Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 20;66(Pt 2):o415. doi: 10.1107/S1600536810001911

2,4-Dinitro-1-phenoxy­benzene

Zhen-Ting Du a,*, Yan Xu a, Hong-Rui Yu a, Yong Li a
PMCID: PMC2979788  PMID: 21579833

Abstract

The title compound, C12H8N2O5, was obtained by the reaction of 1-chloro-2,4-dinitro­benzene and phenol in the presence of potassium carbonate. The nitro-substituted benzene ring lies on a mirror plane, with one NO2 group in the same plane and the other disordered across this plane. The phenoxy­benzene unit is placed perpendicular to this mirror, resulting in an exact orthogonal relationship between the phenyl and benzene rings in the mol­ecule. The crystal packing exhibits no significantly short inter­molecular contacts.

Related literature

For the synthesis of the title ether, see: Williamson (1852); Paul & Gupta (2004). For a related structure, see: Gopal et al. (1980).graphic file with name e-66-0o415-scheme1.jpg

Experimental

Crystal data

  • C12H8N2O5

  • M r = 260.20

  • Orthorhombic, Inline graphic

  • a = 21.012 (13) Å

  • b = 6.917 (4) Å

  • c = 8.211 (5) Å

  • V = 1193.4 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.50 × 0.47 × 0.45 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.945, T max = 0.950

  • 5246 measured reflections

  • 1150 independent reflections

  • 639 reflections with I > 2σ(I)

  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.220

  • S = 1.03

  • 1150 reflections

  • 117 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001911/bh2266sup1.cif

e-66-0o415-sup1.cif (13.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001911/bh2266Isup2.hkl

e-66-0o415-Isup2.hkl (57KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the support of the Foundation of Northwest A&F University.

supplementary crystallographic information

Comment

One of the most common procedures for the synthesis of ethers was originally introduced by Williamson, and involves the reaction of alkoxides with alkyl halides (Williamson, 1852). This method has been known for nearly 170 years, and remains a very useful transformation in organic synthesis (Paul & Gupta, 2004).

In this paper, we present a new crystal structure, 2,4-dinitro-1-phenoxybenzene, (I), which was synthesized by the reaction of 1-chloro-2,4-dinitrobenzene and phenol, in the presence of potassium carbonate (see Experimental).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in related compounds (e.g. Gopal et al., 1980). The angle between the benzene and the phenyl rings is 90° by symmetry. In the crystal structure, no significantly short intermolecular contacts are observed.

Experimental

1-Chloro-2,4-dinitrobenzene (10 mmol), potassium carbonate (20 mmol), phenol (6 mmol), and 20 ml of acetone were mixed in a 50 ml flask. After stirring for 2 h. at 373 K, the crude product was obtained. Crystals were obtained by recrystallization from n-hexane/ethyl acetate. Elemental analysis: calculated for C12H8N2O5: C 55.39, H 3.10, N 10.77%; found: C 55.21, H 3.18, N 10.59%.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å, and refined as riding, with Uiso(H) = 1.2Ueq(carrier C). The refinement was carried-out using a model which includes 16 restraints: in order to converge to a sensible geometry for the phenyl ring mirrored in the symmetry plane, bond lengths C7—C8, C8—C9 and C9—C10 were restrained to 1.39 (1) Å. For the disordered nitro group, bond lengths N1—O2 and N1—O3 were averaged, and atoms N1, O2 and O3 were restrained to have similar displacement parameters.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of the title complex with atomic numbering scheme and thermal ellipsoids at 30% probability level. Disordered atoms O2 and O3 generated by symmetry x, 1/2-y, z (m plane) have been omitted. Unlabelled atoms in the phenyl ring are generated by symmetry x, 1/2-y, z.

Crystal data

C12H8N2O5 F(000) = 536
Mr = 260.20 Dx = 1.448 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 1105 reflections
a = 21.012 (13) Å θ = 2.7–21.4°
b = 6.917 (4) Å µ = 0.12 mm1
c = 8.211 (5) Å T = 298 K
V = 1193.4 (12) Å3 Block, red
Z = 4 0.50 × 0.47 × 0.45 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1150 independent reflections
Radiation source: fine-focus sealed tube 639 reflections with I > 2σ(I)
graphite Rint = 0.069
φ and ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −23→25
Tmin = 0.945, Tmax = 0.950 k = −8→8
5246 measured reflections l = −5→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.1048P)2 + 0.4983P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
1150 reflections Δρmax = 0.30 e Å3
117 parameters Δρmin = −0.20 e Å3
16 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.023 (6)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.4600 (2) 0.2500 0.9620 (5) 0.0970 (18)
N2 0.5869 (2) 0.2500 0.4695 (6) 0.0782 (13)
O1 0.35033 (13) 0.2500 0.7731 (4) 0.0844 (13)
O2 0.4181 (2) 0.3065 (14) 1.0352 (6) 0.120 (3) 0.50
O3 0.5041 (3) 0.1576 (11) 1.0291 (7) 0.146 (3) 0.50
O4 0.63351 (19) 0.2500 0.5549 (6) 0.1135 (17)
O5 0.5895 (2) 0.2500 0.3233 (6) 0.1127 (16)
C1 0.4064 (2) 0.2500 0.6926 (6) 0.0600 (13)
C2 0.4620 (2) 0.2500 0.7843 (5) 0.0597 (13)
C3 0.5208 (2) 0.2500 0.7124 (6) 0.0641 (13)
H3 0.5577 0.2500 0.7752 0.077*
C4 0.5240 (2) 0.2500 0.5464 (6) 0.0590 (12)
C5 0.4704 (2) 0.2500 0.4509 (6) 0.0633 (13)
H5 0.4738 0.2500 0.3380 0.076*
C6 0.4115 (2) 0.2500 0.5237 (6) 0.0662 (14)
H6 0.3750 0.2500 0.4598 0.079*
C7 0.2935 (2) 0.2500 0.6851 (6) 0.0691 (15)
C8 0.26597 (18) 0.4227 (7) 0.6495 (5) 0.0960 (14)
H8 0.2854 0.5386 0.6781 0.115*
C9 0.2084 (2) 0.4202 (10) 0.5698 (6) 0.130 (2)
H9 0.1891 0.5362 0.5410 0.155*
C10 0.1795 (3) 0.2500 0.5328 (9) 0.139 (4)
H10 0.1400 0.2500 0.4820 0.167*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.055 (3) 0.182 (5) 0.054 (3) 0.000 −0.006 (2) 0.000
N2 0.071 (3) 0.089 (3) 0.074 (3) 0.000 0.015 (3) 0.000
O1 0.053 (2) 0.149 (4) 0.0508 (19) 0.000 −0.0026 (16) 0.000
O2 0.089 (3) 0.209 (10) 0.062 (3) 0.054 (4) −0.001 (2) −0.017 (4)
O3 0.146 (4) 0.223 (8) 0.070 (3) 0.075 (5) −0.013 (3) 0.022 (4)
O4 0.061 (2) 0.181 (5) 0.099 (3) 0.000 0.015 (2) 0.000
O5 0.100 (3) 0.161 (4) 0.077 (3) 0.000 0.030 (2) 0.000
C1 0.052 (3) 0.074 (3) 0.054 (3) 0.000 0.000 (2) 0.000
C2 0.053 (3) 0.076 (3) 0.050 (2) 0.000 −0.003 (2) 0.000
C3 0.055 (3) 0.076 (3) 0.061 (3) 0.000 −0.006 (2) 0.000
C4 0.055 (3) 0.057 (3) 0.065 (3) 0.000 0.008 (2) 0.000
C5 0.074 (3) 0.069 (3) 0.047 (3) 0.000 0.004 (2) 0.000
C6 0.062 (3) 0.082 (3) 0.054 (3) 0.000 −0.007 (2) 0.000
C7 0.049 (3) 0.110 (4) 0.048 (3) 0.000 0.000 (2) 0.000
C8 0.085 (3) 0.120 (4) 0.083 (3) 0.007 (3) −0.004 (2) 0.016 (3)
C9 0.089 (4) 0.209 (7) 0.091 (3) 0.044 (4) −0.003 (3) 0.042 (4)
C10 0.055 (4) 0.299 (14) 0.063 (4) 0.000 −0.006 (3) 0.000

Geometric parameters (Å, °)

N1—O2i 1.137 (6) C3—C4 1.365 (6)
N1—O2 1.137 (6) C3—H3 0.9300
N1—O3 1.253 (6) C4—C5 1.373 (6)
N1—O3i 1.253 (6) C5—C6 1.373 (6)
N1—C2 1.459 (6) C5—H5 0.9300
N2—O5 1.202 (6) C6—H6 0.9300
N2—O4 1.204 (6) C7—C8i 1.358 (5)
N2—C4 1.465 (6) C7—C8 1.358 (5)
O1—C1 1.351 (5) C8—C9 1.375 (5)
O1—C7 1.397 (5) C8—H8 0.9300
O2—O2i 0.78 (2) C9—C10 1.360 (6)
O3—O3i 1.278 (15) C9—H9 0.9300
C1—C2 1.389 (6) C10—C9i 1.360 (6)
C1—C6 1.391 (6) C10—H10 0.9300
C2—C3 1.371 (6)
O2i—N1—O3 99.5 (6) C3—C4—C5 122.0 (4)
O2—N1—O3 121.1 (6) C3—C4—N2 118.3 (4)
O2i—N1—O3i 121.1 (6) C5—C4—N2 119.6 (4)
O2—N1—O3i 99.5 (6) C6—C5—C4 119.4 (4)
O2i—N1—C2 123.4 (4) C6—C5—H5 120.3
O2—N1—C2 123.4 (4) C4—C5—H5 120.3
O3—N1—C2 114.8 (4) C5—C6—C1 120.2 (4)
O3i—N1—C2 114.8 (4) C5—C6—H6 119.9
O5—N2—O4 123.1 (5) C1—C6—H6 119.9
O5—N2—C4 118.1 (5) C8i—C7—C8 123.1 (5)
O4—N2—C4 118.8 (5) C8i—C7—O1 118.4 (3)
C1—O1—C7 119.5 (4) C8—C7—O1 118.4 (3)
O1—C1—C2 117.9 (4) C7—C8—C9 117.7 (5)
O1—C1—C6 123.7 (4) C7—C8—H8 121.1
C2—C1—C6 118.4 (4) C9—C8—H8 121.1
C3—C2—C1 121.6 (4) C10—C9—C8 120.7 (6)
C3—C2—N1 117.1 (4) C10—C9—H9 119.7
C1—C2—N1 121.3 (4) C8—C9—H9 119.7
C4—C3—C2 118.3 (4) C9—C10—C9i 120.0 (7)
C4—C3—H3 120.9 C9—C10—H10 120.0
C2—C3—H3 120.9 C9i—C10—H10 120.0

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O3ii 0.93 2.69 3.593 (8) 163
C9—H9···O2iii 0.93 2.50 3.274 (8) 141

Symmetry codes: (ii) x, y, z−1; (iii) −x+1/2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2266).

References

  1. Gopal, R., Chandler, W. D. & Robertson, B. E. (1980). Can. J. Chem 58, 658–663.
  2. Paul, S. & Gupta, M. (2004). Tetrahedron Lett 45, 8825–8829.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  6. Williamson, W. A. (1852). J. Chem. Soc. pp. 229–239.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001911/bh2266sup1.cif

e-66-0o415-sup1.cif (13.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001911/bh2266Isup2.hkl

e-66-0o415-Isup2.hkl (57KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES