Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 20;66(Pt 2):o406–o407. doi: 10.1107/S1600536810001613

3,4-O-Isopropyl­idene-2-C-methyl-d-galactonolactone

N Dai a, S F Jenkinson a,*, G W J Fleet a, D J Watkin b
PMCID: PMC2979786  PMID: 21579826

Abstract

X-ray crystallography unequivocally confirmed the stereochemistry of the 2-C-methyl group in the title mol­ecule, C10H16O6, in which the 1,5-lactone ring exists in a boat conformation. The use of d-galactose in the synthesis determined the absolute stereochemistry. The crystal exists as O—H⋯O hydrogen-bonded layers in the ab plane, with each mol­ecule acting as a donor and acceptor for two hydrogen bonds.

Related literature

For related literature on branched sugars, see: Booth et al. (2008, 2009); da Cruz et al. (2008); Hotchkiss et al. (2006, 2007); Jenkinson et al. (2007); Jones et al. (2007, 2008); Rao et al. (2008). For the conformations of related 1,5-lactones, see: Baird et al. (1987); Booth et al. (2007a ,b ); Bruce et al. (1990); Punzo et al. (2005, 2006).graphic file with name e-66-0o406-scheme1.jpg

Experimental

Crystal data

  • C10H16O6

  • M r = 232.23

  • Monoclinic, Inline graphic

  • a = 6.0553 (2) Å

  • b = 11.3612 (4) Å

  • c = 8.2946 (3) Å

  • β = 105.0854 (14)°

  • V = 550.97 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.50 × 0.40 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.91, T max = 0.99

  • 5558 measured reflections

  • 1314 independent reflections

  • 1229 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.068

  • S = 0.98

  • 1313 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001613/lh2976sup1.cif

e-66-0o406-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001613/lh2976Isup2.hkl

e-66-0o406-Isup2.hkl (66.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H81⋯O1i 0.81 1.99 2.771 (3) 162
O1—H11⋯O6ii 0.86 1.99 2.737 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We would like to thank the Chemical Crystallography department and ALT at Oxford University for use of the difractometers.

supplementary crystallographic information

Comment

2-C-Methyl branched sugars constitute a class of rare sugars with chemotherapeutic potential (Rao et al., 2008; Jones et al., 2008; Booth et al., 2008) as well as being chirons for the enantiospecfic synthesis of complex targets (Hotchkiss et al., 2006; Hotchkiss et al., 2007; da Cruz et al., 2008; Booth et al., 2009) including 2'-C-methyl nucleosides (Jenkinson et al., 2007). In a project to investigate the physical and biological properties of 2-C-methyl-D-galactose 4, D-galactose 1 [the use of which determines the absolute stereochemistry of the product] was converted by a number of steps to the lactols 2 (Fig. 1) (Jones et al., 2007). The reaction of 2 with sodium cyanide in water gave a chain extension to afford a single isolated crystalline product 3 (Fig. 2). 3,4-O-Isopropylidene-1,5-lactones, such as 3, invariably crystallize in a boat conformation (Baird et al., 1987; Bruce et al., 1990; Punzo et al., 2005); the diastereoselectivity may be rationalized by the formation of the galactono-lactone 3 with less steric congestion (Punzo et al., 2006; Booth et al., 2007a; Booth et al., 2007b) than in the epimeric talono-lactone. The structure of 3 is confirmed by the X-ray crystallographic analysis reported in this paper. The lactone 3 is an intermediate for the unambiguous synthesis of 2-C-methyl-D-galactose 4.

The 6-membered lactone ring adopts a boat conformation with the hydroxy group rather than the methyl group in the flagpole position (Fig. 2). The title compound exists as O—H···O hydrogen bonded layers of molecules in the ab-plane (Fig. 3, Fig. 4). Each molecule acts as a donor and acceptor for 2 hydrogen bonds. Only classical hydrogen bonds have been considered.

Experimental

The title compound was recrystallized by vapour diffusion from a mixture of ethyl acetate and cyclohexane: m.p. 423–429 K; [α]D25 +102.7 (c, 0.995 in MeOH).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

One outlying reflection was omitted for the refinement as it was thought to be partially occluded by the beam stop.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Synthetic Scheme

Fig. 2.

Fig. 2.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 3.

Fig. 3.

Packing diagram of the title compound projected along the a-axis.Hydrogen bonds are shown by dotted lines.

Fig. 4.

Fig. 4.

Packing diagram of the title compound projected along the c-axis.Hydrogen bonds are shown by dotted lines.

Crystal data

C10H16O6 F(000) = 248
Mr = 232.23 Dx = 1.400 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1236 reflections
a = 6.0553 (2) Å θ = 5–27°
b = 11.3612 (4) Å µ = 0.12 mm1
c = 8.2946 (3) Å T = 150 K
β = 105.0854 (14)° Plate, colourless
V = 550.97 (3) Å3 0.50 × 0.40 × 0.10 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer 1229 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −7→7
Tmin = 0.91, Tmax = 0.99 k = −14→14
5558 measured reflections l = −10→10
1314 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H-atom parameters constrained
wR(F2) = 0.068 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.03P)2 + 0.19P], where P = [max(Fo2,0) + 2Fc2]/3
S = 0.98 (Δ/σ)max = 0.0002
1313 reflections Δρmax = 0.22 e Å3
145 parameters Δρmin = −0.18 e Å3
1 restraint

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1833 (2) 0.44365 (15) 0.34373 (17) 0.0239
C2 0.2057 (3) 0.50024 (18) 0.1948 (2) 0.0213
C3 0.3440 (3) 0.61260 (18) 0.2310 (2) 0.0182
O4 0.5789 (2) 0.57762 (14) 0.31079 (16) 0.0207
C5 0.7424 (3) 0.65953 (18) 0.3392 (2) 0.0190
O6 0.9366 (2) 0.63080 (16) 0.41067 (17) 0.0258
C7 0.6739 (3) 0.78590 (18) 0.2822 (2) 0.0185
O8 0.5348 (2) 0.82928 (15) 0.38453 (17) 0.0224
C9 0.8833 (3) 0.86206 (19) 0.2930 (3) 0.0236
C10 0.5160 (3) 0.78355 (18) 0.1047 (2) 0.0193
C11 0.3342 (3) 0.68457 (18) 0.0755 (2) 0.0190
O12 0.3897 (2) 0.61111 (14) −0.04874 (16) 0.0232
C13 0.5062 (3) 0.6857 (2) −0.1390 (2) 0.0225
O14 0.6490 (2) 0.75665 (14) −0.00941 (15) 0.0220
C15 0.3374 (4) 0.7604 (2) −0.2640 (2) 0.0300
C16 0.6590 (4) 0.6125 (2) −0.2164 (3) 0.0307
H21 0.0514 0.5221 0.1280 0.0253*
H22 0.2831 0.4457 0.1327 0.0254*
H31 0.2876 0.6635 0.3096 0.0192*
H91 0.8339 0.9420 0.2601 0.0333*
H93 0.9791 0.8665 0.4043 0.0339*
H92 0.9711 0.8323 0.2182 0.0336*
H101 0.4445 0.8626 0.0784 0.0218*
H111 0.1751 0.7172 0.0354 0.0205*
H152 0.4259 0.8092 −0.3237 0.0421*
H151 0.2464 0.8116 −0.2113 0.0424*
H153 0.2412 0.7087 −0.3440 0.0423*
H161 0.7445 0.6676 −0.2693 0.0459*
H163 0.7596 0.5680 −0.1332 0.0464*
H162 0.5654 0.5645 −0.3003 0.0462*
H81 0.6206 0.8478 0.4729 0.0319*
H11 0.0902 0.4790 0.3908 0.0358*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0268 (7) 0.0221 (7) 0.0249 (7) 0.0017 (6) 0.0104 (6) 0.0072 (6)
C2 0.0241 (9) 0.0199 (9) 0.0194 (9) −0.0019 (8) 0.0050 (7) 0.0033 (7)
C3 0.0163 (8) 0.0196 (9) 0.0185 (8) 0.0022 (7) 0.0043 (7) 0.0024 (7)
O4 0.0184 (6) 0.0193 (6) 0.0232 (7) 0.0023 (5) 0.0035 (5) 0.0035 (5)
C5 0.0203 (9) 0.0226 (10) 0.0148 (8) 0.0012 (7) 0.0063 (7) −0.0010 (7)
O6 0.0196 (6) 0.0291 (7) 0.0272 (7) 0.0038 (6) 0.0031 (5) 0.0015 (6)
C7 0.0194 (8) 0.0196 (9) 0.0170 (8) 0.0014 (7) 0.0057 (7) −0.0032 (7)
O8 0.0222 (6) 0.0250 (7) 0.0207 (6) 0.0006 (6) 0.0068 (5) −0.0069 (5)
C9 0.0227 (9) 0.0232 (10) 0.0249 (10) −0.0026 (8) 0.0063 (8) −0.0035 (8)
C10 0.0235 (9) 0.0176 (9) 0.0171 (8) 0.0001 (8) 0.0058 (7) 0.0002 (7)
C11 0.0214 (9) 0.0181 (9) 0.0176 (8) −0.0007 (7) 0.0051 (7) −0.0003 (7)
O12 0.0324 (7) 0.0206 (7) 0.0185 (6) −0.0065 (6) 0.0100 (6) −0.0021 (5)
C13 0.0308 (10) 0.0228 (9) 0.0144 (8) −0.0088 (8) 0.0070 (7) −0.0017 (7)
O14 0.0252 (7) 0.0249 (7) 0.0173 (6) −0.0066 (6) 0.0082 (5) −0.0036 (5)
C15 0.0354 (11) 0.0336 (12) 0.0187 (9) −0.0047 (9) 0.0028 (8) 0.0035 (8)
C16 0.0400 (11) 0.0315 (11) 0.0239 (10) −0.0037 (9) 0.0140 (9) −0.0059 (9)

Geometric parameters (Å, °)

O1—C2 1.430 (2) C9—H92 0.976
O1—H11 0.864 C10—C11 1.548 (3)
C2—C3 1.513 (3) C10—O14 1.426 (2)
C2—H21 0.985 C10—H101 0.996
C2—H22 0.997 C11—O12 1.432 (2)
C3—O4 1.459 (2) C11—H111 1.005
C3—C11 1.516 (3) O12—C13 1.432 (2)
C3—H31 0.995 C13—O14 1.439 (2)
O4—C5 1.334 (2) C13—C15 1.513 (3)
C5—O6 1.216 (2) C13—C16 1.506 (3)
C5—C7 1.534 (3) C15—H152 0.990
C7—O8 1.430 (2) C15—H151 0.979
C7—C9 1.519 (3) C15—H153 0.961
C7—C10 1.533 (3) C16—H161 0.985
O8—H81 0.808 C16—H163 0.940
C9—H91 0.973 C16—H162 0.947
C9—H93 0.956
C2—O1—H11 113.6 C7—C10—O14 108.81 (14)
O1—C2—C3 112.29 (15) C11—C10—O14 103.99 (14)
O1—C2—H21 108.0 C7—C10—H101 108.8
C3—C2—H21 107.1 C11—C10—H101 111.7
O1—C2—H22 109.3 O14—C10—H101 109.7
C3—C2—H22 108.4 C10—C11—C3 112.96 (15)
H21—C2—H22 111.8 C10—C11—O12 104.22 (14)
C2—C3—O4 106.51 (15) C3—C11—O12 109.48 (15)
C2—C3—C11 112.89 (15) C10—C11—H111 111.4
O4—C3—C11 110.51 (14) C3—C11—H111 107.6
C2—C3—H31 110.7 O12—C11—H111 111.2
O4—C3—H31 108.7 C11—O12—C13 105.74 (14)
C11—C3—H31 107.5 O12—C13—O14 102.88 (13)
C3—O4—C5 118.76 (15) O12—C13—C15 110.69 (16)
O4—C5—O6 118.55 (17) O14—C13—C15 111.39 (17)
O4—C5—C7 118.00 (15) O12—C13—C16 109.71 (17)
O6—C5—C7 123.44 (17) O14—C13—C16 108.15 (17)
C5—C7—O8 107.07 (14) C15—C13—C16 113.47 (16)
C5—C7—C9 111.12 (15) C13—O14—C10 106.42 (14)
O8—C7—C9 112.38 (15) C13—C15—H152 107.5
C5—C7—C10 109.30 (14) C13—C15—H151 112.7
O8—C7—C10 105.05 (14) H152—C15—H151 109.4
C9—C7—C10 111.64 (15) C13—C15—H153 108.1
C7—O8—H81 106.8 H152—C15—H153 107.9
C7—C9—H91 108.9 H151—C15—H153 111.2
C7—C9—H93 112.0 C13—C16—H161 106.9
H91—C9—H93 106.6 C13—C16—H163 109.6
C7—C9—H92 110.5 H161—C16—H163 110.7
H91—C9—H92 108.9 C13—C16—H162 108.3
H93—C9—H92 109.8 H161—C16—H162 108.8
C7—C10—C11 113.78 (14) H163—C16—H162 112.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H22···O14i 1.00 2.46 3.391 (3) 155
C3—H31···O6ii 1.00 2.51 3.204 (3) 127
C15—H153···O6iii 0.96 2.52 3.454 (3) 163
O8—H81···O1iv 0.81 1.99 2.771 (3) 162
O1—H11···O6ii 0.86 1.99 2.737 (3) 145

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x−1, y, z; (iii) x−1, y, z−1; (iv) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2976).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Baird, P. D., Dho, J. C., Fleet, G. W. J., Peach, J. M., Prout, K. & Smith, P. W. (1987). J. Chem. Soc., Perkin Trans. 1, pp. 1785–1791.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  4. Booth, K. V., da Cruz, F. P., Hotchkiss, D. J., Jenkinson, S. F., Jones, N. A., Weymouth-Wilson, A. C., Clarkson, R., Heinz, T. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 2417–2424.
  5. Booth, K. V., Jenkinson, S. F., Best, D., Fernandez Nieto, F., Estevez, R. J., Wormald, M. R., Weymouth-Wilson, A. C. & Fleet, G. W. J. (2009). Tetrahedron Lett.50, 5088–5093.
  6. Booth, K. V., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2007a). Acta Cryst. E63, o1128–o1130.
  7. Booth, K. V., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2007b). Acta Cryst. E63, o1759–o1760.
  8. Bruce, I., Fleet, G. W. J., Girdhar, A., Haraldsson, M., Peach, J. M. & Watkin, D. J. (1990). Tetrahedron, 46, 19–32.
  9. Cruz, F. P. da, Horne, G. & Fleet, G. W. J. (2008). Tetrahedron Lett.49, 6812–6815.
  10. Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett.47, 315–318.
  11. Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). Tetrahedron Lett.48, 517–520.
  12. Jenkinson, S. F., Jones, N. A., Moussa, A., Stewart, A. J., Heinz, T. & Fleet, G. W. J. (2007). Tetrahedron Lett.48, 4441–4445.
  13. Jones, N. A., Jenkinson, S. F., Soengas, R., Fanefjord, M., Wormald, M. R., Dwek, R. A., Kiran, G. P., Devendar, R., Takata, G., Morimoto, K., Izumori, K. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry, 18, 774–786.
  14. Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904–1918.
  15. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Punzo, F., Watkin, D. J., Jenkinson, S. F., da Cruz, F. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o511–o512.
  18. Punzo, F., Watkin, D. J., Jenkinson, S. F., da Cruz, F. P. & Fleet, G. W. J. (2006). Acta Cryst. E62, o321–o323.
  19. Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Lett.49, 3316–3121.
  20. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001613/lh2976sup1.cif

e-66-0o406-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001613/lh2976Isup2.hkl

e-66-0o406-Isup2.hkl (66.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES