Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 23;66(Pt 2):o442. doi: 10.1107/S1600536810001960

2-[2-(Methyl­sulfan­yl)benzimidazol-1-yl]ethanol

Ludovic Akonan a,*, Kouassi Yves Guillaume Molou b, Adjo Adohi-Krou a, Akoun Abou a, Abodou Jules Tenon a
PMCID: PMC2979779  PMID: 21579857

Abstract

In the title compound, C10H12N2OS, the asymmetric unit consists of two independent mol­ecules. In the crystal structure, mol­ecules form R 4 4(28) centrosymmetric tetra­mers via O—H⋯N hydrogen bonds. These tetra­mers are stacked along the c axis via C—H⋯O hydrogen bonds. C—H⋯π and π–π inter­actions are also present; in the latter, the centroid–centroid distances are 4.075 (1) and 3.719 (1) Å.

Related literature

For the biological activity of compounds having benzimidazole ring systems, and a related structure, see: Akkurt et al. (2006). For other studies of the biological activity of benzimidazoles, see: Küçükbay et al. (2003), (2004); Puratchikody et al. (2008). For hydrogen-bond graph sets, see: Bernstein et al. (1995).graphic file with name e-66-0o442-scheme1.jpg

Experimental

Crystal data

  • C10H12N2OS

  • M r = 208.28

  • Triclinic, Inline graphic

  • a = 9.3235 (2) Å

  • b = 9.7659 (2) Å

  • c = 11.4588 (3) Å

  • α = 78.0849 (9)°

  • β = 88.9066 (8)°

  • γ = 88.1399 (9)°

  • V = 1020.25 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 223 K

  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Nonius KappaCCD diffractometer

  • 13769 measured reflections

  • 5257 independent reflections

  • 3996 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.102

  • S = 0.96

  • 5242 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001960/wn2372sup1.cif

e-66-0o442-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001960/wn2372Isup2.hkl

e-66-0o442-Isup2.hkl (262.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1A-C3A-N2A-C6A-C5A and C5A—C10A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1B⋯N2Ai 0.95 (3) 1.88 (3) 2.825 (3) 174 (3)
O1A—H1A⋯N2B 1.01 (3) 1.80 (3) 2.808 (3) 175 (3)
C4A—H41A⋯O1Aii 0.95 2.42 3.366 (3) 174
C4A—H43ACg2iii 0.95 2.86 3.627 (2) 139
C4B—H43BCg1 0.95 2.86 3.486 (2) 125
C10B—H10BCg2iv 0.95 2.74 3.631 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank the Laboratoire de Physique des Inter­actions Ioniques et Spectropôle, Université de Provence, et Université Paul Cézanne, Faculté des Sciences et Techniques de Saint Jérôme, Marseilles, France, for the use of their diffractometer.

supplementary crystallographic information

Comment

Numerous compounds having benzimidazole ring systems possess versatile pharmacological activities such as antiviral, anthelmintic, spasmolytic, antihypertensive and vasodilator (Akkurt et al., 2006). It has also been reported that many benzimidazole derivatives have antimicrobial and antifungal activities (Küçükbay et al., 2003, 2004, Puratchikody et al., 2008). Therefore, the synthesis of new benzimidazole derivatives is of considerable interest. In order to explore new benzimidazole properties, the title compound has been synthesized and its crystal structure determined.

The two independent molecules in the asymmetric unit of the title compound and the atomic labeling scheme are shown in Fig.1. In this structure, the nine-membered benzimidazole ring systems (N1A/C3A/N2A/C6A/C7A/C8A/C9A/C10A/C5A, N1B/C3B/N2B/C6B/C7B/C8B/C9B/C10B/C5B) of both independent molecules are essentially planar, the maximum deviation from planarity being, respectively, 0.016 (2) Å for atom C8A and 0.078 (16) Å for atom C3B. These two ring systems make a dihedral angle of 73.95 (6)°.

In the crystal structure, we observe the formation of R44(28) centrosymmetric tetramers (Bernstein et al., 1995) via O—H···N hydrogen bonds. The tetramers are linked by two symmetric C—H···O hydrogen bonds to form a zigzag infinite chain along the c axis. The supramolecular aggregation is completed by the presence of C—H···π interactions (Table 1) and π–π stacking between two parallel imidazole rings. The centroid···centroid distance of those rings, Cg1···Cg1(1 - x,1 - y,1 - z) and Cg4···Cg4(-x,2 - y,-z) are 4.075 (1) Å and 3.719 (1) Å, respectively (Fig.3).

Experimental

2-Chloroethanol (1.6 ml, 24.4 mmol) and potasium carbonate (1.68 g, 12.2 mmol) were added to 2-methylsulfanyl-1H-benzimidazole (1 g, 6.1 mmol) in dimethyl sulfoxide (DMSO) (5 ml). The reaction mixture was successively agitated for 30 min at room temperature and at 323 K for 24 h. 50 ml of water was then added to the reaction mixture, and the products were extracted with dichloromethane (3 × 50 ml). The combined organic extracts were washed with brine (10 g of sodium chloride in 100 ml of water), dried (Na2SO4) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (elution: hexane/ethyl acetate (70:30, v/v)) and the title compound resulted as a brown powder (0.77 g, 61%) with a melting point of 409 K. The brown powder was dissolved in ethanol/hexane (3:1, v/v) and, after four days, brown crystals suitable for single-crystal X-ray diffraction analysis were obtained.

Refinement

The H atoms bonded to O1A and O1B were located in a difference Fourier map; their positional parameters and Uiso were refined freely. Other H atoms were placed at calculated positions, with C—H = 0.95 Å and refined using a riding model, with Uiso(H) constrained to be 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of the asymmetric unit of the title compound, showing the atomic labeling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing, viewed down the a axis, showing the zigzag infinite chain of cyclic tetramers along the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted for clarity.

Fig. 3.

Fig. 3.

Crystal packing, showing the π–π and C—H···π stacking interactions. The yellow dots are the centroids of benzene and imidazole rings. H atoms not involved in C—H···π interactions have been omitted for clarity.

Crystal data

C10H12N2OS Z = 4
Mr = 208.28 F(000) = 440
Triclinic, P1 Dx = 1.356 Mg m3
Hall symbol: -P 1 Melting point: 409 K
a = 9.3235 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7659 (2) Å Cell parameters from 13769 reflections
c = 11.4588 (3) Å θ = 2–29°
α = 78.0849 (9)° µ = 0.28 mm1
β = 88.9066 (8)° T = 223 K
γ = 88.1399 (9)° Prism, brown
V = 1020.25 (4) Å3 0.20 × 0.20 × 0.15 mm

Data collection

Nonius KappaCCD diffractometer 3996 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
graphite θmax = 29.1°, θmin = 1.8°
φ and ω scans h = −12→12
13769 measured reflections k = −12→12
5257 independent reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H atoms treated by a mixture of independent and constrained refinement
S = 0.96 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.04P)2 + 0.62P], where P = [max(Fo2,0) + 2Fc2]/3
5242 reflections (Δ/σ)max = 0.001
261 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.32 e Å3
88 constraints

Special details

Experimental. 1H NMR (DMSO-d6, 300 MHz, p.p.m.) δ: 2.71 (s, 3H, CH3); 3.68–3.74 (m 2H, CH2O, JCH2—CH2 = 5.7 Hz and JCH2—OH = 5.4 Hz); 4.17 (t, 2H, CH2N, JCH2—CH2 = 5.7 Hz); 5.00 (t, 1H, OH, JCH2—OH = 5.4 Hz); 7.13–7.17 and 7.46–7.55 (m, 4H, C6H4). 13C NMR (DMSO-d6, 300 MHz, p.p.m.) δ: 14.35 (CH3); 46.25 (CH2N); 59.14 (CH2O); 109.75, 117.31, 121.14, 121.21, 136.75, 142.92 (C6H5); 152.48 (C═N).
Refinement. The 15 reflections 1 0 0; -1 1 0; 0 1 0; 1 1 0; -1 - 1 1; 0 - 1 1; 1 - 1 1; -1 0 1; 0 0 1; 1 0 1; -1 1 1; 0 1 1; 1 1 1; 0 0 2; 0 1 2 have been measured with too low intensities. It might be caused by some systematical error, probably by shielding by a beam stop of these diffractions. They were not used in the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.49131 (5) 0.82212 (5) 0.49825 (4) 0.0390
C3A 0.42886 (16) 0.69994 (15) 0.42198 (14) 0.0286
N1A 0.28691 (13) 0.66663 (13) 0.43140 (12) 0.0286
C5A 0.26838 (17) 0.57367 (15) 0.35708 (15) 0.0298
C6A 0.40349 (17) 0.55494 (15) 0.30706 (15) 0.0309
N2A 0.50366 (14) 0.63619 (13) 0.34868 (12) 0.0309
C7A 0.4221 (2) 0.46382 (18) 0.22858 (18) 0.0430
C8A 0.3031 (2) 0.39422 (19) 0.20412 (19) 0.0507
C9A 0.1686 (2) 0.41504 (19) 0.25355 (19) 0.0481
C10A 0.14723 (19) 0.50586 (17) 0.33090 (17) 0.0386
C2A 0.17826 (17) 0.70834 (17) 0.51181 (15) 0.0336
C1A 0.07853 (17) 0.82574 (17) 0.45194 (16) 0.0354
O1A 0.15279 (14) 0.95034 (13) 0.41601 (12) 0.0405
C4A 0.67938 (19) 0.8087 (2) 0.4688 (2) 0.0463
S1B 0.34070 (5) 1.07040 (5) 0.04701 (4) 0.0402
C3B 0.16057 (17) 1.10450 (15) 0.07442 (14) 0.0299
N2B 0.09036 (15) 1.06622 (14) 0.17658 (12) 0.0325
C6B −0.04765 (17) 1.12427 (16) 0.15371 (14) 0.0307
C5B −0.05673 (17) 1.19801 (16) 0.03565 (14) 0.0306
N1B 0.07856 (14) 1.18307 (13) −0.01412 (12) 0.0313
C2B 0.12112 (19) 1.23474 (17) −0.13814 (14) 0.0357
C1B 0.1892 (2) 1.37598 (19) −0.15947 (16) 0.0419
O1B 0.21179 (14) 1.42576 (15) −0.28301 (12) 0.0521
C10B −0.18151 (19) 1.26805 (18) −0.01093 (16) 0.0395
C9B −0.2986 (2) 1.2612 (2) 0.06571 (18) 0.0458
C8B −0.2918 (2) 1.1879 (2) 0.18335 (18) 0.0449
C7B −0.16712 (19) 1.11853 (18) 0.22973 (16) 0.0381
C4B 0.3871 (2) 0.9554 (2) 0.18458 (19) 0.0578
H1B 0.305 (3) 1.398 (3) −0.306 (3) 0.091 (9)*
H1A 0.136 (3) 0.992 (3) 0.329 (3) 0.094 (9)*
H10A 0.0555 0.5211 0.3642 0.0468*
H9A 0.0895 0.3657 0.2337 0.0576*
H8A 0.3134 0.3303 0.1520 0.0612*
H7A 0.5130 0.4501 0.1934 0.0516*
H10B −0.1862 1.3181 −0.0913 0.0468*
H9B −0.3860 1.3078 0.0373 0.0552*
H8B −0.3748 1.1855 0.2331 0.0540*
H7B −0.1630 1.0688 0.3102 0.0456*
H41A 0.7284 0.8715 0.5062 0.0552*
H42A 0.6966 0.8319 0.3851 0.0552*
H43A 0.7132 0.7157 0.4993 0.0552*
H41B 0.4855 0.9276 0.1822 0.0696*
H42B 0.3707 1.0025 0.2486 0.0681*
H43B 0.3296 0.8751 0.1961 0.0681*
H11A 0.0039 0.8396 0.5063 0.0420*
H12A 0.0383 0.8011 0.3838 0.0420*
H21A 0.2257 0.7382 0.5744 0.0408*
H22A 0.1226 0.6293 0.5442 0.0408*
H21B 0.0383 1.2421 −0.1863 0.0432*
H22B 0.1881 1.1693 −0.1609 0.0432*
H11B 0.1277 1.4401 −0.1289 0.0504*
H12B 0.2787 1.3675 −0.1200 0.0504*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0358 (2) 0.0417 (2) 0.0440 (3) −0.00593 (17) −0.00121 (18) −0.01874 (19)
C3A 0.0264 (7) 0.0263 (7) 0.0320 (8) −0.0010 (5) −0.0012 (6) −0.0030 (6)
N1A 0.0250 (6) 0.0282 (6) 0.0324 (7) −0.0025 (5) 0.0027 (5) −0.0059 (5)
C5A 0.0301 (8) 0.0237 (7) 0.0345 (8) −0.0019 (6) −0.0017 (6) −0.0030 (6)
C6A 0.0304 (8) 0.0254 (7) 0.0370 (9) 0.0010 (6) −0.0024 (6) −0.0067 (6)
N2A 0.0258 (6) 0.0304 (7) 0.0371 (7) 0.0003 (5) 0.0009 (5) −0.0085 (5)
C7A 0.0469 (10) 0.0357 (9) 0.0496 (11) 0.0062 (7) −0.0007 (8) −0.0174 (8)
C8A 0.0676 (14) 0.0342 (9) 0.0557 (12) 0.0016 (9) −0.0119 (10) −0.0213 (8)
C9A 0.0518 (11) 0.0344 (9) 0.0596 (12) −0.0108 (8) −0.0156 (10) −0.0107 (8)
C10A 0.0331 (8) 0.0319 (8) 0.0487 (10) −0.0086 (6) −0.0055 (7) −0.0017 (7)
C2A 0.0312 (8) 0.0368 (8) 0.0311 (8) −0.0020 (6) 0.0077 (7) −0.0034 (6)
C1A 0.0288 (8) 0.0419 (9) 0.0362 (9) 0.0013 (6) 0.0049 (7) −0.0107 (7)
O1A 0.0449 (7) 0.0375 (6) 0.0389 (7) −0.0012 (5) −0.0030 (6) −0.0068 (5)
C4A 0.0330 (9) 0.0471 (10) 0.0608 (13) −0.0082 (7) −0.0080 (8) −0.0140 (9)
S1B 0.0384 (2) 0.0427 (2) 0.0365 (2) 0.00559 (17) 0.00863 (18) −0.00300 (17)
C3B 0.0355 (8) 0.0259 (7) 0.0286 (8) −0.0031 (6) 0.0039 (6) −0.0065 (6)
N2B 0.0381 (7) 0.0304 (7) 0.0284 (7) −0.0011 (5) 0.0044 (6) −0.0051 (5)
C6B 0.0365 (8) 0.0270 (7) 0.0296 (8) −0.0048 (6) 0.0043 (6) −0.0079 (6)
C5B 0.0341 (8) 0.0292 (7) 0.0292 (8) −0.0060 (6) 0.0040 (6) −0.0072 (6)
N1B 0.0349 (7) 0.0315 (7) 0.0263 (7) −0.0031 (5) 0.0037 (5) −0.0036 (5)
C2B 0.0414 (9) 0.0400 (9) 0.0245 (8) −0.0014 (7) 0.0047 (7) −0.0041 (6)
C1B 0.0409 (10) 0.0404 (9) 0.0397 (10) −0.0038 (7) 0.0071 (8) 0.0021 (7)
O1B 0.0349 (7) 0.0628 (9) 0.0443 (8) 0.0089 (6) 0.0116 (6) 0.0195 (6)
C10B 0.0398 (9) 0.0407 (9) 0.0367 (9) −0.0002 (7) −0.0023 (7) −0.0052 (7)
C9B 0.0358 (9) 0.0508 (11) 0.0519 (12) 0.0036 (8) 0.0000 (8) −0.0137 (9)
C8B 0.0390 (10) 0.0491 (10) 0.0491 (11) −0.0024 (8) 0.0116 (8) −0.0170 (8)
C7B 0.0433 (10) 0.0378 (9) 0.0336 (9) −0.0055 (7) 0.0104 (7) −0.0088 (7)
C4B 0.0442 (11) 0.0745 (14) 0.0448 (12) 0.0157 (10) 0.0037 (9) 0.0072 (10)

Geometric parameters (Å, °)

S1A—C3A 1.7383 (16) S1B—C3B 1.7369 (16)
S1A—C4A 1.7851 (19) S1B—C4B 1.788 (2)
C3A—N1A 1.3700 (19) C3B—N2B 1.321 (2)
C3A—N2A 1.321 (2) C3B—N1B 1.368 (2)
N1A—C5A 1.384 (2) N2B—C6B 1.396 (2)
N1A—C2A 1.461 (2) C6B—C5B 1.398 (2)
C5A—C6A 1.396 (2) C6B—C7B 1.396 (2)
C5A—C10A 1.396 (2) C5B—N1B 1.390 (2)
C6A—N2A 1.397 (2) C5B—C10B 1.388 (2)
C6A—C7A 1.395 (2) N1B—C2B 1.458 (2)
C7A—C8A 1.382 (3) C2B—C1B 1.509 (2)
C7A—H7A 0.950 C2B—H21B 0.950
C8A—C9A 1.392 (3) C2B—H22B 0.950
C8A—H8A 0.950 C1B—O1B 1.413 (2)
C9A—C10A 1.385 (3) C1B—H11B 0.950
C9A—H9A 0.950 C1B—H12B 0.950
C10A—H10A 0.950 O1B—H1B 0.95 (3)
C2A—C1A 1.510 (2) C10B—C9B 1.382 (3)
C2A—H21A 0.950 C10B—H10B 0.950
C2A—H22A 0.950 C9B—C8B 1.391 (3)
C1A—O1A 1.402 (2) C9B—H9B 0.950
C1A—H11A 0.950 C8B—C7B 1.385 (3)
C1A—H12A 0.950 C8B—H8B 0.950
O1A—H1A 1.01 (3) C7B—H7B 0.950
C4A—H41A 0.950 C4B—H41B 0.950
C4A—H42A 0.950 C4B—H42B 0.950
C4A—H43A 0.950 C4B—H43B 0.950
C3A—S1A—C4A 100.28 (8) C3B—S1B—C4B 100.22 (9)
S1A—C3A—N1A 119.56 (12) S1B—C3B—N2B 126.69 (13)
S1A—C3A—N2A 126.71 (12) S1B—C3B—N1B 119.73 (12)
N1A—C3A—N2A 113.67 (14) N2B—C3B—N1B 113.53 (14)
C3A—N1A—C5A 106.27 (13) C3B—N2B—C6B 104.41 (13)
C3A—N1A—C2A 127.66 (14) N2B—C6B—C5B 110.28 (14)
C5A—N1A—C2A 125.82 (13) N2B—C6B—C7B 129.65 (15)
N1A—C5A—C6A 105.66 (13) C5B—C6B—C7B 120.07 (16)
N1A—C5A—C10A 131.55 (15) C6B—C5B—N1B 105.33 (14)
C6A—C5A—C10A 122.79 (15) C6B—C5B—C10B 122.56 (15)
C5A—C6A—N2A 110.23 (13) N1B—C5B—C10B 132.10 (15)
C5A—C6A—C7A 120.05 (15) C5B—N1B—C3B 106.45 (13)
N2A—C6A—C7A 129.72 (15) C5B—N1B—C2B 126.32 (14)
C6A—N2A—C3A 104.17 (13) C3B—N1B—C2B 127.15 (14)
C6A—C7A—C8A 117.44 (17) N1B—C2B—C1B 113.41 (14)
C6A—C7A—H7A 120.6 N1B—C2B—H21B 108.5
C8A—C7A—H7A 122.0 C1B—C2B—H21B 108.4
C7A—C8A—C9A 121.94 (17) N1B—C2B—H22B 108.5
C7A—C8A—H8A 119.0 C1B—C2B—H22B 108.5
C9A—C8A—H8A 119.0 H21B—C2B—H22B 109.5
C8A—C9A—C10A 121.66 (17) C2B—C1B—O1B 109.85 (15)
C8A—C9A—H9A 119.2 C2B—C1B—H11B 109.4
C10A—C9A—H9A 119.2 O1B—C1B—H11B 109.5
C5A—C10A—C9A 116.10 (17) C2B—C1B—H12B 109.4
C5A—C10A—H10A 122.0 O1B—C1B—H12B 109.3
C9A—C10A—H10A 121.9 H11B—C1B—H12B 109.5
N1A—C2A—C1A 113.63 (13) C1B—O1B—H1B 110.3 (18)
N1A—C2A—H21A 108.4 C5B—C10B—C9B 116.51 (17)
C1A—C2A—H21A 108.3 C5B—C10B—H10B 121.8
N1A—C2A—H22A 108.5 C9B—C10B—H10B 121.7
C1A—C2A—H22A 108.5 C10B—C9B—C8B 121.79 (18)
H21A—C2A—H22A 109.5 C10B—C9B—H9B 119.1
C2A—C1A—O1A 110.78 (13) C8B—C9B—H9B 119.1
C2A—C1A—H11A 109.2 C9B—C8B—C7B 121.60 (17)
O1A—C1A—H11A 109.2 C9B—C8B—H8B 119.2
C2A—C1A—H12A 109.1 C7B—C8B—H8B 119.2
O1A—C1A—H12A 109.0 C6B—C7B—C8B 117.47 (17)
H11A—C1A—H12A 109.5 C6B—C7B—H7B 121.3
C1A—O1A—H1A 110.8 (16) C8B—C7B—H7B 121.3
S1A—C4A—H41A 109.5 S1B—C4B—H41B 109.5
S1A—C4A—H42A 109.5 S1B—C4B—H42B 109.5
H41A—C4A—H42A 109.5 H41B—C4B—H42B 109.5
S1A—C4A—H43A 109.5 S1B—C4B—H43B 109.4
H41A—C4A—H43A 109.5 H41B—C4B—H43B 109.5
H42A—C4A—H43A 109.5 H42B—C4B—H43B 109.5

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1A-C3A-N2A-C6A-C5A and C5A—C10A rings, respectively.
D—H···A D—H H···A D···A D—H···A
O1B—H1B···N2Ai 0.95 (3) 1.88 (3) 2.825 (3) 174 (3)
O1A—H1A···N2B 1.01 (3) 1.80 (3) 2.808 (3) 175 (3)
C4A—H41A···O1Aii 0.95 2.42 3.366 (3) 174
C4A—H43A···Cg2iii 0.95 2.86 3.627 (2) 139
C4B—H43B···Cg1 0.95 2.86 3.486 (2) 125
C10B—H10B···Cg2iv 0.95 2.74 3.631 (2) 157

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2372).

References

  1. Akkurt, M., Türktekin, S., Şireci, N., Küçükbay, H. & Büyükgüngör, O. (2006). Acta Cryst. E62, o185–o187.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch. (Drug Res.), 54, 64–68. [DOI] [PubMed]
  7. Küçükbay, H., Durmaz, R., Orhan, E. & Günal, S. (2003). Il Farmaco, 58, 431–437. [DOI] [PubMed]
  8. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Puratchikody, A., Nagalakshmi, G. & Doble, M. (2008). Chem. Pharm. Bull.56, 273–281. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001960/wn2372sup1.cif

e-66-0o442-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001960/wn2372Isup2.hkl

e-66-0o442-Isup2.hkl (262.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES