108.1 C11—P1—C21 108.77 (11)
C2—C1—H1B 108.1 C31—P1—C1 110.52 (11)
P1—C1—H1B 108.1 C11—P1—C1 109.58 (11)
H1A—C1—H1B 107.3 C21—P1—C1 107.58 (11)
C3—C2—C1 111.4 (2) C42—C41—C46 115.1 (2)
C3—C2—H2A 109.3 C42—C41—B1 123.8 (2)
C1—C2—H2A 109.3 C46—C41—B1 121.0 (2)
C3—C2—H2B 109.3 C43—C42—C41 122.8 (2)
C1—C2—H2B 109.3 C43—C42—H42 118.6
H2A—C2—H2B 108 C41—C42—H42 118.6
N1—C3—C2 112.95 (19) C44—C43—C42 120.3 (2)
N1—C3—H3A 109 C44—C43—H43 119.8
C2—C3—H3A 109 C42—C43—H43 119.8
N1—C3—H3B 109 C43—C44—C45 119.2 (2)
C2—C3—H3B 109 C43—C44—H44 120.4
H3A—C3—H3B 107.8 C45—C44—H44 120.4
O1—C4—N1 122.9 (2) C46—C45—C44 119.2 (2)
O1—C4—C5 121.3 (2) C46—C45—H45 120.4
N1—C4—C5 115.8 (2) C44—C45—H45 120.4
C4—C5—I1 108.70 (16) C45—C46—C41 123.3 (2)
C4—C5—H5A 110 C45—C46—H46 118.3
I1—C5—H5A 110 C41—C46—H46 118.3
C4—C5—H5B 110 C52—C51—C56 115.0 (2)
I1—C5—H5B 110 C52—C51—B1 124.5 (2)
H5A—C5—H5B 108.3 C56—C51—B1 120.3 (2)
C16—C11—C12 120.1 (2) C53—C52—C51 122.9 (2)
C16—C11—P1 119.20 (19) C53—C52—H52 118.5
C12—C11—P1 120.03 (18) C51—C52—H52 118.5
C13—C12—C11 119.5 (2) C54—C53—C52 120.2 (2)
C13—C12—H12 120.2 C54—C53—H53 119.9
C11—C12—H12 120.2 C52—C53—H53 119.9
C12—C13—C14 120.1 (2) C53—C54—C55 119.1 (2)
C12—C13—H13 120 C53—C54—H54 120.5
C14—C13—H13 120 C55—C54—H54 120.5
C15—C14—C13 120.9 (2) C54—C55—C56 120.1 (3)
C15—C14—H14 119.5 C54—C55—H55 120
C13—C14—H14 119.5 C56—C55—H55 120
C14—C15—C16 119.4 (2) C55—C56—C51 122.7 (2)
C14—C15—H15 120.3 C55—C56—H56 118.7
C16—C15—H15 120.3 C51—C56—H56 118.7
C11—C16—C15 120.0 (2) C66—C61—C62 113.6 (2)
C11—C16—H16 120 C66—C61—B1 125.5 (2)
C15—C16—H16 120 C62—C61—B1 120.9 (2)
C22—C21—C26 119.9 (2) C63—C62—C61 123.9 (2)
C22—C21—P1 121.02 (18) C63—C62—H62 118.1
C26—C21—P1 119.03 (19) C61—C62—H62 118.1
C23—C22—C21 119.8 (2) C62—C63—C64 120.6 (2)
C23—C22—H22 120.1 C62—C63—H63 119.7
C21—C22—H22 120.1 C64—C63—H63 119.7
C22—C23—C24 120.2 (2) C65—C64—C63 118.3 (2)
C22—C23—H23 119.9 C65—C64—H64 120.9
C24—C23—H23 119.9 C63—C64—H64 120.9
C25—C24—C23 120.3 (2) C64—C65—C66 120.4 (2)
C25—C24—H24 119.8 C64—C65—H65 119.8
C23—C24—H24 119.8 C66—C65—H65 119.8
C24—C25—C26 119.9 (3) C65—C66—C61 123.2 (2)
C24—C25—H25 120 C65—C66—H66 118.4
C26—C25—H25 120 C61—C66—H66 118.4
C25—C26—C21 119.8 (2) C76—C71—C72 114.8 (2)
C25—C26—H26 120.1 C76—C71—B1 122.8 (2)
C21—C26—H26 120.1 C72—C71—B1 122.3 (2)
C32—C31—C36 120.6 (2) C73—C72—C71 122.8 (2)
C32—C31—P1 120.57 (18) C73—C72—H72 118.6
C36—C31—P1 118.53 (19) C71—C72—H72 118.6
C33—C32—C31 119.0 (2) C74—C73—C72 120.3 (2)
C33—C32—H32 120.5 C74—C73—H73 119.8
C31—C32—H32 120.5 C72—C73—H73 119.8
C34—C33—C32 120.0 (3) C75—C74—C73 118.7 (2)
C34—C33—H33 120 C75—C74—H74 120.7
C32—C33—H33 120 C73—C74—H74 120.7
C33—C34—C35 121.1 (2) C74—C75—C76 120.4 (2)
C33—C34—H34 119.4 C74—C75—H75 119.8
C35—C34—H34 119.4 C76—C75—H75 119.8
C36—C35—C34 119.8 (2) C75—C76—C71 122.9 (2)
C36—C35—H35 120.1 C75—C76—H76 118.5
C34—C35—H35 120.1 C71—C76—H76 118.5
C35—C36—C31 119.4 (2) C61—B1—C71 109.94 (19)
C35—C36—H36 120.3 C61—B1—C41 111.19 (19)
C31—C36—H36 120.3 C71—B1—C41 109.2 (2)
C4—N1—C3 122.2 (2) C61—B1—C51 105.54 (19)
C4—N1—H1 118.9 C71—B1—C51 112.36 (19)
C3—N1—H1 118.9 C41—B1—C51 108.55 (19)
P1—C1—C2—C3 173.97 (16) C41—C42—C43—C44 0.6 (4)
C1—C2—C3—N1 −53.6 (3) C42—C43—C44—C45 0.6 (4)
O1—C4—C5—I1 −89.9 (3) C43—C44—C45—C46 −1.1 (4)
N1—C4—C5—I1 87.8 (2) C44—C45—C46—C41 0.5 (4)
C16—C11—C12—C13 −2.3 (4) C42—C41—C46—C45 0.6 (3)
P1—C11—C12—C13 168.1 (2) B1—C41—C46—C45 −176.5 (2)
C11—C12—C13—C14 1.4 (4) C56—C51—C52—C53 −3.3 (4)
C12—C13—C14—C15 0.8 (4) B1—C51—C52—C53 171.2 (2)
C13—C14—C15—C16 −2.2 (4) C51—C52—C53—C54 1.5 (4)
C12—C11—C16—C15 0.9 (4) C52—C53—C54—C55 1.2 (4)
P1—C11—C16—C15 −169.6 (2) C53—C54—C55—C56 −1.9 (4)
C14—C15—C16—C11 1.4 (4) C54—C55—C56—C51 −0.1 (4)
C26—C21—C22—C23 1.0 (3) C52—C51—C56—C55 2.6 (4)
P1—C21—C22—C23 −177.79 (18) B1—C51—C56—C55 −172.1 (2)
C21—C22—C23—C24 −0.4 (4) C66—C61—C62—C63 −1.9 (3)
C22—C23—C24—C25 −0.5 (4) B1—C61—C62—C63 −179.2 (2)
C23—C24—C25—C26 0.7 (4) C61—C62—C63—C64 2.3 (4)
C24—C25—C26—C21 0.0 (4) C62—C63—C64—C65 −0.7 (4)
C22—C21—C26—C25 −0.8 (4) C63—C64—C65—C66 −1.0 (4)
P1—C21—C26—C25 178.01 (19) C64—C65—C66—C61 1.4 (4)
C36—C31—C32—C33 −1.3 (3) C62—C61—C66—C65 0.0 (3)
P1—C31—C32—C33 172.33 (19) B1—C61—C66—C65 177.3 (2)
C31—C32—C33—C34 1.2 (4) C76—C71—C72—C73 −1.8 (4)
C32—C33—C34—C35 −0.2 (4) B1—C71—C72—C73 −178.4 (2)
C33—C34—C35—C36 −0.8 (4) C71—C72—C73—C74 1.2 (4)
C34—C35—C36—C31 0.7 (3) C72—C73—C74—C75 −0.4 (4)
C32—C31—C36—C35 0.4 (3) C73—C74—C75—C76 0.4 (4)
P1—C31—C36—C35 −173.39 (17) C74—C75—C76—C71 −1.2 (4)
O1—C4—N1—C3 4.9 (4) C72—C71—C76—C75 1.8 (4)
C5—C4—N1—C3 −172.7 (2) B1—C71—C76—C75 178.4 (2)
C2—C3—N1—C4 88.6 (3) C66—C61—B1—C71 −3.3 (3)
C32—C31—P1—C11 31.1 (2) C62—C61—B1—C71 173.7 (2)
C36—C31—P1—C11 −155.11 (18) C66—C61—B1—C41 117.8 (2)
C32—C31—P1—C21 −88.8 (2) C62—C61—B1—C41 −65.2 (3)
C36—C31—P1—C21 85.0 (2) C66—C61—B1—C51 −124.7 (2)
C32—C31—P1—C1 153.57 (19) C62—C61—B1—C51 52.3 (3)
C36—C31—P1—C1 −32.7 (2) C76—C71—B1—C61 −83.7 (3)
C16—C11—P1—C31 −132.7 (2) C72—C71—B1—C61 92.7 (3)
C12—C11—P1—C31 56.9 (2) C76—C71—B1—C41 154.0 (2)
C16—C11—P1—C21 −13.0 (2) C72—C71—B1—C41 −29.6 (3)
C12—C11—P1—C21 176.6 (2) C76—C71—B1—C51 33.5 (3)
C16—C11—P1—C1 104.4 (2) C72—C71—B1—C51 −150.1 (2)
C12—C11—P1—C1 −66.1 (2) C42—C41—B1—C61 13.2 (3)
C22—C21—P1—C31 −130.73 (19) C46—C41—B1—C61 −169.9 (2)
C26—C21—P1—C31 50.4 (2) C42—C41—B1—C71 134.7 (2)
C22—C21—P1—C11 107.4 (2) C46—C41—B1—C71 −48.4 (3)
C26—C21—P1—C11 −71.4 (2) C42—C41—B1—C51 −102.5 (2)
C22—C21—P1—C1 −11.2 (2) C46—C41—B1—C51 74.4 (3)
C26—C21—P1—C1 169.94 (19) C52—C51—B1—C61 −138.3 (2)
C2—C1—P1—C31 −54.4 (2) C56—C51—B1—C61 35.9 (3)
C2—C1—P1—C11 69.4 (2) C52—C51—B1—C71 101.9 (3)
C2—C1—P1—C21 −172.53 (17) C56—C51—B1—C71 −83.9 (3)
C46—C41—C42—C43 −1.2 (3) C52—C51—B1—C41 −19.1 (3)
B1—C41—C42—C43 175.9 (2) C56—C51—B1—C41 155.2 (2)

Hydrogen-bond geometry (Å, °)

CT01 is the centroid of the C61—C66 ring.
D—H···A D—H H···A D···A D—H···A
N1—H1···CT01i 0.86 2.56 3.382 (2) 160
C1—H1B···O1ii 0.97 2.48 3.270 (3) 139

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2174).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Baty, J. W., Hampton, M. B. & Winterbourn, C. C. (2002). Proteomics, 2, 1261–1266. [DOI] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  5. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Czerwinski, E. W. (1986). Acta Cryst. C42, 236–239.
  7. Dubourg, A., De Castro Dantas, T. N., Klaébé, A. & Declercq, J.-P. (1986). Acta Cryst. C42, 112–114.
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  10. Kerrigan, J. E., Powers, J. C. & VanDerveer, D. (1996). Acta Cryst. C52, 451–453. [DOI] [PubMed]
  11. Kim, J. R., Yoon, H. W., Kwon, K. S., Lee, S. R. & Rhee, S. G. (2000). Anal. Biochem.283, 214–221. [DOI] [PubMed]
  12. Lo, K. K.-W., Lau, J. S.-Y., Ng, D. C.-M. & Zhu, N. (2002). J. Chem. Soc. Dalton Trans. pp. 1753–1756.
  13. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  14. McAllister, P. R., Dotson, M. J., Grim, S. O. & Hillman, G. R. (1980). J. Med. Chem.23, 862–865. [DOI] [PubMed]
  15. Murphy, M. P. & Smith, R. A. (2007). Annu. Rev. Pharmacol. Toxicol.47, 629–656. [DOI] [PubMed]
  16. Porteous, C. M., Evans, C., Ledgerwood, E., Menon, D. K., Aigbirhio, F., Smith, R. A. J. & Murphy, M. P. (2010). Biochem. Pharmacol. Submitted.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Trujillo, J. G., Ceballos, G., Yañez, R. & Joseph-Nathan, P. (1991). Synth. Commun.21, 683–691.
  19. Westrip, S. P. (2010). publCIF In preparation.
  20. Ying, J., Clavreul, N., Sethuraman, M., Adachi, T. & Cohen, R. A. (2007). Free Radic. Biol. Med.43, 1099–108. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000142X/nc2174sup1.cif

e-66-0o384-sup1.cif (31.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000142X/nc2174Isup2.hkl

e-66-0o384-Isup2.hkl (477.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES