Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 20;66(Pt 2):o410. doi: 10.1107/S1600536810001558

(E)-5-(3,5-Dimethyl­phen­yl)-N-[4-(methyl­sulfan­yl)benzyl­idene]-1,3,4-thia­diazol-2-amine

Jun Hu a, Jin-xiu Ji b, Ying Zhou c, Ji-kui Wang d, Yan-hua Xu a,*
PMCID: PMC2979762  PMID: 21579829

Abstract

The title compound, C18H17N3S2, was synthesized by the reaction of 5-(3,5-dimethyl­phen­yl)-1,3,4-thia­diazol-2-amine and 4-(methyl­sulfan­yl)benzaldehyde. An intra­molecular C—H⋯S hydrogen bond results in the formation of a planar (r.m.s. deviation = 0.003 Å) five-membered ring. In the crystal structure, inter­molecular C—H⋯N hydrogen bonds link the mol­ecules to form layers parallel to (011).

Related literature

For the broad spectrum biological activity of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999).graphic file with name e-66-0o410-scheme1.jpg

Experimental

Crystal data

  • C18H17N3S2

  • M r = 339.47

  • Triclinic, Inline graphic

  • a = 8.5640 (17) Å

  • b = 9.3370 (19) Å

  • c = 11.570 (2) Å

  • α = 90.98 (3)°

  • β = 110.03 (3)°

  • γ = 99.66 (3)°

  • V = 854.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.912, T max = 0.969

  • 3324 measured reflections

  • 3098 independent reflections

  • 2286 reflections with I > 2σ(I)

  • R int = 0.031

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.208

  • S = 1.00

  • 3098 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001558/bt5165sup1.cif

e-66-0o410-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001558/bt5165Isup2.hkl

e-66-0o410-Isup2.hkl (152KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯N2i 0.93 2.58 3.223 (6) 126
C8—H8A⋯S2 0.93 2.59 3.041 (5) 110

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the diffractometer for this research project. This work was supported by the National High Technology Research and Development (863 Program) of China (No. 2007AA06A402) and the Key Projects in the National Water Pollution Control and Management Pillar Program (No. 2008ZX07101-003).

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing a broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). The molecule (Fig. 1) is almost planar (r.m.s. deviation for all non-H atoms 0.149Å). An intramolecular C—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring. In the crystal structure, intermolecular C—H···N hydrogen bonds (Table 1) link the molecules to form layers parallel to the (0 1 1) plane (Fig. 2).

Experimental

5-(3,5-dimethylphenyl)-1,3,4-thiadiazol-2-amine(5 mmol) and 4-methylthio benzaldehyde(5 mmol) were added in toluene (50 ml). The water was removed by distillation for 5 h. The reaction mixture was left to cool to room temperature, filtered, and the filter cake was crystallized from acetone to give pure compound (I) (m.p. 408 K).Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding model approximation with Uiso(H) = 1.2eq of the carrier atom (1.5 for methyl groups).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C18H17N3S2 Z = 2
Mr = 339.47 F(000) = 356
Triclinic, P1 Dx = 1.320 Mg m3
Hall symbol: -P 1 Melting point: 408 K
a = 8.5640 (17) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.3370 (19) Å Cell parameters from 25 reflections
c = 11.570 (2) Å θ = 10–13°
α = 90.98 (3)° µ = 0.31 mm1
β = 110.03 (3)° T = 298 K
γ = 99.66 (3)° Block, colorless
V = 854.1 (3) Å3 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 2286 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
graphite θmax = 25.3°, θmin = 1.9°
ω/2θ scans h = 0→10
Absorption correction: ψ scan (North et al., 1968) k = −11→11
Tmin = 0.912, Tmax = 0.969 l = −13→13
3324 measured reflections 3 standard reflections every 200 reflections
3098 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H-atom parameters constrained
wR(F2) = 0.208 w = 1/[σ2(Fo2) + (0.1P)2 + 1.550P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3098 reflections Δρmax = 0.38 e Å3
209 parameters Δρmin = −0.46 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.017 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.62029 (16) 1.18993 (14) −0.40284 (12) 0.0614 (4)
S2 0.10286 (13) 0.70508 (13) 0.07048 (10) 0.0522 (4)
N1 0.0950 (5) 0.8908 (4) −0.1158 (3) 0.0502 (9)
N2 −0.1485 (5) 0.8040 (5) −0.0728 (4) 0.0692 (12)
N3 −0.2085 (5) 0.7183 (5) 0.0023 (4) 0.0685 (12)
C1 0.7907 (6) 1.0978 (6) −0.3883 (5) 0.0723 (15)
H1B 0.8553 1.1424 −0.4359 0.108*
H1C 0.7470 0.9974 −0.4181 0.108*
H1D 0.8620 1.1039 −0.3031 0.108*
C2 0.5192 (5) 1.0955 (4) −0.3116 (4) 0.0445 (9)
C3 0.3640 (6) 1.1315 (5) −0.3168 (4) 0.0533 (11)
H3B 0.3206 1.2023 −0.3674 0.064*
C4 0.2770 (5) 1.0636 (5) −0.2484 (4) 0.0524 (11)
H4A 0.1754 1.0897 −0.2519 0.063*
C5 0.3370 (5) 0.9560 (4) −0.1734 (4) 0.0442 (9)
C6 0.4919 (5) 0.9225 (5) −0.1672 (4) 0.0487 (10)
H6A 0.5357 0.8527 −0.1155 0.058*
C7 0.5814 (5) 0.9899 (4) −0.2356 (4) 0.0473 (10)
H7A 0.6838 0.9646 −0.2309 0.057*
C8 0.2444 (5) 0.8767 (5) −0.1040 (4) 0.0480 (10)
H8A 0.2960 0.8130 −0.0488 0.058*
C9 0.0130 (5) 0.8098 (4) −0.0484 (4) 0.0447 (9)
C10 −0.0942 (5) 0.6600 (4) 0.0806 (4) 0.0453 (10)
C11 −0.1302 (5) 0.5649 (4) 0.1713 (4) 0.0443 (9)
C12 −0.2857 (5) 0.5491 (5) 0.1857 (4) 0.0491 (10)
H12A −0.3676 0.5975 0.1361 0.059*
C13 −0.3218 (6) 0.4629 (5) 0.2724 (4) 0.0543 (11)
C14 −0.2009 (6) 0.3892 (5) 0.3429 (4) 0.0580 (12)
H14A −0.2254 0.3293 0.4003 0.070*
C15 −0.0418 (6) 0.4016 (5) 0.3309 (4) 0.0521 (11)
C16 −0.0071 (5) 0.4910 (5) 0.2446 (4) 0.0484 (10)
H16A 0.0979 0.5018 0.2356 0.058*
C17 −0.4903 (7) 0.4480 (6) 0.2888 (6) 0.0737 (15)
H17A −0.4931 0.3842 0.3525 0.111*
H17B −0.5785 0.4083 0.2128 0.111*
H17C −0.5070 0.5421 0.3116 0.111*
C18 0.0868 (7) 0.3170 (6) 0.4057 (5) 0.0736 (15)
H18A 0.1873 0.3396 0.3853 0.110*
H18B 0.0416 0.2146 0.3877 0.110*
H18C 0.1137 0.3426 0.4919 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0633 (8) 0.0675 (8) 0.0680 (8) 0.0195 (6) 0.0371 (6) 0.0291 (6)
S2 0.0423 (6) 0.0626 (7) 0.0570 (7) 0.0146 (5) 0.0209 (5) 0.0229 (5)
N1 0.059 (2) 0.049 (2) 0.052 (2) 0.0151 (17) 0.0275 (17) 0.0160 (16)
N2 0.056 (2) 0.087 (3) 0.079 (3) 0.031 (2) 0.032 (2) 0.048 (2)
N3 0.050 (2) 0.088 (3) 0.080 (3) 0.030 (2) 0.029 (2) 0.045 (2)
C1 0.064 (3) 0.099 (4) 0.074 (3) 0.026 (3) 0.043 (3) 0.021 (3)
C2 0.044 (2) 0.044 (2) 0.049 (2) 0.0095 (17) 0.0200 (18) 0.0111 (18)
C3 0.056 (3) 0.056 (3) 0.059 (3) 0.026 (2) 0.026 (2) 0.028 (2)
C4 0.045 (2) 0.053 (3) 0.067 (3) 0.020 (2) 0.024 (2) 0.017 (2)
C5 0.043 (2) 0.042 (2) 0.051 (2) 0.0098 (17) 0.0194 (18) 0.0093 (18)
C6 0.049 (2) 0.047 (2) 0.054 (2) 0.0168 (19) 0.0191 (19) 0.0185 (19)
C7 0.041 (2) 0.048 (2) 0.059 (3) 0.0137 (18) 0.0221 (19) 0.017 (2)
C8 0.049 (2) 0.050 (2) 0.048 (2) 0.0151 (19) 0.0191 (19) 0.0134 (19)
C9 0.040 (2) 0.047 (2) 0.052 (2) 0.0128 (17) 0.0206 (18) 0.0145 (19)
C10 0.047 (2) 0.045 (2) 0.049 (2) 0.0142 (18) 0.0204 (19) 0.0084 (18)
C11 0.045 (2) 0.041 (2) 0.051 (2) 0.0073 (17) 0.0222 (19) 0.0070 (18)
C12 0.046 (2) 0.047 (2) 0.061 (3) 0.0122 (18) 0.025 (2) 0.012 (2)
C13 0.055 (3) 0.049 (2) 0.066 (3) 0.006 (2) 0.032 (2) 0.007 (2)
C14 0.066 (3) 0.051 (3) 0.062 (3) 0.010 (2) 0.029 (2) 0.018 (2)
C15 0.056 (3) 0.049 (2) 0.052 (2) 0.010 (2) 0.020 (2) 0.012 (2)
C16 0.044 (2) 0.049 (2) 0.054 (2) 0.0114 (18) 0.0170 (19) 0.0092 (19)
C17 0.070 (3) 0.073 (3) 0.096 (4) 0.009 (3) 0.053 (3) 0.015 (3)
C18 0.084 (4) 0.075 (3) 0.067 (3) 0.033 (3) 0.023 (3) 0.031 (3)

Geometric parameters (Å, °)

S1—C2 1.745 (4) C6—H6A 0.9300
S1—C1 1.777 (5) C7—H7A 0.9300
S2—C10 1.714 (4) C8—H8A 0.9300
S2—C9 1.736 (4) C10—C11 1.465 (6)
N1—C8 1.269 (5) C11—C12 1.382 (6)
N1—C9 1.376 (5) C11—C16 1.399 (6)
N2—C9 1.305 (5) C12—C13 1.380 (6)
N2—N3 1.360 (5) C12—H12A 0.9300
N3—C10 1.290 (5) C13—C14 1.375 (6)
C1—H1B 0.9600 C13—C17 1.503 (6)
C1—H1C 0.9600 C14—C15 1.403 (6)
C1—H1D 0.9600 C14—H14A 0.9300
C2—C7 1.384 (6) C15—C16 1.389 (6)
C2—C3 1.407 (6) C15—C18 1.500 (6)
C3—C4 1.358 (6) C16—H16A 0.9300
C3—H3B 0.9300 C17—H17A 0.9600
C4—C5 1.387 (6) C17—H17B 0.9600
C4—H4A 0.9300 C17—H17C 0.9600
C5—C6 1.392 (5) C18—H18A 0.9600
C5—C8 1.442 (5) C18—H18B 0.9600
C6—C7 1.371 (6) C18—H18C 0.9600
C2—S1—C1 103.0 (2) N1—C9—S2 126.2 (3)
C10—S2—C9 86.66 (19) N3—C10—C11 122.6 (4)
C8—N1—C9 119.2 (4) N3—C10—S2 114.3 (3)
C9—N2—N3 112.4 (4) C11—C10—S2 123.1 (3)
C10—N3—N2 113.2 (4) C12—C11—C16 119.6 (4)
S1—C1—H1B 109.5 C12—C11—C10 120.0 (4)
S1—C1—H1C 109.5 C16—C11—C10 120.3 (4)
H1B—C1—H1C 109.5 C13—C12—C11 121.3 (4)
S1—C1—H1D 109.5 C13—C12—H12A 119.4
H1B—C1—H1D 109.5 C11—C12—H12A 119.4
H1C—C1—H1D 109.5 C14—C13—C12 118.7 (4)
C7—C2—C3 118.8 (4) C14—C13—C17 120.4 (4)
C7—C2—S1 124.6 (3) C12—C13—C17 120.9 (4)
C3—C2—S1 116.6 (3) C13—C14—C15 121.9 (4)
C4—C3—C2 120.5 (4) C13—C14—H14A 119.1
C4—C3—H3B 119.8 C15—C14—H14A 119.1
C2—C3—H3B 119.8 C16—C15—C14 118.5 (4)
C3—C4—C5 121.1 (4) C16—C15—C18 120.2 (4)
C3—C4—H4A 119.4 C14—C15—C18 121.3 (4)
C5—C4—H4A 119.4 C15—C16—C11 120.0 (4)
C4—C5—C6 118.1 (4) C15—C16—H16A 120.0
C4—C5—C8 122.7 (4) C11—C16—H16A 120.0
C6—C5—C8 119.2 (4) C13—C17—H17A 109.5
C7—C6—C5 121.5 (4) C13—C17—H17B 109.5
C7—C6—H6A 119.2 H17A—C17—H17B 109.5
C5—C6—H6A 119.2 C13—C17—H17C 109.5
C6—C7—C2 120.0 (4) H17A—C17—H17C 109.5
C6—C7—H7A 120.0 H17B—C17—H17C 109.5
C2—C7—H7A 120.0 C15—C18—H18A 109.5
N1—C8—C5 122.3 (4) C15—C18—H18B 109.5
N1—C8—H8A 118.9 H18A—C18—H18B 109.5
C5—C8—H8A 118.9 C15—C18—H18C 109.5
N2—C9—N1 120.4 (4) H18A—C18—H18C 109.5
N2—C9—S2 113.3 (3) H18B—C18—H18C 109.5
C9—N2—N3—C10 −0.7 (7) C10—S2—C9—N1 −179.3 (4)
C1—S1—C2—C7 8.1 (5) N2—N3—C10—C11 179.3 (4)
C1—S1—C2—C3 −172.1 (4) N2—N3—C10—S2 0.1 (6)
C7—C2—C3—C4 0.0 (7) C9—S2—C10—N3 0.3 (4)
S1—C2—C3—C4 −179.8 (4) C9—S2—C10—C11 −178.9 (4)
C2—C3—C4—C5 −1.0 (7) N3—C10—C11—C12 −8.1 (7)
C3—C4—C5—C6 1.9 (7) S2—C10—C11—C12 171.1 (3)
C3—C4—C5—C8 −177.0 (4) N3—C10—C11—C16 172.7 (4)
C4—C5—C6—C7 −1.9 (7) S2—C10—C11—C16 −8.2 (6)
C8—C5—C6—C7 177.0 (4) C16—C11—C12—C13 0.8 (7)
C5—C6—C7—C2 1.0 (7) C10—C11—C12—C13 −178.5 (4)
C3—C2—C7—C6 0.0 (7) C11—C12—C13—C14 −1.6 (7)
S1—C2—C7—C6 179.8 (3) C11—C12—C13—C17 179.1 (4)
C9—N1—C8—C5 178.8 (4) C12—C13—C14—C15 1.3 (7)
C4—C5—C8—N1 6.6 (7) C17—C13—C14—C15 −179.4 (4)
C6—C5—C8—N1 −172.3 (4) C13—C14—C15—C16 −0.2 (7)
N3—N2—C9—N1 179.6 (4) C13—C14—C15—C18 −178.1 (5)
N3—N2—C9—S2 0.9 (6) C14—C15—C16—C11 −0.7 (7)
C8—N1—C9—N2 −168.9 (4) C18—C15—C16—C11 177.2 (4)
C8—N1—C9—S2 9.7 (6) C12—C11—C16—C15 0.4 (6)
C10—S2—C9—N2 −0.7 (4) C10—C11—C16—C15 179.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7A···N2i 0.93 2.58 3.223 (6) 126
C8—H8A···S2 0.93 2.59 3.041 (5) 110

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5165).

References

  1. Enraf–Nonius (1994). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci.21, 195–201.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ.20, 1903–1905.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001558/bt5165sup1.cif

e-66-0o410-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001558/bt5165Isup2.hkl

e-66-0o410-Isup2.hkl (152KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES