Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 16;66(Pt 2):o363. doi: 10.1107/S1600536810001066

Diethyl 4-(2,4-dichloro­phen­yl)-2,6-dimethyl-1,4-dihydro­pyridine-3,5-dicarboxyl­ate

P Palakshi Reddy a, V Vijayakumar a, J Suresh b, T Narasimhamurthy c, P L Nilantha Lakshman d,*
PMCID: PMC2979797  PMID: 21579787

Abstract

In the title compound, C19H21Cl2NO4, the dihydro­pyridine ring adopts a flattened boat conformation. The dichloro­phenyl ring is oriented almost perpendicular to the planar part of the dihydro­pyridine ring [dihedral angle = 89.1 (1)°]. An intra­molecular C—H⋯O hydrogen bond is observed. In the crystal structure, mol­ecules are linked into chains along the b axis by N—H⋯O hydrogen bonds

Related literature

The dihydro­pyridine hetrocyclic ring is a common feature of various bioactive compounds such as vasodilator, anti­atherosclerotic, anti­tumor, geroprotective, hepta­protective and anti­diabetic agents, see: Salehi & Guo (2004). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-66-0o363-scheme1.jpg

Experimental

Crystal data

  • C19H21Cl2NO4

  • M r = 398.27

  • Monoclinic, Inline graphic

  • a = 15.928 (7) Å

  • b = 12.266 (6) Å

  • c = 10.042 (5) Å

  • β = 103.962 (7)°

  • V = 1903.8 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.19 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.933, T max = 0.937

  • 20317 measured reflections

  • 4491 independent reflections

  • 3230 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.168

  • S = 1.04

  • 4491 reflections

  • 243 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001066/ci5001sup1.cif

e-66-0o363-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001066/ci5001Isup2.hkl

e-66-0o363-Isup2.hkl (215.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (4) 2.46 (4) 3.298 (4) 169 (3)
C7—H7C⋯O2 0.96 2.14 2.764 (5) 122

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the use of the CCD facility at the Indian Institute of Science, Bangalore, set up under the IRHPA–DST programme.

supplementary crystallographic information

Comment

1,4-Dihydropyridines are identified as an important class of drugs for a longwhile. The dihydropyridine hetrocyclic ring is a common feature of various bioactive compounds such as vasodilator, antiatherosclerotic, antitumor, geroprotective, heptaprotective and antidiabetic agents (Salehi & Guo, 2004).

The molecular structure of the title compound, with the adopted atomic numbering scheme is shown in Fig. 1. The dihydropyridine ring adopts a flattened boat conformation, with atoms N1 and C4 slightly displaced out of the C2/C3/C5/C6 plane by 0.088 (4) and 0.188 (4) Å, respectively. The puckering parameters (Cremer & Pople, 1975) are: q2 = 0.158 (3) Å, q3 = -0.039 (3) Å and φ2 = 3(1)°. The C—C and C—N bond distances of the pyridine ring agree well with expected values. The 2,4-dichlorophenyl ring at C4 is oriented at an angle of 89.1 (1)° with respect to the C2/C3/C5/C6 plane. This near perpendicular orientation of the chlorophenyl ring to the dihydropyridine ring can be ascribed to the greater steric hinderance with the two ethylcarboxylate groups at C3 and C5. Both ethylcarboxylate side chains adopt same orientation with respect to the dihydropyridine ring. An intramolecular C7—H7C···O2 hydrogen bond is observed.

In the crystal structure, the molecules are linked into chains along the b axis by N—H···O hydrogen bonds (Table 1).

Experimental

Diethyl 2,6-dimethyl-1,4-dihydro-4-2(2,6-dichlorophenyl)-3,5- pyridinedicarboxylate is prepared according to Hantzsch pyridine synthesis. 2,6-Dichlororobenzaldehyde (10 mmol, 1.76 g), ethylacetoacetate (20 mmol, 2.6 ml) and ammonium acetate (10 mmol, 0.8 g) were taken in a 1:2:1 mole ratio along with ethanol as a solvent in a flask and refluxed in steam-bath until the colour of the solution changed to reddish-orange (approximately an hour) and kept in ice cold condition to get a solid product. The product was extracted using diethyl ether and then excess solvent was distilled off. The purity of the crude product was checked through TLC and recrystallized using a acetone-benzene (3:1) solution. Single crystals of the title compound suitable for X-ray diffraction analysis were grown using a acetone-benzene (3:1) solution over a period of 2 d (yield = 68%, m.p. 413 K).

Refinement

The amino H atom was located in a difference map and was refined isotropically. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C-H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5Ueq(C) for CH3 groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C19H21Cl2NO4 F(000) = 832
Mr = 398.27 Dx = 1.389 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 15.928 (7) Å θ = 2–28°
b = 12.266 (6) Å µ = 0.37 mm1
c = 10.042 (5) Å T = 293 K
β = 103.962 (7)° Block, colourless
V = 1903.8 (15) Å3 0.19 × 0.16 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 4491 independent reflections
Radiation source: fine-focus sealed tube 3230 reflections with I > 2σ(I)
graphite Rint = 0.034
ω scans θmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −20→20
Tmin = 0.933, Tmax = 0.937 k = −16→15
20317 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0754P)2 + 1.087P] where P = (Fo2 + 2Fc2)/3
4491 reflections (Δ/σ)max = 0.001
243 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H1 0.457 (2) −0.188 (3) 0.674 (4) 0.077 (10)*
C2 0.36076 (17) −0.1934 (2) 0.5152 (3) 0.0498 (6)
C3 0.30628 (16) −0.13017 (19) 0.4249 (3) 0.0443 (5)
C4 0.30510 (14) −0.00633 (18) 0.4398 (2) 0.0385 (5)
H4 0.3047 0.0264 0.3506 0.046*
C5 0.38599 (15) 0.03294 (19) 0.5438 (2) 0.0414 (5)
C6 0.43734 (15) −0.0368 (2) 0.6316 (3) 0.0458 (6)
C7 0.3671 (2) −0.3158 (2) 0.5144 (4) 0.0724 (9)
H7A 0.3368 −0.3457 0.5778 0.109*
H7B 0.4268 −0.3370 0.5411 0.109*
H7C 0.3418 −0.3426 0.4238 0.109*
C8 0.51522 (18) −0.0086 (3) 0.7436 (3) 0.0615 (7)
H8A 0.5467 0.0493 0.7133 0.092*
H8B 0.5518 −0.0715 0.7656 0.092*
H8C 0.4970 0.0145 0.8236 0.092*
C9 0.2429 (2) −0.1811 (2) 0.3105 (3) 0.0576 (7)
C10 0.1394 (2) −0.1567 (3) 0.1037 (3) 0.0834 (11)
H10A 0.1663 −0.2102 0.0562 0.100*
H10B 0.0947 −0.1929 0.1378 0.100*
C11 0.1024 (4) −0.0724 (5) 0.0120 (5) 0.146 (2)
H11A 0.0756 −0.0199 0.0593 0.219*
H11B 0.0598 −0.1027 −0.0631 0.219*
H11C 0.1468 −0.0375 −0.0224 0.219*
C12 0.40564 (15) 0.1502 (2) 0.5500 (3) 0.0465 (6)
C13 0.3635 (2) 0.3178 (2) 0.4302 (4) 0.0708 (9)
H13A 0.3527 0.3407 0.3351 0.085*
H13B 0.4207 0.3428 0.4773 0.085*
C14 0.2986 (2) 0.3668 (3) 0.4941 (4) 0.0847 (11)
H14A 0.2421 0.3411 0.4482 0.127*
H14B 0.3006 0.4447 0.4866 0.127*
H14C 0.3108 0.3465 0.5892 0.127*
C15 0.22400 (14) 0.03096 (17) 0.4827 (2) 0.0382 (5)
C16 0.16297 (16) 0.10357 (19) 0.4097 (3) 0.0442 (5)
C17 0.09232 (16) 0.1380 (2) 0.4559 (3) 0.0529 (7)
H17 0.0531 0.1877 0.4057 0.064*
C18 0.08165 (16) 0.0971 (2) 0.5769 (3) 0.0540 (7)
C19 0.13873 (18) 0.0238 (2) 0.6521 (3) 0.0554 (7)
H19 0.1301 −0.0040 0.7339 0.066*
C20 0.20941 (16) −0.0081 (2) 0.6045 (3) 0.0456 (6)
H20 0.2485 −0.0574 0.6559 0.055*
N1 0.42086 (15) −0.14648 (18) 0.6216 (3) 0.0549 (6)
O1 0.45504 (13) 0.19882 (16) 0.6420 (2) 0.0648 (5)
O2 0.2248 (3) −0.2760 (2) 0.3005 (3) 0.1241 (13)
O3 0.20393 (13) −0.11059 (17) 0.2178 (2) 0.0639 (5)
O4 0.36015 (13) 0.19982 (14) 0.4368 (2) 0.0577 (5)
Cl1 0.17106 (5) 0.15619 (6) 0.25211 (7) 0.0651 (2)
Cl2 −0.00735 (5) 0.13933 (8) 0.63631 (10) 0.0800 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0523 (14) 0.0362 (12) 0.0598 (16) 0.0037 (11) 0.0118 (12) −0.0033 (11)
C3 0.0485 (13) 0.0359 (12) 0.0476 (13) 0.0012 (10) 0.0099 (11) −0.0058 (10)
C4 0.0407 (12) 0.0335 (11) 0.0393 (12) 0.0007 (9) 0.0056 (9) 0.0004 (9)
C5 0.0400 (12) 0.0385 (12) 0.0454 (13) 0.0003 (10) 0.0098 (10) −0.0031 (10)
C6 0.0406 (12) 0.0461 (13) 0.0486 (14) 0.0025 (10) 0.0066 (10) −0.0023 (11)
C7 0.076 (2) 0.0376 (14) 0.095 (2) 0.0127 (14) 0.0044 (18) 0.0006 (15)
C8 0.0507 (15) 0.0642 (18) 0.0604 (17) 0.0047 (13) −0.0048 (13) −0.0028 (14)
C9 0.0729 (18) 0.0470 (15) 0.0500 (15) −0.0009 (13) 0.0093 (13) −0.0108 (12)
C10 0.078 (2) 0.104 (3) 0.0564 (19) −0.020 (2) −0.0069 (16) −0.0176 (19)
C11 0.149 (5) 0.130 (4) 0.108 (4) −0.009 (4) −0.069 (3) 0.005 (3)
C12 0.0417 (13) 0.0409 (13) 0.0578 (15) −0.0012 (10) 0.0135 (11) −0.0022 (11)
C13 0.087 (2) 0.0406 (15) 0.086 (2) −0.0071 (15) 0.0233 (18) 0.0076 (15)
C14 0.079 (2) 0.0552 (19) 0.114 (3) 0.0075 (17) 0.012 (2) −0.0121 (19)
C15 0.0391 (11) 0.0308 (10) 0.0412 (12) −0.0013 (9) 0.0032 (9) −0.0027 (9)
C16 0.0448 (13) 0.0369 (12) 0.0470 (13) 0.0020 (10) 0.0034 (10) 0.0019 (10)
C17 0.0440 (13) 0.0440 (14) 0.0667 (17) 0.0065 (11) 0.0052 (12) −0.0034 (12)
C18 0.0414 (13) 0.0506 (15) 0.0718 (18) −0.0042 (11) 0.0168 (12) −0.0209 (13)
C19 0.0571 (16) 0.0606 (17) 0.0506 (15) −0.0094 (13) 0.0170 (12) −0.0063 (12)
C20 0.0457 (13) 0.0429 (13) 0.0461 (13) 0.0005 (10) 0.0066 (10) 0.0036 (10)
N1 0.0532 (13) 0.0411 (12) 0.0615 (14) 0.0088 (10) −0.0033 (11) 0.0063 (10)
O1 0.0614 (12) 0.0495 (11) 0.0764 (14) −0.0127 (9) 0.0026 (10) −0.0115 (10)
O2 0.192 (3) 0.0500 (14) 0.095 (2) −0.0218 (17) −0.035 (2) −0.0179 (13)
O3 0.0652 (12) 0.0620 (12) 0.0538 (11) −0.0057 (10) −0.0063 (9) −0.0078 (9)
O4 0.0673 (12) 0.0372 (9) 0.0651 (12) −0.0024 (8) 0.0089 (9) 0.0024 (8)
Cl1 0.0712 (5) 0.0637 (4) 0.0564 (4) 0.0147 (4) 0.0075 (3) 0.0212 (3)
Cl2 0.0531 (4) 0.0868 (6) 0.1078 (7) −0.0043 (4) 0.0343 (4) −0.0335 (5)

Geometric parameters (Å, °)

C2—C3 1.341 (4) C11—H11A 0.96
C2—N1 1.376 (3) C11—H11B 0.96
C2—C7 1.504 (4) C11—H11C 0.96
C3—C9 1.473 (4) C12—O1 1.216 (3)
C3—C4 1.527 (3) C12—O4 1.338 (3)
C4—C15 1.527 (3) C13—O4 1.450 (3)
C4—C5 1.528 (3) C13—C14 1.470 (5)
C4—H4 0.98 C13—H13A 0.97
C5—C6 1.353 (3) C13—H13B 0.97
C5—C12 1.470 (3) C14—H14A 0.96
C6—N1 1.370 (3) C14—H14B 0.96
C6—C8 1.500 (4) C14—H14C 0.96
C7—H7A 0.96 C15—C20 1.384 (3)
C7—H7B 0.96 C15—C16 1.390 (3)
C7—H7C 0.96 C16—C17 1.383 (4)
C8—H8A 0.96 C16—Cl1 1.743 (3)
C8—H8B 0.96 C17—C18 1.363 (4)
C8—H8C 0.96 C17—H17 0.93
C9—O2 1.198 (4) C18—C19 1.368 (4)
C9—O3 1.312 (3) C18—Cl2 1.744 (3)
C10—C11 1.414 (6) C19—C20 1.382 (4)
C10—O3 1.456 (3) C19—H19 0.93
C10—H10A 0.97 C20—H20 0.93
C10—H10B 0.97 N1—H1 0.85 (4)
C3—C2—N1 119.9 (2) C10—C11—H11C 109.5
C3—C2—C7 127.4 (3) H11A—C11—H11C 109.5
N1—C2—C7 112.7 (2) H11B—C11—H11C 109.5
C2—C3—C9 119.5 (2) O1—C12—O4 122.7 (2)
C2—C3—C4 122.0 (2) O1—C12—C5 127.2 (2)
C9—C3—C4 118.4 (2) O4—C12—C5 110.1 (2)
C3—C4—C15 110.91 (19) O4—C13—C14 110.5 (3)
C3—C4—C5 110.63 (19) O4—C13—H13A 109.5
C15—C4—C5 110.11 (19) C14—C13—H13A 109.5
C3—C4—H4 108.4 O4—C13—H13B 109.5
C15—C4—H4 108.4 C14—C13—H13B 109.5
C5—C4—H4 108.4 H13A—C13—H13B 108.1
C6—C5—C12 120.1 (2) C13—C14—H14A 109.5
C6—C5—C4 121.6 (2) C13—C14—H14B 109.5
C12—C5—C4 118.2 (2) H14A—C14—H14B 109.5
C5—C6—N1 119.9 (2) C13—C14—H14C 109.5
C5—C6—C8 127.1 (2) H14A—C14—H14C 109.5
N1—C6—C8 113.0 (2) H14B—C14—H14C 109.5
C2—C7—H7A 109.5 C20—C15—C16 116.2 (2)
C2—C7—H7B 109.5 C20—C15—C4 118.6 (2)
H7A—C7—H7B 109.5 C16—C15—C4 125.1 (2)
C2—C7—H7C 109.5 C17—C16—C15 122.8 (2)
H7A—C7—H7C 109.5 C17—C16—Cl1 115.87 (19)
H7B—C7—H7C 109.5 C15—C16—Cl1 121.4 (2)
C6—C8—H8A 109.5 C18—C17—C16 118.3 (2)
C6—C8—H8B 109.5 C18—C17—H17 120.9
H8A—C8—H8B 109.5 C16—C17—H17 120.9
C6—C8—H8C 109.5 C17—C18—C19 121.6 (2)
H8A—C8—H8C 109.5 C17—C18—Cl2 118.8 (2)
H8B—C8—H8C 109.5 C19—C18—Cl2 119.6 (2)
O2—C9—O3 121.2 (3) C18—C19—C20 118.9 (3)
O2—C9—C3 125.7 (3) C18—C19—H19 120.5
O3—C9—C3 113.1 (2) C20—C19—H19 120.5
C11—C10—O3 109.4 (3) C19—C20—C15 122.2 (2)
C11—C10—H10A 109.8 C19—C20—H20 118.9
O3—C10—H10A 109.8 C15—C20—H20 118.9
C11—C10—H10B 109.8 C6—N1—C2 123.6 (2)
O3—C10—H10B 109.8 C6—N1—H1 117 (2)
H10A—C10—H10B 108.2 C2—N1—H1 118 (2)
C10—C11—H11A 109.5 C9—O3—C10 115.2 (3)
C10—C11—H11B 109.5 C12—O4—C13 118.3 (2)
H11A—C11—H11B 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.85 (4) 2.46 (4) 3.298 (4) 169 (3)
C7—H7C···O2 0.96 2.14 2.764 (5) 122

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5001).

References

  1. Bruker (1998). SADABS Bruker AXS Inc., Maddison, Wisconsin, USA.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Salehi, H. & Guo, Q. X. (2004). Synth. Commun.34, 4349–4357.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001066/ci5001sup1.cif

e-66-0o363-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001066/ci5001Isup2.hkl

e-66-0o363-Isup2.hkl (215.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES