Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 30;66(Pt 2):m240. doi: 10.1107/S1600536809054543

Poly[diaqua­tris(μ4-isophthalato)dilanthanum(III)]

Le-Qing Fan a,*, Ji-Huai Wu a
PMCID: PMC2979801  PMID: 21579693

Abstract

In the title coordination polymer, [La2(C8H4O4)3(H2O)2]n, there are two independent LaIII atoms which are coordinated differently in slightly distorted penta­gonal-bipyramidal and slightly disorted bicapped trigonal-prismatic environments. The LaIII ions are bridged by μ4-isophthalate ligands, forming two-dimensional layers. In the crystal structure, these layers are connected by inter­molecular O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For background information on lanthanide coordination polymers, see: Cheng et al. (2007); Dorweiler et al. (2009); Mondal et al. (2009) and for the use of multicarboxyl group ligands in this type of polymer, see: Mahata et al. (2007); Zhou et al. (2008).graphic file with name e-66-0m240-scheme1.jpg

Experimental

Crystal data

  • [La2(C8H4O4)3(H2O)2]

  • M r = 806.19

  • Monoclinic, Inline graphic

  • a = 13.3956 (12) Å

  • b = 14.4877 (8) Å

  • c = 13.5754 (11) Å

  • β = 103.998 (5)°

  • V = 2556.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.37 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.717, T max = 1.000

  • 19411 measured reflections

  • 5841 independent reflections

  • 5111 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.139

  • S = 1.08

  • 5841 reflections

  • 361 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 2.72 e Å−3

  • Δρmin = −1.33 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054543/lh2972sup1.cif

e-66-0m240-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054543/lh2972Isup2.hkl

e-66-0m240-Isup2.hkl (291.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O2i 0.85 2.27 2.814 (8) 122
O13—H13B⋯O11i 0.85 2.20 2.976 (8) 152
O14—H14B⋯O10ii 0.85 1.97 2.795 (8) 162
O14—H14A⋯O7iii 0.85 2.10 2.656 (8) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported financially by the Young Talent Fund of Fujian Province (No. 2007 F3060).

supplementary crystallographic information

Comment

Investigations of the constructions of coordination polymers based on lanthanide metals have attracted great interests not only for their diverse structures but also for their luminescent and magnetic properties (Cheng et al., 2007; Dorweiler et al., 2009; Mondal et al., 2009). Because ligands containing multicarboxyl groups can give rise to abundant coordination modes, they have been selected to build lanthanide coordination polymers (Mahata et al., 2007; Zhou et al., 2008). We report herein the crystal structure of the title La(III) compound, (I).

As shown in Fig.1, the asymmetric unit of (I) contains two independent LaIII ions, three isophthalato (ip) ligands, and two coordinated water molecules. Atom La1 is coordinated by seven O atoms in a slightly distorted pentagonal bipyramidal environment. The pentagonal plane is occupied by four oxygen atoms from four ip ligands and one oxygen atom from a water molecule, and the two apical sites are occupied by another two oxygen atoms from two ip ligands. The coordination geometry of La2 is a slightly disortoted bi-capped trigonal prism. The LaIII ions are bridged by µ4-isophthalato ligands to form two-dimensional layers (Fig. 2). In the crystal structure, these layers are connected by intermolecular O—H···O hydrogen bonds to form a three-dimensional network.

Experimental

A mixture of La2O3 (0.163 g, 0.5 mmol), isophthalic acid (0.166 g, 1 mmol) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 443 K for 7 days and then cooled to room temperature at a rate of 0.2 K h—1. The colorless crystals obtained were washed with water and dried in air (yield 16% based on La).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å, O—H = 0.85 Å, Uiso(H) = 1.2Ueq(C or O).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing the atom-numbering scheme. H atoms are not included and displacement ellipsoids are drawn at the 30% probability level. Additional symmetry related atoms are included to complete the coordination geomtry around the La atoms [Symmetry codes: (A) 1.5 — x, —0.5 + y, 0.5 — z; (B) 0.5 + x, 0.5 — y, —0.5 + z; (C) 1.5 — x, 0.5 + y, 0.5 — z; (D) 1 — x, — y, 1 — z].

Fig. 2.

Fig. 2.

View of part of the two-dimensional layer of (I). H atoms are not included.

Crystal data

[La2(C8H4O4)3(H2O)2] F(000) = 1544
Mr = 806.19 Dx = 2.095 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6025 reflections
a = 13.3956 (12) Å θ = 3.1–27.5°
b = 14.4877 (8) Å µ = 3.37 mm1
c = 13.5754 (11) Å T = 293 K
β = 103.998 (5)° Prism, colorless
V = 2556.4 (3) Å3 0.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Rigaku Mercury diffractometer 5841 independent reflections
Radiation source: fine-focus sealed tube 5111 reflections with I > 2σ(I)
graphite Rint = 0.042
ω scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) h = −17→16
Tmin = 0.717, Tmax = 1.000 k = −18→18
19411 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0811P)2 + 4.3612P] where P = (Fo2 + 2Fc2)/3
5841 reflections (Δ/σ)max = 0.001
361 parameters Δρmax = 2.72 e Å3
18 restraints Δρmin = −1.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
La1 0.84385 (2) 0.31714 (2) 0.38814 (2) 0.02027 (12)
La2 0.61501 (2) 0.06678 (2) 0.32769 (2) 0.02238 (12)
O1 0.6774 (3) 0.2657 (3) 0.2958 (3) 0.0358 (10)
O2 0.5239 (4) 0.2049 (3) 0.2615 (4) 0.0375 (11)
O3 0.7107 (4) 0.5678 (4) 0.1326 (5) 0.0545 (15)
O4 0.5900 (4) 0.6718 (3) 0.1260 (5) 0.0510 (14)
O5 0.7672 (4) 0.2617 (4) 0.5144 (4) 0.0463 (13)
O6 0.6532 (4) 0.1469 (4) 0.4850 (4) 0.0463 (13)
O7 0.5312 (4) 0.0136 (3) 0.7733 (4) 0.0383 (11)
O8 0.5033 (4) 0.1180 (3) 0.8868 (3) 0.0392 (11)
O9 0.8372 (4) 0.3771 (3) 0.2105 (3) 0.0359 (10)
O10 0.8799 (4) 0.4248 (3) 0.0703 (4) 0.0395 (11)
O11 0.6533 (4) 0.0748 (3) 0.1637 (4) 0.0437 (12)
O12 0.7235 (4) −0.0402 (3) 0.0943 (4) 0.0482 (13)
O13 0.9519 (5) 0.3449 (5) 0.5562 (4) 0.071 (2)
H13B 1.0027 0.3819 0.5703 0.085*
H13A 0.9312 0.3119 0.5991 0.085*
O14 0.4569 (4) 0.0722 (3) 0.3964 (4) 0.0454 (13)
H14A 0.4165 0.0455 0.3466 0.054*
H14B 0.4465 0.0688 0.4557 0.054*
C1 0.5822 (5) 0.2719 (5) 0.2627 (5) 0.0319 (13)
C2 0.6223 (5) 0.5905 (5) 0.1368 (5) 0.0381 (15)
C3 0.7040 (5) 0.2086 (5) 0.5416 (5) 0.0373 (15)
C4 0.5455 (5) 0.0912 (5) 0.8170 (5) 0.0318 (13)
C5 0.8589 (4) 0.3606 (4) 0.1257 (4) 0.0265 (12)
C6 0.7158 (6) 0.0436 (5) 0.1157 (5) 0.0366 (15)
C7 0.5369 (5) 0.3625 (5) 0.2226 (6) 0.0409 (16)
C8 0.5967 (5) 0.4312 (4) 0.1954 (6) 0.0365 (15)
H8A 0.6664 0.4201 0.2018 0.044*
C9 0.5563 (6) 0.5166 (5) 0.1589 (7) 0.0497 (19)
C10 0.4527 (8) 0.5310 (7) 0.1490 (10) 0.082 (3)
H10A 0.4231 0.5864 0.1219 0.099*
C11 0.3917 (9) 0.4641 (9) 0.1789 (11) 0.098 (4)
H11A 0.3229 0.4759 0.1765 0.118*
C12 0.4353 (7) 0.3788 (6) 0.2126 (9) 0.072 (3)
H12A 0.3939 0.3324 0.2285 0.086*
C13 0.6907 (5) 0.2169 (5) 0.6486 (5) 0.0353 (14)
C14 0.6329 (5) 0.1517 (5) 0.6845 (5) 0.0339 (14)
H14C 0.6048 0.1024 0.6431 0.041*
C15 0.6156 (5) 0.1586 (5) 0.7833 (5) 0.0320 (13)
C16 0.6589 (6) 0.2315 (6) 0.8462 (5) 0.0457 (18)
H16A 0.6474 0.2371 0.9108 0.055*
C17 0.7189 (6) 0.2949 (6) 0.8120 (6) 0.0466 (19)
H17A 0.7495 0.3426 0.8546 0.056*
C18 0.7350 (6) 0.2888 (5) 0.7121 (6) 0.0428 (16)
H18A 0.7751 0.3327 0.6896 0.051*
C19 0.8584 (5) 0.2627 (4) 0.0888 (5) 0.0320 (13)
C20 0.7905 (5) 0.2005 (4) 0.1165 (5) 0.0337 (14)
H20A 0.7471 0.2201 0.1564 0.040*
C21 0.7878 (5) 0.1090 (5) 0.0845 (6) 0.0399 (16)
C22 0.8536 (7) 0.0792 (5) 0.0250 (7) 0.056 (2)
H22A 0.8520 0.0182 0.0033 0.067*
C23 0.9201 (7) 0.1409 (5) −0.0010 (7) 0.059 (2)
H23A 0.9649 0.1210 −0.0393 0.071*
C24 0.9221 (6) 0.2322 (5) 0.0284 (6) 0.0427 (17)
H24A 0.9662 0.2734 0.0078 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
La1 0.02440 (19) 0.01671 (19) 0.02177 (19) 0.00019 (11) 0.00959 (13) 0.00025 (11)
La2 0.0265 (2) 0.0186 (2) 0.02394 (19) −0.00009 (12) 0.00989 (14) 0.00050 (11)
O1 0.033 (2) 0.039 (3) 0.034 (2) 0.000 (2) 0.0058 (19) 0.001 (2)
O2 0.039 (3) 0.024 (2) 0.049 (3) −0.003 (2) 0.009 (2) 0.008 (2)
O3 0.035 (3) 0.046 (3) 0.083 (4) −0.002 (2) 0.015 (3) 0.017 (3)
O4 0.047 (3) 0.027 (3) 0.079 (4) −0.002 (2) 0.016 (3) 0.008 (2)
O5 0.051 (3) 0.058 (3) 0.035 (3) −0.018 (3) 0.021 (2) 0.001 (2)
O6 0.047 (3) 0.058 (3) 0.036 (3) −0.018 (3) 0.014 (2) −0.009 (2)
O7 0.038 (3) 0.039 (3) 0.041 (3) −0.005 (2) 0.015 (2) −0.002 (2)
O8 0.041 (3) 0.048 (3) 0.031 (2) −0.001 (2) 0.0141 (19) −0.003 (2)
O9 0.040 (2) 0.039 (3) 0.031 (2) −0.007 (2) 0.0132 (19) −0.0029 (19)
O10 0.056 (3) 0.029 (2) 0.036 (3) −0.008 (2) 0.017 (2) 0.0010 (19)
O11 0.057 (3) 0.040 (3) 0.043 (3) −0.011 (2) 0.027 (2) −0.003 (2)
O12 0.060 (3) 0.030 (3) 0.061 (3) −0.002 (2) 0.027 (3) −0.003 (2)
O13 0.068 (4) 0.105 (5) 0.035 (3) −0.049 (4) 0.006 (3) 0.004 (3)
O14 0.046 (3) 0.058 (3) 0.039 (3) −0.007 (2) 0.024 (2) −0.013 (2)
C1 0.038 (3) 0.031 (3) 0.027 (3) −0.005 (3) 0.008 (2) 0.001 (2)
C2 0.034 (4) 0.032 (4) 0.047 (4) 0.001 (3) 0.008 (3) 0.008 (3)
C3 0.035 (3) 0.043 (4) 0.036 (3) −0.007 (3) 0.013 (3) −0.004 (3)
C4 0.025 (3) 0.039 (4) 0.030 (3) 0.002 (3) 0.004 (2) 0.000 (3)
C5 0.025 (3) 0.024 (3) 0.031 (3) 0.000 (2) 0.008 (2) 0.004 (2)
C6 0.049 (4) 0.031 (3) 0.034 (3) −0.003 (3) 0.016 (3) 0.000 (3)
C7 0.033 (3) 0.029 (4) 0.057 (4) −0.004 (3) 0.005 (3) 0.006 (3)
C8 0.032 (3) 0.033 (4) 0.046 (4) −0.001 (3) 0.012 (3) 0.005 (3)
C9 0.034 (4) 0.035 (4) 0.077 (6) 0.003 (3) 0.009 (4) 0.011 (4)
C10 0.055 (5) 0.046 (5) 0.149 (8) 0.009 (4) 0.029 (5) 0.036 (5)
C11 0.060 (6) 0.079 (6) 0.160 (9) 0.010 (5) 0.034 (6) 0.044 (6)
C12 0.051 (5) 0.041 (4) 0.127 (7) −0.003 (4) 0.029 (5) 0.023 (5)
C13 0.037 (3) 0.041 (4) 0.032 (3) −0.007 (3) 0.017 (3) −0.006 (3)
C14 0.033 (3) 0.040 (4) 0.032 (3) −0.004 (3) 0.012 (2) −0.003 (3)
C15 0.031 (3) 0.039 (4) 0.028 (3) −0.002 (3) 0.011 (2) −0.001 (3)
C16 0.052 (4) 0.057 (5) 0.029 (3) −0.017 (4) 0.012 (3) −0.011 (3)
C17 0.046 (4) 0.055 (5) 0.045 (4) −0.026 (4) 0.023 (3) −0.022 (4)
C18 0.046 (4) 0.042 (4) 0.045 (4) −0.008 (3) 0.019 (3) −0.004 (3)
C19 0.036 (3) 0.027 (3) 0.034 (3) 0.000 (3) 0.011 (3) −0.001 (3)
C20 0.044 (4) 0.026 (3) 0.034 (3) −0.006 (3) 0.017 (3) 0.002 (3)
C21 0.043 (4) 0.033 (4) 0.050 (4) −0.008 (3) 0.022 (3) −0.004 (3)
C22 0.073 (6) 0.032 (4) 0.078 (6) −0.013 (4) 0.049 (5) −0.005 (4)
C23 0.081 (6) 0.034 (4) 0.083 (6) −0.006 (4) 0.061 (5) −0.012 (4)
C24 0.044 (4) 0.036 (4) 0.055 (4) −0.004 (3) 0.027 (3) −0.002 (3)

Geometric parameters (Å, °)

La1—O12i 2.291 (5) C1—C7 1.492 (9)
La1—O4ii 2.310 (5) C2—C9 1.465 (10)
La1—O8iii 2.338 (5) C3—C13 1.510 (9)
La1—O5 2.343 (5) C4—C15 1.500 (9)
La1—O1 2.396 (4) C5—C19 1.504 (9)
La1—O13 2.422 (5) C5—La2i 3.056 (6)
La1—O9 2.545 (4) C6—C21 1.486 (10)
La2—O3ii 2.266 (5) C7—C12 1.356 (11)
La2—O6 2.376 (5) C7—C8 1.383 (9)
La2—O2 2.402 (4) C8—C9 1.392 (10)
La2—O7iv 2.403 (5) C8—H8A 0.9300
La2—O11 2.405 (5) C9—C10 1.377 (12)
La2—O10ii 2.471 (5) C10—C11 1.391 (14)
La2—O14 2.514 (5) C10—H10A 0.9300
La2—O9ii 2.897 (5) C11—C12 1.395 (14)
O1—C1 1.250 (8) C11—H11A 0.9300
O2—C1 1.243 (8) C12—H12A 0.9300
O3—C2 1.244 (9) C13—C14 1.382 (9)
O3—La2i 2.266 (5) C13—C18 1.391 (10)
O4—C2 1.251 (8) C14—C15 1.418 (9)
O4—La1i 2.310 (5) C14—H14C 0.9300
O5—C3 1.263 (8) C15—C16 1.394 (10)
O6—C3 1.264 (8) C16—C17 1.373 (10)
O7—C4 1.265 (8) C16—H16A 0.9300
O7—La2iv 2.403 (5) C17—C18 1.426 (10)
O8—C4 1.276 (8) C17—H17A 0.9300
O8—La1v 2.338 (5) C18—H18A 0.9300
O9—C5 1.276 (7) C19—C24 1.391 (9)
O9—La2i 2.897 (5) C19—C20 1.395 (9)
O10—C5 1.269 (7) C20—C21 1.393 (9)
O10—La2i 2.471 (5) C20—H20A 0.9300
O11—C6 1.262 (8) C21—C22 1.400 (10)
O12—C6 1.258 (8) C22—C23 1.367 (10)
O12—La1ii 2.291 (5) C22—H22A 0.9300
O13—H13B 0.8500 C23—C24 1.379 (11)
O13—H13A 0.8501 C23—H23A 0.9300
O14—H14A 0.8500 C24—H24A 0.9300
O14—H14B 0.8501
O12i—La1—O4ii 178.4 (2) C7—C1—La2 164.5 (5)
O12i—La1—O8iii 91.26 (18) O3—C2—O4 123.4 (7)
O4ii—La1—O8iii 89.77 (18) O3—C2—C9 116.3 (6)
O12i—La1—O5 88.85 (19) O4—C2—C9 120.3 (7)
O4ii—La1—O5 89.6 (2) O5—C3—O6 123.5 (6)
O8iii—La1—O5 134.94 (17) O5—C3—C13 118.4 (6)
O12i—La1—O1 89.71 (19) O6—C3—C13 118.0 (6)
O4ii—La1—O1 90.01 (18) O7—C4—O8 125.1 (6)
O8iii—La1—O1 148.99 (15) O7—C4—C15 118.1 (6)
O5—La1—O1 76.07 (17) O8—C4—C15 116.8 (6)
O12i—La1—O13 85.0 (2) O10—C5—O9 121.9 (6)
O4ii—La1—O13 94.3 (2) O10—C5—C19 118.6 (5)
O8iii—La1—O13 66.51 (17) O9—C5—C19 119.5 (5)
O5—La1—O13 68.62 (19) O10—C5—La2i 51.4 (3)
O1—La1—O13 144.36 (18) O9—C5—La2i 70.7 (3)
O12i—La1—O9 82.32 (17) C19—C5—La2i 169.2 (4)
O4ii—La1—O9 99.13 (19) O12—C6—O11 124.5 (6)
O8iii—La1—O9 71.23 (15) O12—C6—C21 117.0 (6)
O5—La1—O9 152.80 (17) O11—C6—C21 118.5 (6)
O1—La1—O9 78.20 (15) C12—C7—C8 118.7 (7)
O13—La1—O9 135.42 (17) C12—C7—C1 120.0 (7)
O3ii—La2—O6 78.3 (2) C8—C7—C1 121.4 (6)
O3ii—La2—O2 119.00 (18) C7—C8—C9 122.3 (7)
O6—La2—O2 84.73 (19) C7—C8—H8A 118.9
O3ii—La2—O7iv 142.19 (18) C9—C8—H8A 118.9
O6—La2—O7iv 135.92 (17) C10—C9—C8 117.8 (7)
O2—La2—O7iv 85.41 (16) C10—C9—C2 120.8 (7)
O3ii—La2—O11 77.4 (2) C8—C9—C2 121.4 (7)
O6—La2—O11 139.53 (17) C9—C10—C11 121.0 (9)
O2—La2—O11 79.43 (17) C9—C10—H10A 119.5
O7iv—La2—O11 79.77 (17) C11—C10—H10A 119.5
O3ii—La2—O10ii 89.1 (2) C10—C11—C12 119.0 (10)
O6—La2—O10ii 86.12 (17) C10—C11—H11A 120.5
O2—La2—O10ii 147.73 (16) C12—C11—H11A 120.5
O7iv—La2—O10ii 79.90 (17) C7—C12—C11 121.2 (9)
O11—La2—O10ii 125.15 (16) C7—C12—H12A 119.4
O3ii—La2—O14 145.5 (2) C11—C12—H12A 119.4
O6—La2—O14 70.65 (17) C14—C13—C18 119.0 (6)
O2—La2—O14 73.46 (17) C14—C13—C3 119.4 (6)
O7iv—La2—O14 65.34 (16) C18—C13—C3 121.6 (6)
O11—La2—O14 136.85 (18) C13—C14—C15 121.3 (6)
O10ii—La2—O14 74.30 (17) C13—C14—H14C 119.4
O3ii—La2—O9ii 77.81 (16) C15—C14—H14C 119.4
O6—La2—O9ii 128.00 (17) C16—C15—C14 119.6 (6)
O2—La2—O9ii 146.91 (15) C16—C15—C4 120.3 (6)
O7iv—La2—O9ii 67.88 (15) C14—C15—C4 120.0 (6)
O11—La2—O9ii 76.96 (15) C17—C16—C15 119.3 (7)
O10ii—La2—O9ii 48.19 (14) C17—C16—H16A 120.3
O14—La2—O9ii 109.79 (15) C15—C16—H16A 120.3
C1—O1—La1 154.9 (4) C16—C17—C18 121.1 (7)
C1—O2—La2 112.7 (4) C16—C17—H17A 119.5
C2—O3—La2i 158.2 (6) C18—C17—H17A 119.5
C2—O4—La1i 137.7 (5) C13—C18—C17 119.7 (7)
C3—O5—La1 150.0 (5) C13—C18—H18A 120.1
C3—O6—La2 149.2 (5) C17—C18—H18A 120.1
C4—O7—La2iv 135.1 (4) C24—C19—C20 119.2 (6)
C4—O8—La1v 134.3 (4) C24—C19—C5 122.8 (6)
C5—O9—La1 145.9 (4) C20—C19—C5 118.1 (6)
C5—O9—La2i 84.7 (3) C21—C20—C19 120.0 (6)
La1—O9—La2i 122.32 (17) C21—C20—H20A 120.0
C5—O10—La2i 105.0 (4) C19—C20—H20A 120.0
C6—O11—La2 141.0 (5) C20—C21—C22 120.1 (6)
C6—O12—La1ii 142.2 (5) C20—C21—C6 119.2 (6)
La1—O13—H13B 125.4 C22—C21—C6 120.7 (6)
La1—O13—H13A 109.3 C23—C22—C21 119.1 (7)
H13B—O13—H13A 125.2 C23—C22—H22A 120.4
La2—O14—H14A 96.9 C21—C22—H22A 120.4
La2—O14—H14B 134.0 C22—C23—C24 121.4 (7)
H14A—O14—H14B 120.6 C22—C23—H23A 119.3
O2—C1—O1 122.1 (6) C24—C23—H23A 119.3
O2—C1—C7 118.9 (6) C23—C24—C19 120.2 (7)
O1—C1—C7 119.0 (6) C23—C24—H24A 119.9
O2—C1—La2 45.6 (3) C19—C24—H24A 119.9
O1—C1—La2 76.5 (4)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x+1, −y, −z+1; (v) x−1/2, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O13—H13A···O2vi 0.85 2.27 2.814 (8) 122
O13—H13B···O11vi 0.85 2.20 2.976 (8) 152
O14—H14B···O10v 0.85 1.97 2.795 (8) 162
O14—H14A···O7iv 0.85 2.10 2.656 (8) 122

Symmetry codes: (vi) x+1/2, −y+1/2, z+1/2; (v) x−1/2, −y+1/2, z+1/2; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2972).

References

  1. Brandenburg, K. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Cheng, J.-W., Zheng, S.-T., Ma, E. & Yang, G.-Y. (2007). Inorg. Chem.46, 10534–10538. [DOI] [PubMed]
  3. Dorweiler, J. D., Nemykin, V. N., Ley, A. N., Pike, R. D. & Berry, S. M. (2009). Inorg. Chem.48, 9365–9376. [DOI] [PubMed]
  4. Mahata, P., Ramya, K. V. & Natarajan, S. (2007). Dalton Trans. pp. 4017–4026. [DOI] [PubMed]
  5. Mondal, K. C., Sengupta, O., Dutta, P., Seehra, M., Nayak, S. K. & Mukherjee, P. S. (2009). Inorg. Chim. Acta, 362, 1913–1917.
  6. Rigaku (2007). CrystalClear Rigaku Corporation, Akishima, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zhou, R.-Z., Cui, X.-B., Song, J.-F., Xu, X.-Y., Xu, J.-Q. & Wang, T.-G. (2008). J. Solid State Chem.181, 2099–2107.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809054543/lh2972sup1.cif

e-66-0m240-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054543/lh2972Isup2.hkl

e-66-0m240-Isup2.hkl (291.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES