Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 9;66(Pt 2):o259. doi: 10.1107/S1600536809055081

Ethyl 3-methyl-4-oxo-4,5-dihydro-1H-pyrrolo[2,3-d]pyridazine-2-carboxyl­ate

Shi-Quan Chen a, Kai Jiang b, Shi-Fan Wang c,a,*
PMCID: PMC2979812  PMID: 21579701

Abstract

The title compound, C10H11N3O3, was synthesized by the reaction of 3,5-bis­(ethoxy­carbon­yl)-2-formyl-4-methyl-1H-pyrrole and hydrazine hydrate. The angle between the pyrrole ring and the pyridazinone ring is 0.93 (9)°. In the crystal, inter­molecular N—H⋯O and N—H⋯N hydrogen-bond inter­actions link the mol­ecules into a two-dimensional network.

Related literature

For the biological activity of pyrrolopyridazine compounds, see: Chen et al. (2006); Hu et al. (2004); Swamy et al. (2005). For bond-length data, see Allen et al. (1987).graphic file with name e-66-0o259-scheme1.jpg

Experimental

Crystal data

  • C10H11N3O3

  • M r = 221.22

  • Monoclinic, Inline graphic

  • a = 8.0030 (16) Å

  • b = 9.774 (2) Å

  • c = 13.370 (3) Å

  • β = 90.17 (3)°

  • V = 1045.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.40 × 0.26 × 0.06 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.959, T max = 0.994

  • 6834 measured reflections

  • 2045 independent reflections

  • 1676 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.120

  • S = 1.06

  • 2045 reflections

  • 156 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker 2002); cell refinement: SAINT (Bruker 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055081/sj2715sup1.cif

e-66-0o259-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055081/sj2715Isup2.hkl

e-66-0o259-Isup2.hkl (98.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.90 (3) 1.90 (3) 2.804 (2) 175 (2)
N1—H1⋯N2ii 0.86 (2) 2.08 (2) 2.925 (2) 166.2 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research was supported financially by the National Natural Science Foundation of China (30660215).

supplementary crystallographic information

Comment

Pyridazine and its derivatives play an important role play an important role in medicine and as pesticides. One of the main techniques to synthesize pyridazines is to react 1,4-dicarbonyl compounds with hydrazine hydrate. Recently, the synthesis of pyrrolopyridazine compounds has aroused great interest because of their significant biological activity (Chen et al., 2006; Hu et al., 2004; Swamy et al., 2005). As part of our work to develop new types of pyrrolopyridazine compounds with potential biological activity, we report here the synthesis and structure of the title compound (1). In the molecule of compound (1), the torsion angles are N1—C1—C2—C3 179.21 (14) and N1—C1—C2—C5 0.20 (18)°. The dihedral angle between the pyrrole and pyridazinone rings is 0.93 (9)°, an indication that the pyrrolopyridazine system is reasonably planar. The C4═N2 and C3═O1 bond lengths in the molecule are 1.291 (2) and 1.2397 (19)°, respectively, showing their double-bond character (Allen et al., 1987). In the crystal structure, N—H···O and N—H···N hydrogen bonds form a two-dimensional network structure, Fig. 2.

Experimental

2.39 g (10 mmol) of the 3,5-bis(ethoxycarbonyl)-2,4- dimethyl-1(H)-pyrrole was added to a mixed solvent of 60 ml THF and 60 ml glacial acetic acid at room temperature under stirring until all of the solid was dissolved. Then, 60 ml water and 21.93 g (40 mmol) cerous ammonium nitrate (CAN) were added consecutively and the mixture stirred at room temperature for 1.5 h until the reaction was complete. The reaction mixture was poured into ice water and the white solid was separated (2.13 g, 84%). Recrystallization of the white solid from ethanol gave the compound 3,5-bis(ethoxycarbonyl)-2-formyl-4-methyl-1(H)-pyrrole.

An aqueous solution of hydrazine hydrate (80%, 0.5 ml) was added into a solution of 3,5-bis(ethoxycarbonyl)-2-formyl-4-methyl- 1(H)-pyrrole (0.25 g, 1.0 mmol) in glacial acetic acid (20 ml) under stirring at room temperature. The reaction mixture was refluxed for 3 h till the reaction was complete. The reaction mixture was evaporated to remove the solvent of water and acetic acid at reduced pressure to yield the title compound (1) as a white solid (0.18 g, 82%). Recrystallization of the white solid from hot ethanol yielded colorless plate-like crystals suitable for X-ray diffraction analysis.

Refinement

The H atoms bound to N1 and N3 were located in a difference Fourier map and refined freely with isotropic displacement parameters. All other H atoms were visible in difference maps and were subsequently treated as riding atoms with distances C—H = 0.93 - 0.97 Å. Uiso(H) was set equal to xUeq(parent atom), where x = 1.2 - 1.5.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound (1), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

A packing diagram of compound (1) showing the chain of molecules linked by N3–H3···O1 and N1–H1···N2 hydrogen bonds. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H11N3O3 F(000) = 464
Mr = 221.22 Dx = 1.405 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7501 reflections
a = 8.0030 (16) Å θ = 2.6–26.4°
b = 9.774 (2) Å µ = 0.11 mm1
c = 13.370 (3) Å T = 295 K
β = 90.17 (3)° Plate, colourless
V = 1045.8 (4) Å3 0.40 × 0.26 × 0.06 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2045 independent reflections
Radiation source: fine-focus sealed tube 1676 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.959, Tmax = 0.994 k = −11→12
6834 measured reflections l = −16→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.2196P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2045 reflections Δρmax = 0.27 e Å3
156 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.007 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0960 (2) 0.38216 (17) 0.86245 (11) 0.0291 (4)
C2 0.14214 (19) 0.33040 (17) 0.95543 (11) 0.0277 (4)
C3 0.0970 (2) 0.19196 (17) 0.97885 (11) 0.0295 (4)
C4 0.0078 (2) 0.30214 (18) 0.79200 (12) 0.0348 (4)
H2 −0.0209 0.3395 0.7303 0.042*
C5 0.22621 (19) 0.43535 (17) 1.00880 (11) 0.0287 (4)
C6 0.2266 (2) 0.54646 (17) 0.94508 (11) 0.0293 (4)
C7 0.2897 (2) 0.68717 (18) 0.95437 (12) 0.0324 (4)
C8 0.4347 (2) 0.8457 (2) 1.05488 (15) 0.0473 (5)
H8A 0.3500 0.9150 1.0436 0.057*
H8B 0.5247 0.8602 1.0076 0.057*
C9 0.4995 (3) 0.8551 (3) 1.15900 (17) 0.0665 (7)
H9A 0.5831 0.7860 1.1694 0.100*
H9B 0.4094 0.8414 1.2052 0.100*
H9C 0.5478 0.9438 1.1696 0.100*
C10 0.2976 (2) 0.4242 (2) 1.11193 (12) 0.0380 (4)
H10A 0.2233 0.4670 1.1587 0.057*
H10B 0.4043 0.4690 1.1142 0.057*
H10C 0.3111 0.3295 1.1291 0.057*
N1 0.14838 (18) 0.51266 (15) 0.85690 (10) 0.0318 (4)
N2 −0.03348 (19) 0.17759 (15) 0.81245 (10) 0.0362 (4)
N3 0.01190 (19) 0.12734 (16) 0.90363 (10) 0.0349 (4)
O1 0.12783 (16) 0.13034 (12) 1.05782 (8) 0.0397 (4)
O2 0.27522 (18) 0.77051 (14) 0.88893 (10) 0.0506 (4)
O3 0.36361 (16) 0.71015 (13) 1.04147 (9) 0.0409 (4)
H1 0.132 (2) 0.565 (2) 0.8057 (15) 0.038 (5)*
H3 −0.028 (3) 0.042 (3) 0.9145 (16) 0.067 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0348 (9) 0.0251 (9) 0.0274 (8) 0.0005 (7) −0.0006 (6) 0.0008 (7)
C2 0.0313 (8) 0.0261 (9) 0.0256 (8) 0.0013 (7) −0.0007 (6) 0.0005 (7)
C3 0.0342 (9) 0.0275 (9) 0.0268 (8) −0.0004 (7) −0.0005 (6) 0.0017 (7)
C4 0.0503 (10) 0.0287 (10) 0.0253 (8) −0.0019 (8) −0.0054 (7) 0.0011 (7)
C5 0.0299 (8) 0.0271 (9) 0.0290 (8) 0.0013 (6) −0.0012 (6) −0.0003 (7)
C6 0.0321 (8) 0.0273 (9) 0.0286 (8) −0.0002 (7) −0.0028 (6) −0.0013 (7)
C7 0.0347 (9) 0.0285 (10) 0.0340 (9) −0.0017 (7) −0.0022 (7) −0.0007 (7)
C8 0.0492 (11) 0.0365 (12) 0.0562 (12) −0.0114 (9) −0.0071 (9) −0.0098 (9)
C9 0.0655 (14) 0.0758 (18) 0.0581 (14) −0.0170 (13) −0.0081 (11) −0.0236 (13)
C10 0.0447 (10) 0.0367 (11) 0.0325 (9) −0.0025 (8) −0.0098 (7) 0.0021 (8)
N1 0.0432 (8) 0.0254 (8) 0.0268 (7) −0.0024 (6) −0.0058 (6) 0.0050 (6)
N2 0.0515 (9) 0.0298 (9) 0.0272 (7) −0.0048 (7) −0.0059 (6) −0.0008 (6)
N3 0.0502 (9) 0.0255 (9) 0.0290 (7) −0.0063 (6) −0.0053 (6) 0.0023 (6)
O1 0.0569 (8) 0.0305 (7) 0.0317 (7) −0.0077 (6) −0.0101 (5) 0.0078 (5)
O2 0.0723 (10) 0.0319 (8) 0.0475 (8) −0.0113 (6) −0.0173 (7) 0.0092 (6)
O3 0.0514 (8) 0.0324 (8) 0.0389 (7) −0.0092 (6) −0.0101 (6) −0.0006 (5)

Geometric parameters (Å, °)

C1—N1 1.345 (2) C7—O3 1.324 (2)
C1—C2 1.391 (2) C8—O3 1.453 (2)
C1—C4 1.412 (2) C8—C9 1.487 (3)
C2—C5 1.418 (2) C8—H8A 0.9700
C2—C3 1.435 (2) C8—H8B 0.9700
C3—O1 1.2396 (19) C9—H9A 0.9600
C3—N3 1.368 (2) C9—H9B 0.9600
C4—N2 1.291 (2) C9—H9C 0.9600
C4—H2 0.9300 C10—H10A 0.9600
C5—C6 1.380 (2) C10—H10B 0.9600
C5—C10 1.495 (2) C10—H10C 0.9600
C6—N1 1.374 (2) N1—H1 0.86 (2)
C6—C7 1.470 (2) N2—N3 1.3626 (19)
C7—O2 1.201 (2) N3—H3 0.90 (3)
N1—C1—C2 108.20 (14) O3—C8—H8B 110.1
N1—C1—C4 130.09 (15) C9—C8—H8B 110.1
C2—C1—C4 121.71 (16) H8A—C8—H8B 108.4
C1—C2—C5 108.11 (15) C8—C9—H9A 109.5
C1—C2—C3 118.14 (14) C8—C9—H9B 109.5
C5—C2—C3 133.74 (14) H9A—C9—H9B 109.5
O1—C3—N3 119.96 (16) C8—C9—H9C 109.5
O1—C3—C2 126.47 (15) H9A—C9—H9C 109.5
N3—C3—C2 113.57 (14) H9B—C9—H9C 109.5
N2—C4—C1 120.59 (15) C5—C10—H10A 109.5
N2—C4—H2 119.7 C5—C10—H10B 109.5
C1—C4—H2 119.7 H10A—C10—H10B 109.5
C6—C5—C2 105.10 (14) C5—C10—H10C 109.5
C6—C5—C10 128.68 (15) H10A—C10—H10C 109.5
C2—C5—C10 126.22 (15) H10B—C10—H10C 109.5
N1—C6—C5 109.79 (15) C1—N1—C6 108.79 (14)
N1—C6—C7 116.94 (14) C1—N1—H1 123.8 (13)
C5—C6—C7 133.26 (15) C6—N1—H1 127.4 (13)
O2—C7—O3 124.61 (16) C4—N2—N3 117.50 (14)
O2—C7—C6 122.72 (16) N2—N3—C3 128.49 (16)
O3—C7—C6 112.68 (14) N2—N3—H3 112.6 (14)
O3—C8—C9 107.89 (17) C3—N3—H3 118.8 (14)
O3—C8—H8A 110.1 C7—O3—C8 115.92 (14)
C9—C8—H8A 110.1
N1—C1—C2—C5 0.20 (18) C10—C5—C6—C7 −1.4 (3)
C4—C1—C2—C5 −179.24 (15) N1—C6—C7—O2 −0.1 (3)
N1—C1—C2—C3 179.22 (14) C5—C6—C7—O2 −178.97 (18)
C4—C1—C2—C3 −0.2 (2) N1—C6—C7—O3 −179.76 (14)
C1—C2—C3—O1 −179.84 (16) C5—C6—C7—O3 1.3 (3)
C5—C2—C3—O1 −1.1 (3) C2—C1—N1—C6 −0.42 (18)
C1—C2—C3—N3 0.1 (2) C4—C1—N1—C6 178.97 (17)
C5—C2—C3—N3 178.82 (16) C5—C6—N1—C1 0.49 (19)
N1—C1—C4—N2 −179.01 (17) C7—C6—N1—C1 −178.65 (14)
C2—C1—C4—N2 0.3 (3) C1—C4—N2—N3 −0.3 (2)
C1—C2—C5—C6 0.09 (18) C4—N2—N3—C3 0.2 (3)
C3—C2—C5—C6 −178.72 (17) O1—C3—N3—N2 179.87 (16)
C1—C2—C5—C10 −179.86 (15) C2—C3—N3—N2 −0.1 (2)
C3—C2—C5—C10 1.3 (3) O2—C7—O3—C8 −1.8 (3)
C2—C5—C6—N1 −0.35 (18) C6—C7—O3—C8 177.84 (15)
C10—C5—C6—N1 179.60 (15) C9—C8—O3—C7 175.68 (16)
C2—C5—C6—C7 178.60 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1i 0.90 (3) 1.90 (3) 2.804 (2) 175 (2)
N1—H1···N2ii 0.86 (2) 2.08 (2) 2.925 (2) 166.2 (17)

Symmetry codes: (i) −x, −y, −z+2; (ii) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2715).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, Z., Kim, S. H., Barbosa, S. A., Huynh, T., Tortolani, D. R., Leavitt, K. J., Wei, D. D., Manne, V., Ricca, C. S., Gullo-Brown, J., Poss, M. A., Vaccaro, W. & Salvati, M. E. (2006). Bioorg. Med. Chem. Lett.16, 628–632. [DOI] [PubMed]
  4. Hu, T., Stearns, B. A., Campbell, B. T., Arruda, J. M., Chen, C., Aiyar, J., Bezverkov, R. E., Santini, A., Schaffhauser, H., Liu, W., Venkatraman, S. & Munoz, B. (2004). Bioorg. Med. Chem. Lett.14, 2031–2034. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Swamy, K. M. K., Park, M. S., Han, S. J., Kim, S. K., Kim, J. H., Lee, C., Bang, H., Kim, Y., Kim, S.-J. & Yoon, J. (2005). Tetrahedron, 61, 10227–10234.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809055081/sj2715sup1.cif

e-66-0o259-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055081/sj2715Isup2.hkl

e-66-0o259-Isup2.hkl (98.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES