Abstract
In the heteronuclear coordination polymer, {[CuNa(C9H2NO8)(H2O)7]·4H2O}n, the CuII atom is coordinated by six O atoms from five water molecules and one 5-nitrobenzene-1,2,3-tricarboxylate ligand in a slightly distorted octahedral geometry. The Na+ cation is surrounded by six water molecules in an irregular trigonal-prismatic geometry. The Cu and Na atoms are connected by water bridges, forming an infinite chain. O—H⋯O hydrogen bonds involving the coordinated and uncoordinated water molecules connect the chains into a three-dimensional network.
Related literature
For general background to the possible applications of metal coordination polymers as microporous hosts for absorption or as catalytic materials, see: Cheng et al. (2004 ▶); Yaghi & Li (1995 ▶).
Experimental
Crystal data
[CuNa(C9H2NO8)(H2O)7]·4H2O
M r = 536.82
Triclinic,
a = 6.6480 (13) Å
b = 13.124 (3) Å
c = 13.531 (3) Å
α = 63.46 (3)°
β = 79.17 (4)°
γ = 82.13 (3)°
V = 1035.5 (4) Å3
Z = 2
Mo Kα radiation
μ = 1.17 mm−1
T = 295 K
0.27 × 0.26 × 0.21 mm
Data collection
Bruker APEXII area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2005 ▶) T min = 0.743, T max = 0.791
5466 measured reflections
3696 independent reflections
3113 reflections with I > 2σ(I)
R int = 0.021
Refinement
R[F 2 > 2σ(F 2)] = 0.047
wR(F 2) = 0.133
S = 1.02
3696 reflections
280 parameters
H-atom parameters constrained
Δρmax = 0.76 e Å−3
Δρmin = −0.76 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: Mercury (Macrae et al., 2006 ▶); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000401/ng2712sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000401/ng2712Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1W—H2W⋯O4i | 0.84 | 2.06 | 2.883 (4) | 166 |
| O1W—H1W⋯O5ii | 0.84 | 2.19 | 2.932 (4) | 148 |
| O2W—H4W⋯O3 | 0.84 | 1.94 | 2.706 (4) | 151 |
| O2W—H3W⋯O6Wiii | 0.84 | 1.91 | 2.741 (4) | 169 |
| O3W—H6W⋯O4Wi | 0.84 | 2.09 | 2.863 (4) | 153 |
| O3W—H5W⋯O4 | 0.84 | 2.01 | 2.825 (4) | 164 |
| O4W—H8W⋯O3Wiv | 0.84 | 2.11 | 2.868 (4) | 149 |
| O4W—H7W⋯O3v | 0.84 | 2.12 | 2.902 (4) | 155 |
| O5W—H10W⋯O1iii | 0.84 | 2.60 | 3.174 (4) | 127 |
| O5W—H10W⋯O5 | 0.84 | 2.05 | 2.778 (4) | 145 |
| O5W—H9W⋯O6vi | 0.84 | 1.89 | 2.711 (3) | 166 |
| O6W—H12W⋯O5W | 0.84 | 2.00 | 2.810 (4) | 161 |
| O6W—H11W⋯O7vi | 0.84 | 1.91 | 2.716 (4) | 160 |
| O7W—H14W⋯O2Wv | 0.84 | 1.98 | 2.788 (4) | 160 |
| O7W—H13W⋯O7 | 0.84 | 1.87 | 2.657 (4) | 156 |
| O8W—H16W⋯O2Wv | 0.84 | 1.85 | 2.679 (4) | 171 |
| O8W—H15W⋯O6W | 0.84 | 1.95 | 2.774 (4) | 167 |
| O9W—H18W⋯O5i | 0.84 | 1.82 | 2.647 (4) | 168 |
| O9W—H17W⋯O6 | 0.84 | 1.99 | 2.823 (3) | 175 |
| O10W—H19W⋯O5W | 0.84 | 1.85 | 2.674 (4) | 166 |
| O10W—H20W⋯O6i | 0.84 | 1.88 | 2.704 (3) | 167 |
| O11W—H22W⋯O3Wv | 0.84 | 1.85 | 2.670 (4) | 165 |
| O11W—H21W⋯O4i | 0.84 | 1.98 | 2.776 (4) | 158 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
.
Acknowledgments
The authors gratefully acknowledge financial support by the Scientific Research Innovation Foundation for youth teachers of Zhoukou Normal University.
supplementary crystallographic information
Comment
Recently, there has been much interest in the synthesis of metal coordination polymers, due to their possible application as microporous hosts for absorption or even as catalytic materials (Yaghi et al., 1995; Cheng et al.,2004). Herein, we report a new heteronuclear metal coordination polymer with the tricarboxylates, 5-Nitrobenzene-1,2,3-tricarboxylicacid (NBA) as the ligand, the copper (II) and sodium (I) as the metal ions.
As can be seen from the crystal structure in Fig.1, Cu and Na are connected via µ-O, O' coordination of water molecules, which structure is repeating unit along a axis, forming one-dimensional infinite chains, which chains along the a axis is built up through coordination between NBA, a part of water molecules and Cu(II), Na(I) (Fig.2). Through the forming of hydrogen bonds between chains and water molecules of the interchain, three-dimensional supermolecular structure is formed. The different chains are linked by an extensive hydrogen-bonding network (Table 1, Fig.3), through oxygen atoms of carboxylate and water molecule. Each of the water molecules has at least one hydrogen-bonding interaction, this leads to the formation of a stable three dimensional supramolecular structure.
Experimental
5-Nitrobenzene-1,2,3-tricarboxylic acid (0.051 g, 0.2 mmol) was added to a solution of copper chloride (0.027 g, 0.2 mmol) (20 mL), the resulting mixture was treated with a solution of NaOH until the pH value come rise to be about 8.The mixture was then stirred continuously for 6 h, and the filtrate was kept in conical flask for about 30 days and blue block crystals were obtained from the solution, dried in vacuum. Yield: 67.6%. Crystal of the title compound suitable for single-crystal X-ray diffraction was selected directly from the sample as prepared.
Refinement
All C-bound H atoms were placed in calculated positions, with C—H = 0.93Å for phenyl H, and refined as riding, with Uiso(H) =1.2Ueq (C) for phenyl H. The water H-atoms were placed in chemically sensible positions on the basis of hydrogen bonding but were not refined, with Uiso(H) = 1.5Ueq(O).
Figures
Fig. 1.
The molecular structure of (NBA) (thermal ellipsoids areshown at 30% probability levels). [Symmetry codes: (i) 1 + x, y, z; (ii) -1 + x, y, z]
Fig. 2.
The molecular packing diagram along the a axis (the NBA and water molecules have been omitted for clarity)
Fig. 3.
Three-dimensional supermolecular structure is built up through hydrogen bond
Crystal data
| [CuNa(C9H2NO8)(H2O)7]·4H2O | Z = 2 |
| Mr = 536.82 | F(000) = 554 |
| Triclinic, P1 | Dx = 1.722 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 6.6480 (13) Å | Cell parameters from 2416 reflections |
| b = 13.124 (3) Å | θ = 2.9–27.7° |
| c = 13.531 (3) Å | µ = 1.17 mm−1 |
| α = 63.46 (3)° | T = 295 K |
| β = 79.17 (4)° | Block, blue |
| γ = 82.13 (3)° | 0.27 × 0.26 × 0.21 mm |
| V = 1035.5 (4) Å3 |
Data collection
| Bruker APEXII area-detector diffractometer | 3719 independent reflections |
| Radiation source: fine-focus sealed tube | 3113 reflections with I > 2σ(I) |
| graphite | Rint = 0.021 |
| φ and ω scan | θmax = 25.2°, θmin = 1.7° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2005) | h = −7→7 |
| Tmin = 0.743, Tmax = 0.791 | k = −15→15 |
| 5466 measured reflections | l = −12→16 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.133 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0826P)2 + 0.906P] where P = (Fo2 + 2Fc2)/3 |
| 3696 reflections | (Δ/σ)max = 0.001 |
| 280 parameters | Δρmax = 0.76 e Å−3 |
| 0 restraints | Δρmin = −0.76 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.45974 (6) | 1.11126 (4) | 0.67569 (3) | 0.02613 (17) | |
| Na1 | 0.9245 (2) | 1.21836 (13) | 0.62390 (12) | 0.0355 (4) | |
| N1 | 0.1276 (5) | 0.5042 (3) | 1.1324 (2) | 0.0300 (7) | |
| C1 | 0.2949 (5) | 0.8902 (3) | 0.8445 (3) | 0.0233 (7) | |
| C2 | 0.2868 (5) | 0.7638 (3) | 0.8775 (3) | 0.0224 (7) | |
| C3 | 0.3519 (5) | 0.7198 (3) | 0.7989 (3) | 0.0209 (7) | |
| C4 | 0.3514 (5) | 0.6022 (3) | 0.8333 (3) | 0.0219 (7) | |
| C5 | 0.2859 (5) | 0.5315 (3) | 0.9441 (3) | 0.0238 (7) | |
| H5 | 0.2926 | 0.4528 | 0.9687 | 0.029* | |
| C6 | 0.2110 (5) | 0.5782 (3) | 1.0174 (3) | 0.0246 (7) | |
| C7 | 0.2114 (5) | 0.6939 (3) | 0.9862 (3) | 0.0240 (7) | |
| H7 | 0.1620 | 0.7239 | 1.0374 | 0.029* | |
| C8 | 0.4157 (5) | 0.7967 (3) | 0.6777 (3) | 0.0217 (7) | |
| C9 | 0.4168 (5) | 0.5492 (3) | 0.7518 (3) | 0.0255 (8) | |
| O1 | 0.1623 (5) | 0.4011 (2) | 1.1654 (2) | 0.0438 (7) | |
| O2 | 0.0221 (4) | 0.5489 (3) | 1.1883 (2) | 0.0424 (7) | |
| O3 | 0.5154 (4) | 0.4541 (2) | 0.7880 (2) | 0.0350 (6) | |
| O4 | 0.3646 (4) | 0.6026 (2) | 0.6569 (2) | 0.0322 (6) | |
| O5 | 0.5992 (3) | 0.7895 (2) | 0.6373 (2) | 0.0279 (5) | |
| O6 | 0.2773 (3) | 0.8631 (2) | 0.62482 (19) | 0.0253 (5) | |
| O7 | 0.1643 (4) | 0.9349 (2) | 0.8958 (2) | 0.0378 (7) | |
| O8 | 0.4354 (3) | 0.94091 (19) | 0.76839 (19) | 0.0239 (5) | |
| O1W | 1.0173 (5) | 1.3157 (3) | 0.4326 (3) | 0.0583 (9) | |
| H1W | 1.1316 | 1.3136 | 0.3943 | 0.087* | |
| H2W | 0.9188 | 1.3422 | 0.3956 | 0.087* | |
| O2W | 0.3871 (5) | 0.2405 (2) | 0.8712 (2) | 0.0480 (8) | |
| H3W | 0.3277 | 0.2063 | 0.9367 | 0.072* | |
| H4W | 0.4314 | 0.2983 | 0.8694 | 0.072* | |
| O3W | 0.2499 (4) | 0.4492 (2) | 0.5859 (2) | 0.0413 (7) | |
| H5W | 0.2851 | 0.4832 | 0.6193 | 0.062* | |
| H6W | 0.2712 | 0.4938 | 0.5177 | 0.062* | |
| O4W | 0.8268 (4) | 1.3977 (3) | 0.6357 (2) | 0.0457 (7) | |
| H7W | 0.7512 | 1.3945 | 0.6941 | 0.069* | |
| H8W | 0.9337 | 1.4228 | 0.6390 | 0.069* | |
| O5W | 0.8772 (4) | 0.8670 (2) | 0.7141 (2) | 0.0342 (6) | |
| H9W | 1.0052 | 0.8651 | 0.6965 | 0.051* | |
| H10W | 0.8229 | 0.8171 | 0.7068 | 0.051* | |
| O6W | 0.7667 (4) | 0.8945 (3) | 0.9121 (2) | 0.0416 (7) | |
| H11W | 0.8793 | 0.9089 | 0.9212 | 0.062* | |
| H12W | 0.7799 | 0.8737 | 0.8607 | 0.062* | |
| O7W | 0.1910 (4) | 1.1559 (2) | 0.7608 (2) | 0.0322 (6) | |
| H13W | 0.1805 | 1.0929 | 0.8175 | 0.048* | |
| H14W | 0.2254 | 1.1929 | 0.7914 | 0.048* | |
| O8W | 0.6440 (4) | 1.1187 (2) | 0.7809 (2) | 0.0304 (6) | |
| H15W | 0.6707 | 1.0528 | 0.8295 | 0.046* | |
| H16W | 0.5749 | 1.1599 | 0.8095 | 0.046* | |
| O9W | 0.2728 (4) | 1.0955 (2) | 0.5785 (2) | 0.0277 (5) | |
| H18W | 0.2966 | 1.1361 | 0.5094 | 0.041* | |
| H17W | 0.2814 | 1.0266 | 0.5904 | 0.041* | |
| O10W | 0.7342 (4) | 1.0795 (2) | 0.5925 (2) | 0.0275 (5) | |
| H19W | 0.7623 | 1.0126 | 0.6388 | 0.041* | |
| H20W | 0.7367 | 1.0866 | 0.5275 | 0.041* | |
| O11W | 0.5012 (4) | 1.2786 (2) | 0.5697 (2) | 0.0329 (6) | |
| H21W | 0.5259 | 1.3005 | 0.5003 | 0.049* | |
| H22W | 0.4304 | 1.3288 | 0.5857 | 0.049* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0215 (3) | 0.0263 (3) | 0.0308 (3) | −0.00127 (17) | −0.00157 (18) | −0.0134 (2) |
| Na1 | 0.0309 (8) | 0.0395 (9) | 0.0336 (8) | −0.0038 (7) | −0.0005 (6) | −0.0146 (7) |
| N1 | 0.0234 (16) | 0.0362 (18) | 0.0270 (16) | −0.0065 (13) | −0.0033 (13) | −0.0094 (14) |
| C1 | 0.0191 (17) | 0.0243 (17) | 0.0272 (18) | 0.0004 (14) | −0.0049 (14) | −0.0115 (15) |
| C2 | 0.0163 (16) | 0.0238 (17) | 0.0279 (18) | −0.0009 (13) | −0.0026 (13) | −0.0121 (14) |
| C3 | 0.0101 (15) | 0.0242 (17) | 0.0283 (18) | 0.0014 (12) | −0.0050 (13) | −0.0112 (14) |
| C4 | 0.0138 (16) | 0.0239 (17) | 0.0284 (18) | 0.0013 (13) | −0.0054 (13) | −0.0114 (14) |
| C5 | 0.0200 (17) | 0.0225 (17) | 0.0286 (18) | 0.0001 (13) | −0.0059 (14) | −0.0103 (14) |
| C6 | 0.0156 (16) | 0.0294 (19) | 0.0251 (18) | −0.0001 (14) | −0.0051 (13) | −0.0081 (15) |
| C7 | 0.0187 (17) | 0.0280 (18) | 0.0277 (18) | 0.0018 (14) | −0.0023 (14) | −0.0156 (15) |
| C8 | 0.0182 (17) | 0.0216 (16) | 0.0286 (18) | −0.0023 (13) | −0.0015 (14) | −0.0141 (14) |
| C9 | 0.0183 (17) | 0.0278 (18) | 0.032 (2) | −0.0085 (14) | 0.0041 (14) | −0.0158 (16) |
| O1 | 0.0474 (18) | 0.0309 (16) | 0.0384 (16) | −0.0047 (13) | −0.0023 (13) | −0.0029 (12) |
| O2 | 0.0423 (17) | 0.0481 (17) | 0.0325 (15) | −0.0075 (14) | 0.0089 (13) | −0.0178 (14) |
| O3 | 0.0375 (15) | 0.0285 (14) | 0.0415 (15) | 0.0052 (12) | −0.0052 (12) | −0.0193 (12) |
| O4 | 0.0358 (15) | 0.0358 (14) | 0.0275 (14) | −0.0040 (12) | −0.0032 (11) | −0.0161 (12) |
| O5 | 0.0168 (12) | 0.0343 (14) | 0.0294 (13) | −0.0004 (10) | 0.0008 (10) | −0.0127 (11) |
| O6 | 0.0199 (12) | 0.0275 (13) | 0.0253 (12) | 0.0016 (10) | −0.0047 (10) | −0.0090 (10) |
| O7 | 0.0351 (15) | 0.0314 (14) | 0.0463 (16) | −0.0050 (12) | 0.0122 (12) | −0.0225 (13) |
| O8 | 0.0199 (12) | 0.0218 (12) | 0.0275 (13) | −0.0024 (9) | 0.0004 (10) | −0.0095 (10) |
| O1W | 0.0451 (18) | 0.070 (2) | 0.0423 (18) | 0.0258 (16) | −0.0035 (14) | −0.0179 (16) |
| O2W | 0.066 (2) | 0.0372 (16) | 0.0431 (17) | −0.0126 (15) | 0.0103 (15) | −0.0239 (14) |
| O3W | 0.0445 (17) | 0.0404 (16) | 0.0471 (17) | 0.0023 (13) | −0.0078 (13) | −0.0270 (14) |
| O4W | 0.0373 (16) | 0.060 (2) | 0.0482 (17) | −0.0100 (14) | −0.0011 (13) | −0.0305 (16) |
| O5W | 0.0208 (13) | 0.0348 (14) | 0.0501 (17) | 0.0011 (11) | −0.0051 (11) | −0.0219 (13) |
| O6W | 0.0340 (15) | 0.0517 (18) | 0.0388 (16) | −0.0006 (13) | −0.0044 (12) | −0.0202 (14) |
| O7W | 0.0282 (14) | 0.0322 (14) | 0.0372 (14) | −0.0002 (11) | 0.0014 (11) | −0.0187 (12) |
| O8W | 0.0329 (14) | 0.0314 (14) | 0.0302 (14) | −0.0012 (11) | −0.0060 (11) | −0.0159 (11) |
| O9W | 0.0288 (13) | 0.0267 (13) | 0.0274 (13) | −0.0017 (10) | −0.0054 (10) | −0.0111 (11) |
| O10W | 0.0232 (12) | 0.0300 (13) | 0.0282 (13) | 0.0018 (10) | −0.0005 (10) | −0.0138 (11) |
| O11W | 0.0394 (15) | 0.0237 (13) | 0.0310 (14) | −0.0019 (11) | 0.0016 (11) | −0.0104 (11) |
Geometric parameters (Å, °)
| Cu1—O8 | 2.028 (2) | C8—O5 | 1.249 (4) |
| Cu1—O11W | 2.040 (3) | C8—O6 | 1.260 (4) |
| Cu1—O10W | 2.052 (2) | C9—O4 | 1.247 (4) |
| Cu1—O9W | 2.061 (2) | C9—O3 | 1.256 (4) |
| Cu1—O8W | 2.086 (2) | O1W—H1W | 0.8400 |
| Cu1—O7W | 2.098 (3) | O1W—H2W | 0.8399 |
| Na1—O1W | 2.318 (4) | O2W—H3W | 0.8400 |
| Na1—O4W | 2.422 (3) | O2W—H4W | 0.8398 |
| Na1—O8W | 2.529 (3) | O3W—H5W | 0.8401 |
| Na1—O10W | 2.574 (3) | O3W—H6W | 0.8398 |
| Na1—O7Wi | 2.593 (3) | O4W—H7W | 0.8401 |
| Na1—O9Wi | 2.770 (3) | O4W—H8W | 0.8401 |
| N1—O2 | 1.222 (4) | O5W—H9W | 0.8401 |
| N1—O1 | 1.224 (4) | O5W—H10W | 0.8400 |
| N1—C6 | 1.464 (5) | O6W—H11W | 0.8399 |
| C1—O8 | 1.254 (4) | O6W—H12W | 0.8400 |
| C1—O7 | 1.256 (4) | O7W—Na1ii | 2.593 (3) |
| C1—C2 | 1.519 (5) | O7W—H13W | 0.8400 |
| C2—C7 | 1.378 (5) | O7W—H14W | 0.8399 |
| C2—C3 | 1.400 (5) | O8W—H15W | 0.8399 |
| C3—C4 | 1.400 (5) | O8W—H16W | 0.8399 |
| C3—C8 | 1.505 (5) | O9W—Na1ii | 2.769 (3) |
| C4—C5 | 1.386 (5) | O9W—H18W | 0.8398 |
| C4—C9 | 1.521 (5) | O9W—H17W | 0.8400 |
| C5—C6 | 1.372 (5) | O10W—H19W | 0.8398 |
| C5—H5 | 0.9300 | O10W—H20W | 0.8395 |
| C6—C7 | 1.382 (5) | O11W—H21W | 0.8400 |
| C7—H7 | 0.9300 | O11W—H22W | 0.8401 |
| O8—Cu1—O11W | 174.07 (9) | C2—C3—C8 | 121.4 (3) |
| O8—Cu1—O10W | 89.57 (10) | C5—C4—C3 | 119.6 (3) |
| O11W—Cu1—O10W | 85.25 (11) | C5—C4—C9 | 118.6 (3) |
| O8—Cu1—O9W | 85.27 (10) | C3—C4—C9 | 121.8 (3) |
| O11W—Cu1—O9W | 92.50 (11) | C6—C5—C4 | 119.6 (3) |
| O10W—Cu1—O9W | 97.07 (10) | C6—C5—H5 | 120.2 |
| O8—Cu1—O8W | 91.76 (10) | C4—C5—H5 | 120.2 |
| O11W—Cu1—O8W | 90.54 (11) | C5—C6—C7 | 122.0 (3) |
| O10W—Cu1—O8W | 83.80 (10) | C5—C6—N1 | 119.5 (3) |
| O9W—Cu1—O8W | 176.89 (10) | C7—C6—N1 | 118.5 (3) |
| O8—Cu1—O7W | 94.30 (10) | C2—C7—C6 | 118.5 (3) |
| O11W—Cu1—O7W | 91.04 (11) | C2—C7—H7 | 120.8 |
| O10W—Cu1—O7W | 174.87 (10) | C6—C7—H7 | 120.8 |
| O9W—Cu1—O7W | 86.61 (10) | O5—C8—O6 | 125.2 (3) |
| O8W—Cu1—O7W | 92.71 (10) | O5—C8—C3 | 118.1 (3) |
| O8—Cu1—Na1 | 118.29 (8) | O6—C8—C3 | 116.7 (3) |
| O11W—Cu1—Na1 | 59.92 (9) | O4—C9—O3 | 126.4 (3) |
| O10W—Cu1—Na1 | 49.22 (8) | O4—C9—C4 | 117.4 (3) |
| O9W—Cu1—Na1 | 134.47 (8) | O3—C9—C4 | 116.2 (3) |
| O8W—Cu1—Na1 | 48.05 (8) | C1—O8—Cu1 | 128.3 (2) |
| O7W—Cu1—Na1 | 125.72 (8) | Na1—O1W—H1W | 128.5 |
| O1W—Na1—O4W | 90.19 (12) | Na1—O1W—H2W | 115.0 |
| O1W—Na1—O8W | 146.32 (13) | H1W—O1W—H2W | 114.4 |
| O4W—Na1—O8W | 91.74 (11) | H3W—O2W—H4W | 104.9 |
| O1W—Na1—O10W | 89.56 (13) | H5W—O3W—H6W | 105.6 |
| O4W—Na1—O10W | 134.16 (11) | Na1—O4W—H7W | 116.6 |
| O8W—Na1—O10W | 65.55 (9) | Na1—O4W—H8W | 107.4 |
| O1W—Na1—O7Wi | 121.61 (12) | H7W—O4W—H8W | 101.9 |
| O4W—Na1—O7Wi | 93.88 (11) | H9W—O5W—H10W | 112.6 |
| O8W—Na1—O7Wi | 91.80 (9) | H11W—O6W—H12W | 112.2 |
| O10W—Na1—O7Wi | 124.37 (10) | Cu1—O7W—Na1ii | 104.30 (11) |
| O1W—Na1—O9Wi | 76.07 (10) | Cu1—O7W—H13W | 97.3 |
| O4W—Na1—O9Wi | 139.84 (11) | Na1ii—O7W—H13W | 118.8 |
| O8W—Na1—O9Wi | 120.44 (10) | Cu1—O7W—H14W | 107.2 |
| O10W—Na1—O9Wi | 84.04 (8) | Na1ii—O7W—H14W | 127.7 |
| O7Wi—Na1—O9Wi | 64.18 (8) | H13W—O7W—H14W | 97.3 |
| O1W—Na1—O11W | 84.16 (11) | Cu1—O8W—Na1 | 94.13 (10) |
| O4W—Na1—O11W | 74.72 (10) | Cu1—O8W—H15W | 110.2 |
| O8W—Na1—O11W | 64.06 (9) | Na1—O8W—H15W | 118.7 |
| O10W—Na1—O11W | 59.67 (8) | Cu1—O8W—H16W | 105.0 |
| O7Wi—Na1—O11W | 152.36 (9) | Na1—O8W—H16W | 114.6 |
| O9Wi—Na1—O11W | 138.74 (9) | H15W—O8W—H16W | 111.7 |
| O1W—Na1—Cu1 | 109.05 (11) | Cu1—O9W—Na1ii | 99.58 (10) |
| O4W—Na1—Cu1 | 101.24 (9) | Cu1—O9W—H18W | 116.8 |
| O8W—Na1—Cu1 | 37.82 (6) | Na1ii—O9W—H18W | 97.8 |
| O10W—Na1—Cu1 | 37.12 (6) | Cu1—O9W—H17W | 107.5 |
| O7Wi—Na1—Cu1 | 126.89 (8) | Na1ii—O9W—H17W | 126.6 |
| O9Wi—Na1—Cu1 | 118.89 (7) | H18W—O9W—H17W | 108.9 |
| O11W—Na1—Cu1 | 36.68 (5) | Cu1—O10W—Na1 | 93.66 (10) |
| O2—N1—O1 | 124.0 (3) | Cu1—O10W—H19W | 99.1 |
| O2—N1—C6 | 118.0 (3) | Na1—O10W—H19W | 108.8 |
| O1—N1—C6 | 117.9 (3) | Cu1—O10W—H20W | 118.2 |
| O8—C1—O7 | 125.5 (3) | Na1—O10W—H20W | 119.7 |
| O8—C1—C2 | 116.4 (3) | H19W—O10W—H20W | 114.0 |
| O7—C1—C2 | 118.2 (3) | Cu1—O11W—H21W | 121.0 |
| C7—C2—C3 | 120.9 (3) | Na1—O11W—H21W | 99.5 |
| C7—C2—C1 | 118.4 (3) | Cu1—O11W—H22W | 118.5 |
| C3—C2—C1 | 120.7 (3) | Na1—O11W—H22W | 118.7 |
| C4—C3—C2 | 119.2 (3) | H21W—O11W—H22W | 111.2 |
| C4—C3—C8 | 119.4 (3) |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1W—H2W···O4iii | 0.84 | 2.06 | 2.883 (4) | 166 |
| O1W—H1W···O5iv | 0.84 | 2.19 | 2.932 (4) | 148 |
| O2W—H4W···O3 | 0.84 | 1.94 | 2.706 (4) | 151 |
| O2W—H3W···O6Wv | 0.84 | 1.91 | 2.741 (4) | 169 |
| O3W—H6W···O4Wiii | 0.84 | 2.09 | 2.863 (4) | 153 |
| O3W—H5W···O4 | 0.84 | 2.01 | 2.825 (4) | 164 |
| O4W—H8W···O3Wvi | 0.84 | 2.11 | 2.868 (4) | 149 |
| O4W—H7W···O3vii | 0.84 | 2.12 | 2.902 (4) | 155 |
| O5W—H10W···O1v | 0.84 | 2.60 | 3.174 (4) | 127 |
| O5W—H10W···O5 | 0.84 | 2.05 | 2.778 (4) | 145 |
| O5W—H9W···O6i | 0.84 | 1.89 | 2.711 (3) | 166 |
| O6W—H12W···O5W | 0.84 | 2.00 | 2.810 (4) | 161 |
| O6W—H11W···O7i | 0.84 | 1.91 | 2.716 (4) | 160 |
| O7W—H14W···O2Wvii | 0.84 | 1.98 | 2.788 (4) | 160 |
| O7W—H13W···O7 | 0.84 | 1.87 | 2.657 (4) | 156 |
| O8W—H16W···O2Wvii | 0.84 | 1.85 | 2.679 (4) | 171 |
| O8W—H15W···O6W | 0.84 | 1.95 | 2.774 (4) | 167 |
| O9W—H18W···O5iii | 0.84 | 1.82 | 2.647 (4) | 168 |
| O9W—H17W···O6 | 0.84 | 1.99 | 2.823 (3) | 175 |
| O10W—H19W···O5W | 0.84 | 1.85 | 2.674 (4) | 166 |
| O10W—H20W···O6iii | 0.84 | 1.88 | 2.704 (3) | 167 |
| O11W—H22W···O3Wvii | 0.84 | 1.85 | 2.670 (4) | 165 |
| O11W—H21W···O4iii | 0.84 | 1.98 | 2.776 (4) | 158 |
Symmetry codes: (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+2, −z+1; (v) −x+1, −y+1, −z+2; (vi) x+1, y+1, z; (vii) x, y+1, z; (i) x+1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2712).
References
- Bruker (2005). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheng, D.-P., Khan, M.-A. & Houser, R. P. (2004). Cryst. Growth Des.4, 599–604.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
- Sheldrick, G. M. (2005). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Yaghi, O. M. & Li, H. (1995). Nature (London), 378, 703–706.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000401/ng2712sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000401/ng2712Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



