Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 9;66(Pt 2):o280. doi: 10.1107/S1600536809055056

1-(2,6-Dichloro­benzo­yl)-3-(3-nitro­phen­yl)thio­urea dimethyl­formamide solvate

Min Li a,*, Dongxiao Hou b
PMCID: PMC2979807  PMID: 21579716

Abstract

In the title compound, C14H9Cl2N3O3S·C3H7NO, the two aromatic rings enclose a dihedral angle of 32.93 (12)°. The thiourea mol­ecule exists in its thione form in the solid state with typical C=S and C—N bond lengths. In the crystal, N—H⋯O hydrogen bonds exist between the thio­urea and carbonyl groups on the same and neighboring mol­ecules. In addition, each dimethyl­formamide solvate mol­ecule forms a hydrogen bond to one N atom of the thio­urea group.

Related literature

For general background to the use of thio­urea and urea derivatives in the development of agrochemicals and pharmacological agents, see: Darlington et al. (1996); Dowding & Leeds (1971); Sasse et al. (1969). For bond lengths in other other substituted thio­ureas, see: Khawar Rauf et al. (2006a ,b,c , 2007, 2009). For previously reported C=S distances, see: Bailey et al. (1997).graphic file with name e-66-0o280-scheme1.jpg

Experimental

Crystal data

  • C14H9Cl2N3O3S·C3H7NO

  • M r = 443.30

  • Triclinic, Inline graphic

  • a = 8.507 (5) Å

  • b = 10.240 (5) Å

  • c = 12.414 (8) Å

  • α = 70.40 (4)°

  • β = 81.74 (5)°

  • γ = 87.98 (4)°

  • V = 1008 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.875, T max = 0.914

  • 4551 measured reflections

  • 3413 independent reflections

  • 2691 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.139

  • S = 1.11

  • 3413 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055056/ez2196sup1.cif

e-66-0o280-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055056/ez2196Isup2.hkl

e-66-0o280-Isup2.hkl (167.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.47 3.182 (3) 141
N2—H2⋯O1 0.86 1.99 2.675 (3) 136
N1—H1⋯O4ii 0.86 1.96 2.787 (3) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Earlier studies have shown that thiourea and urea derivatives have played an important role in developing agrochemicals and pharmacological agents (Dowding & Leeds, 1971; Sasse et al., 1969; Darlington et al., 1996). As part of our interest in N,N'-disubstituted thioureas, we now report the crystal structure of the title compound (I).

The N—C bonds in (I), see Fig. 1, differ significantly from one another but are short in comparison with the typical value for an N—C single bond (1.479 Å). Owing to the introduction of the C=O electron-acceptor group the adjacent C-S bond length [1.652 (2)Å ] is shorter than previously reported C=S distances (1.710 (7)Å) (Bailey, et al., 1997). These distances are similar to those usually found in other substituted thioureas (Khawar Rauf et al., 2006a, 2006b, 2006c, 2007, 2009). The dihedral angle between the aromatic rings is 32.93 (12)°, and the corresponding angles with the thiourea plane are 83.52 (7)° for the C2–C7 ring and 50.61 (7)° for the C9–C14 ring.The thiocarbonyl and carbonyl groups are almost coplanar.

Inter- and intramolecular N—H···O hydrogen bonds exist between the thiourea N—H-atoms and carbonyl-O atoms. In addition, each dimethylformamide solvate molecule also has a hydrogen bond to the N of the thiourea groups (2.787 (3) Å: Table 1, Fig. 2).

Experimental

Freshly prepared 2,6-dichlorobenzoylisothiocyanate (2.32 g, 10 mmol) was added to dimethylformamide (30 ml) and stirred for 2 minutes. Afterwards neat 3-nitroaniline (1.38 g, 10 mmol) was added and the resulting mixture was stirred for 1 h.The reaction mixture was then poured into an ice-water mixture and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/CH2Cl2 (1:1 v/v) to give fine crystals of the title compound (I), with an overall yield of 85%.

Refinement

All H atoms were positioned geometrically, with C—H = 0.96– 0.98 Å, and refined as riding, allowing for free rotation of the methyl groups. The Uiso(H) values were set at 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of a molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Fig. 2.

Fig. 2.

Partial packing view of (I). Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H9Cl2N3O3S·C3H7NO Z = 2
Mr = 443.30 F(000) = 456
Triclinic, P1 Dx = 1.460 Mg m3
a = 8.507 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.240 (5) Å Cell parameters from 1797 reflections
c = 12.414 (8) Å θ = 2.4–25.9°
α = 70.40 (4)° µ = 0.46 mm1
β = 81.74 (5)° T = 293 K
γ = 87.98 (4)° Block, yellow
V = 1008 (1) Å3 0.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3413 independent reflections
Radiation source: fine-focus sealed tube 2691 reflections with I > 2σ(I)
graphite Rint = 0.021
phi and ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −10→9
Tmin = 0.875, Tmax = 0.914 k = −12→12
4551 measured reflections l = −14→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0842P)2 + 0.0267P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
3413 reflections Δρmax = 0.30 e Å3
256 parameters Δρmin = −0.42 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.082 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.05945 (7) 0.84634 (6) 0.96546 (5) 0.0570 (3)
Cl1 0.47677 (12) 0.70890 (8) 0.61611 (6) 0.0911 (3)
Cl2 0.67130 (10) 0.96356 (8) 0.88967 (7) 0.0831 (3)
N1 0.3397 (2) 0.80330 (17) 0.86720 (15) 0.0445 (4)
H1 0.3226 0.8832 0.8187 0.053*
N2 0.2412 (2) 0.62210 (17) 1.03144 (15) 0.0481 (5)
H2 0.3272 0.5811 1.0161 0.058*
N3 −0.0870 (3) 0.6004 (2) 1.39465 (16) 0.0594 (5)
O1 0.52143 (19) 0.63011 (15) 0.90012 (14) 0.0577 (5)
O2 −0.0391 (3) 0.7149 (2) 1.38288 (17) 0.0829 (6)
O3 −0.1862 (2) 0.5355 (2) 1.47485 (16) 0.0832 (6)
C1 0.4823 (2) 0.7462 (2) 0.84468 (18) 0.0433 (5)
C2 0.5907 (3) 0.8398 (2) 0.74414 (18) 0.0466 (5)
C3 0.6004 (3) 0.8284 (2) 0.6353 (2) 0.0588 (6)
C4 0.7002 (4) 0.9109 (3) 0.5417 (2) 0.0786 (9)
H4 0.7032 0.9025 0.4692 0.094*
C5 0.7950 (4) 1.0058 (3) 0.5583 (3) 0.0857 (10)
H5 0.8647 1.0609 0.4962 0.103*
C6 0.7900 (3) 1.0218 (3) 0.6639 (3) 0.0788 (9)
H6 0.8553 1.0868 0.6734 0.095*
C7 0.6859 (3) 0.9394 (2) 0.7564 (2) 0.0569 (6)
C8 0.2176 (3) 0.7497 (2) 0.95824 (18) 0.0426 (5)
C9 0.1355 (2) 0.5494 (2) 1.13216 (18) 0.0444 (5)
C10 0.0778 (3) 0.6112 (2) 1.21291 (18) 0.0477 (5)
H10 0.1048 0.7024 1.2021 0.057*
C11 −0.0212 (3) 0.5334 (2) 1.31033 (18) 0.0496 (5)
C12 −0.0602 (3) 0.3960 (2) 1.3312 (2) 0.0579 (6)
H12 −0.1252 0.3452 1.3981 0.070*
C13 0.0003 (3) 0.3373 (2) 1.2498 (2) 0.0624 (7)
H13 −0.0241 0.2452 1.2617 0.075*
C14 0.0970 (3) 0.4129 (2) 1.1505 (2) 0.0536 (6)
H14 0.1364 0.3718 1.0958 0.064*
N4 0.6148 (2) 0.7230 (2) 0.23093 (16) 0.0561 (5)
O4 0.6593 (2) 0.91813 (16) 0.26969 (14) 0.0645 (5)
C16 0.6896 (3) 0.8409 (2) 0.2126 (2) 0.0549 (6)
H16 0.7720 0.8675 0.1514 0.066*
C17 0.6543 (4) 0.6418 (3) 0.1547 (2) 0.0737 (8)
H17A 0.7418 0.6852 0.0969 0.110*
H17B 0.5639 0.6365 0.1181 0.110*
H17C 0.6834 0.5500 0.1989 0.110*
C18 0.4832 (4) 0.6777 (3) 0.3233 (3) 0.0856 (9)
H18A 0.4517 0.7523 0.3519 0.128*
H18B 0.5151 0.6003 0.3847 0.128*
H18C 0.3954 0.6503 0.2946 0.128*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0485 (4) 0.0507 (4) 0.0612 (4) 0.0082 (3) 0.0081 (3) −0.0122 (3)
Cl1 0.1307 (8) 0.0806 (5) 0.0656 (5) −0.0230 (5) −0.0006 (4) −0.0318 (4)
Cl2 0.0883 (6) 0.0810 (5) 0.0918 (6) −0.0026 (4) −0.0312 (4) −0.0362 (4)
N1 0.0443 (10) 0.0372 (8) 0.0438 (10) 0.0025 (7) 0.0030 (8) −0.0068 (7)
N2 0.0432 (10) 0.0420 (9) 0.0505 (11) 0.0018 (8) 0.0079 (8) −0.0104 (8)
N3 0.0614 (13) 0.0695 (14) 0.0425 (11) 0.0034 (11) −0.0032 (10) −0.0143 (10)
O1 0.0545 (9) 0.0450 (8) 0.0562 (9) 0.0103 (7) 0.0075 (7) −0.0012 (7)
O2 0.1064 (16) 0.0775 (13) 0.0678 (12) −0.0047 (12) 0.0060 (11) −0.0351 (10)
O3 0.0753 (13) 0.1017 (15) 0.0586 (11) −0.0029 (11) 0.0196 (10) −0.0198 (11)
C1 0.0445 (12) 0.0407 (11) 0.0425 (11) 0.0002 (9) −0.0002 (9) −0.0132 (9)
C2 0.0427 (11) 0.0406 (11) 0.0476 (12) 0.0038 (9) 0.0040 (9) −0.0078 (9)
C3 0.0645 (15) 0.0500 (13) 0.0525 (14) 0.0020 (11) 0.0107 (11) −0.0128 (11)
C4 0.090 (2) 0.0636 (16) 0.0582 (16) 0.0079 (16) 0.0252 (15) −0.0043 (13)
C5 0.073 (2) 0.0604 (17) 0.089 (2) 0.0000 (15) 0.0355 (17) 0.0011 (16)
C6 0.0540 (16) 0.0512 (14) 0.113 (3) −0.0089 (12) 0.0091 (16) −0.0105 (15)
C7 0.0453 (13) 0.0490 (12) 0.0693 (16) −0.0002 (10) −0.0003 (11) −0.0136 (11)
C8 0.0456 (12) 0.0386 (10) 0.0419 (11) −0.0041 (9) 0.0010 (9) −0.0139 (9)
C9 0.0387 (11) 0.0455 (11) 0.0425 (11) −0.0026 (9) 0.0003 (9) −0.0082 (9)
C10 0.0470 (12) 0.0460 (11) 0.0469 (12) −0.0045 (9) −0.0015 (10) −0.0126 (10)
C11 0.0458 (12) 0.0577 (13) 0.0407 (12) −0.0010 (10) −0.0015 (10) −0.0119 (10)
C12 0.0570 (14) 0.0557 (13) 0.0482 (13) −0.0066 (11) 0.0026 (11) −0.0036 (11)
C13 0.0654 (16) 0.0449 (12) 0.0651 (15) −0.0113 (11) 0.0052 (13) −0.0076 (11)
C14 0.0552 (14) 0.0456 (12) 0.0558 (14) −0.0004 (10) 0.0015 (11) −0.0153 (10)
N4 0.0623 (12) 0.0489 (11) 0.0509 (11) −0.0033 (9) −0.0015 (9) −0.0110 (9)
O4 0.0862 (13) 0.0446 (8) 0.0560 (10) 0.0051 (8) −0.0006 (9) −0.0123 (8)
C16 0.0620 (15) 0.0470 (12) 0.0465 (13) 0.0028 (11) −0.0039 (11) −0.0052 (10)
C17 0.094 (2) 0.0662 (16) 0.0650 (17) −0.0082 (15) −0.0123 (15) −0.0254 (13)
C18 0.077 (2) 0.0725 (18) 0.096 (2) −0.0153 (15) 0.0155 (17) −0.0218 (16)

Geometric parameters (Å, °)

S1—C8 1.652 (2) C6—H6 0.9300
Cl1—C3 1.738 (3) C9—C10 1.381 (3)
Cl2—C7 1.740 (3) C9—C14 1.383 (3)
N1—C1 1.362 (3) C10—C11 1.384 (3)
N1—C8 1.394 (3) C10—H10 0.9300
N1—H1 0.8600 C11—C12 1.386 (3)
N2—C8 1.345 (3) C12—C13 1.373 (4)
N2—C9 1.423 (3) C12—H12 0.9300
N2—H2 0.8600 C13—C14 1.382 (3)
N3—O2 1.210 (3) C13—H13 0.9300
N3—O3 1.225 (3) C14—H14 0.9300
N3—C11 1.472 (3) N4—C16 1.319 (3)
O1—C1 1.219 (3) N4—C18 1.448 (4)
C1—C2 1.502 (3) N4—C17 1.455 (3)
C2—C7 1.384 (3) O4—C16 1.226 (3)
C2—C3 1.385 (3) C16—H16 0.9300
C3—C4 1.376 (4) C17—H17A 0.9600
C4—C5 1.369 (5) C17—H17B 0.9600
C4—H4 0.9300 C17—H17C 0.9600
C5—C6 1.368 (5) C18—H18A 0.9600
C5—H5 0.9300 C18—H18B 0.9600
C6—C7 1.387 (4) C18—H18C 0.9600
C1—N1—C8 128.75 (17) C14—C9—N2 118.5 (2)
C1—N1—H1 115.6 C9—C10—C11 118.0 (2)
C8—N1—H1 115.6 C9—C10—H10 121.0
C8—N2—C9 125.37 (18) C11—C10—H10 121.0
C8—N2—H2 117.3 C10—C11—C12 122.7 (2)
C9—N2—H2 117.3 C10—C11—N3 118.1 (2)
O2—N3—O3 123.3 (2) C12—C11—N3 119.2 (2)
O2—N3—C11 118.9 (2) C13—C12—C11 117.8 (2)
O3—N3—C11 117.8 (2) C13—C12—H12 121.1
O1—C1—N1 124.13 (19) C11—C12—H12 121.1
O1—C1—C2 121.96 (19) C12—C13—C14 121.0 (2)
N1—C1—C2 113.91 (18) C12—C13—H13 119.5
C7—C2—C3 117.4 (2) C14—C13—H13 119.5
C7—C2—C1 121.7 (2) C13—C14—C9 120.1 (2)
C3—C2—C1 121.0 (2) C13—C14—H14 119.9
C4—C3—C2 122.5 (3) C9—C14—H14 119.9
C4—C3—Cl1 119.1 (2) C16—N4—C18 119.9 (2)
C2—C3—Cl1 118.37 (18) C16—N4—C17 121.3 (2)
C5—C4—C3 118.2 (3) C18—N4—C17 118.7 (2)
C5—C4—H4 120.9 O4—C16—N4 125.3 (2)
C3—C4—H4 120.9 O4—C16—H16 117.3
C6—C5—C4 121.8 (3) N4—C16—H16 117.3
C6—C5—H5 119.1 N4—C17—H17A 109.5
C4—C5—H5 119.1 N4—C17—H17B 109.5
C5—C6—C7 119.0 (3) H17A—C17—H17B 109.5
C5—C6—H6 120.5 N4—C17—H17C 109.5
C7—C6—H6 120.5 H17A—C17—H17C 109.5
C2—C7—C6 121.2 (3) H17B—C17—H17C 109.5
C2—C7—Cl2 119.17 (18) N4—C18—H18A 109.5
C6—C7—Cl2 119.6 (2) N4—C18—H18B 109.5
N2—C8—N1 115.74 (18) H18A—C18—H18B 109.5
N2—C8—S1 126.52 (17) N4—C18—H18C 109.5
N1—C8—S1 117.74 (15) H18A—C18—H18C 109.5
C10—C9—C14 120.3 (2) H18B—C18—H18C 109.5
C10—C9—N2 121.05 (19)
C8—N1—C1—O1 4.9 (4) C9—N2—C8—S1 −2.9 (3)
C8—N1—C1—C2 −174.8 (2) C1—N1—C8—N2 −2.8 (3)
O1—C1—C2—C7 −96.1 (3) C1—N1—C8—S1 177.82 (18)
N1—C1—C2—C7 83.7 (3) C8—N2—C9—C10 −50.6 (3)
O1—C1—C2—C3 83.2 (3) C8—N2—C9—C14 132.3 (2)
N1—C1—C2—C3 −97.1 (2) C14—C9—C10—C11 −1.3 (3)
C7—C2—C3—C4 0.3 (3) N2—C9—C10—C11 −178.34 (19)
C1—C2—C3—C4 −178.9 (2) C9—C10—C11—C12 2.0 (3)
C7—C2—C3—Cl1 −177.59 (18) C9—C10—C11—N3 −178.0 (2)
C1—C2—C3—Cl1 3.2 (3) O2—N3—C11—C10 −8.1 (3)
C2—C3—C4—C5 1.2 (4) O3—N3—C11—C10 173.1 (2)
Cl1—C3—C4—C5 179.1 (2) O2—N3—C11—C12 171.9 (2)
C3—C4—C5—C6 −1.4 (4) O3—N3—C11—C12 −6.9 (3)
C4—C5—C6—C7 0.0 (4) C10—C11—C12—C13 −1.4 (4)
C3—C2—C7—C6 −1.7 (3) N3—C11—C12—C13 178.7 (2)
C1—C2—C7—C6 177.5 (2) C11—C12—C13—C14 0.1 (4)
C3—C2—C7—Cl2 176.95 (17) C12—C13—C14—C9 0.6 (4)
C1—C2—C7—Cl2 −3.8 (3) C10—C9—C14—C13 0.1 (4)
C5—C6—C7—C2 1.6 (4) N2—C9—C14—C13 177.2 (2)
C5—C6—C7—Cl2 −177.1 (2) C18—N4—C16—O4 1.4 (4)
C9—N2—C8—N1 177.71 (19) C17—N4—C16—O4 176.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.86 2.47 3.182 (3) 141
N2—H2···O1 0.86 1.99 2.675 (3) 136
N1—H1···O4ii 0.86 1.96 2.787 (3) 161

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2196).

References

  1. Bailey, P. J., Grant, K. J. & Parsons, S. (1997). Acta Cryst. C53, 247–248.
  2. Darlington, A., Vishnevetskia, K. & Blake, T. T. (1996). Physiol. Plant.97, 217–222.
  3. Dowding, J. & Leeds, W. G. (1971). Ger. Patent No. 2 040 580.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o1859–o1860.
  6. Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221–o2222.
  7. Khawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444–o2445.
  8. Khawar Rauf, M., Bolte, M. & Badshah, A. (2009). Acta Cryst. E65, o142. [DOI] [PMC free article] [PubMed]
  9. Khawar Rauf, M., Badshah, A., Bolte, M. & Ahmad, I. (2007). Acta Cryst. E63, o1073–o1075.
  10. Sasse, K., Barden, R., Eue, L. & Hack, H. (1969). S. Afr. Patent No. 900 256.
  11. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055056/ez2196sup1.cif

e-66-0o280-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055056/ez2196Isup2.hkl

e-66-0o280-Isup2.hkl (167.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES