Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 9;66(Pt 2):m132–m133. doi: 10.1107/S1600536810000401

catena-Poly[[[aqua­(5-nitro­benzene-1,2,3-tricarboxyl­ato-κO 1)copper(II)]-di-μ-aqua-[diaqua­sodium]-di-μ-aqua] tetra­hydrate]

Yong-Jie Ding a, Chun-Xiang Zhao b,*
PMCID: PMC2979819  PMID: 21579616

Abstract

In the heteronuclear coordination polymer, {[CuNa(C9H2NO8)(H2O)7]·4H2O}n, the CuII atom is coordinated by six O atoms from five water mol­ecules and one 5-nitro­benzene-1,2,3-tricarboxyl­ate ligand in a slightly distorted octa­hedral geometry. The Na+ cation is surrounded by six water mol­ecules in an irregular trigonal-prismatic geometry. The Cu and Na atoms are connected by water bridges, forming an infinite chain. O—H⋯O hydrogen bonds involving the coordinated and uncoordinated water mol­ecules connect the chains into a three-dimensional network.

Related literature

For general background to the possible applications of metal coordination polymers as microporous hosts for absorption or as catalytic materials, see: Cheng et al. (2004); Yaghi & Li (1995).graphic file with name e-66-0m132-scheme1.jpg

Experimental

Crystal data

  • [CuNa(C9H2NO8)(H2O)7]·4H2O

  • M r = 536.82

  • Triclinic, Inline graphic

  • a = 6.6480 (13) Å

  • b = 13.124 (3) Å

  • c = 13.531 (3) Å

  • α = 63.46 (3)°

  • β = 79.17 (4)°

  • γ = 82.13 (3)°

  • V = 1035.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 295 K

  • 0.27 × 0.26 × 0.21 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005) T min = 0.743, T max = 0.791

  • 5466 measured reflections

  • 3696 independent reflections

  • 3113 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.133

  • S = 1.02

  • 3696 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000401/ng2712sup1.cif

e-66-0m132-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000401/ng2712Isup2.hkl

e-66-0m132-Isup2.hkl (181.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O4i 0.84 2.06 2.883 (4) 166
O1W—H1W⋯O5ii 0.84 2.19 2.932 (4) 148
O2W—H4W⋯O3 0.84 1.94 2.706 (4) 151
O2W—H3W⋯O6Wiii 0.84 1.91 2.741 (4) 169
O3W—H6W⋯O4Wi 0.84 2.09 2.863 (4) 153
O3W—H5W⋯O4 0.84 2.01 2.825 (4) 164
O4W—H8W⋯O3Wiv 0.84 2.11 2.868 (4) 149
O4W—H7W⋯O3v 0.84 2.12 2.902 (4) 155
O5W—H10W⋯O1iii 0.84 2.60 3.174 (4) 127
O5W—H10W⋯O5 0.84 2.05 2.778 (4) 145
O5W—H9W⋯O6vi 0.84 1.89 2.711 (3) 166
O6W—H12W⋯O5W 0.84 2.00 2.810 (4) 161
O6W—H11W⋯O7vi 0.84 1.91 2.716 (4) 160
O7W—H14W⋯O2Wv 0.84 1.98 2.788 (4) 160
O7W—H13W⋯O7 0.84 1.87 2.657 (4) 156
O8W—H16W⋯O2Wv 0.84 1.85 2.679 (4) 171
O8W—H15W⋯O6W 0.84 1.95 2.774 (4) 167
O9W—H18W⋯O5i 0.84 1.82 2.647 (4) 168
O9W—H17W⋯O6 0.84 1.99 2.823 (3) 175
O10W—H19W⋯O5W 0.84 1.85 2.674 (4) 166
O10W—H20W⋯O6i 0.84 1.88 2.704 (3) 167
O11W—H22W⋯O3Wv 0.84 1.85 2.670 (4) 165
O11W—H21W⋯O4i 0.84 1.98 2.776 (4) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors gratefully acknowledge financial support by the Scientific Research Innovation Foundation for youth teachers of Zhoukou Normal University.

supplementary crystallographic information

Comment

Recently, there has been much interest in the synthesis of metal coordination polymers, due to their possible application as microporous hosts for absorption or even as catalytic materials (Yaghi et al., 1995; Cheng et al.,2004). Herein, we report a new heteronuclear metal coordination polymer with the tricarboxylates, 5-Nitrobenzene-1,2,3-tricarboxylicacid (NBA) as the ligand, the copper (II) and sodium (I) as the metal ions.

As can be seen from the crystal structure in Fig.1, Cu and Na are connected via µ-O, O' coordination of water molecules, which structure is repeating unit along a axis, forming one-dimensional infinite chains, which chains along the a axis is built up through coordination between NBA, a part of water molecules and Cu(II), Na(I) (Fig.2). Through the forming of hydrogen bonds between chains and water molecules of the interchain, three-dimensional supermolecular structure is formed. The different chains are linked by an extensive hydrogen-bonding network (Table 1, Fig.3), through oxygen atoms of carboxylate and water molecule. Each of the water molecules has at least one hydrogen-bonding interaction, this leads to the formation of a stable three dimensional supramolecular structure.

Experimental

5-Nitrobenzene-1,2,3-tricarboxylic acid (0.051 g, 0.2 mmol) was added to a solution of copper chloride (0.027 g, 0.2 mmol) (20 mL), the resulting mixture was treated with a solution of NaOH until the pH value come rise to be about 8.The mixture was then stirred continuously for 6 h, and the filtrate was kept in conical flask for about 30 days and blue block crystals were obtained from the solution, dried in vacuum. Yield: 67.6%. Crystal of the title compound suitable for single-crystal X-ray diffraction was selected directly from the sample as prepared.

Refinement

All C-bound H atoms were placed in calculated positions, with C—H = 0.93Å for phenyl H, and refined as riding, with Uiso(H) =1.2Ueq (C) for phenyl H. The water H-atoms were placed in chemically sensible positions on the basis of hydrogen bonding but were not refined, with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (NBA) (thermal ellipsoids areshown at 30% probability levels). [Symmetry codes: (i) 1 + x, y, z; (ii) -1 + x, y, z]

Fig. 2.

Fig. 2.

The molecular packing diagram along the a axis (the NBA and water molecules have been omitted for clarity)

Fig. 3.

Fig. 3.

Three-dimensional supermolecular structure is built up through hydrogen bond

Crystal data

[CuNa(C9H2NO8)(H2O)7]·4H2O Z = 2
Mr = 536.82 F(000) = 554
Triclinic, P1 Dx = 1.722 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.6480 (13) Å Cell parameters from 2416 reflections
b = 13.124 (3) Å θ = 2.9–27.7°
c = 13.531 (3) Å µ = 1.17 mm1
α = 63.46 (3)° T = 295 K
β = 79.17 (4)° Block, blue
γ = 82.13 (3)° 0.27 × 0.26 × 0.21 mm
V = 1035.5 (4) Å3

Data collection

Bruker APEXII area-detector diffractometer 3719 independent reflections
Radiation source: fine-focus sealed tube 3113 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scan θmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2005) h = −7→7
Tmin = 0.743, Tmax = 0.791 k = −15→15
5466 measured reflections l = −12→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.906P] where P = (Fo2 + 2Fc2)/3
3696 reflections (Δ/σ)max = 0.001
280 parameters Δρmax = 0.76 e Å3
0 restraints Δρmin = −0.76 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.45974 (6) 1.11126 (4) 0.67569 (3) 0.02613 (17)
Na1 0.9245 (2) 1.21836 (13) 0.62390 (12) 0.0355 (4)
N1 0.1276 (5) 0.5042 (3) 1.1324 (2) 0.0300 (7)
C1 0.2949 (5) 0.8902 (3) 0.8445 (3) 0.0233 (7)
C2 0.2868 (5) 0.7638 (3) 0.8775 (3) 0.0224 (7)
C3 0.3519 (5) 0.7198 (3) 0.7989 (3) 0.0209 (7)
C4 0.3514 (5) 0.6022 (3) 0.8333 (3) 0.0219 (7)
C5 0.2859 (5) 0.5315 (3) 0.9441 (3) 0.0238 (7)
H5 0.2926 0.4528 0.9687 0.029*
C6 0.2110 (5) 0.5782 (3) 1.0174 (3) 0.0246 (7)
C7 0.2114 (5) 0.6939 (3) 0.9862 (3) 0.0240 (7)
H7 0.1620 0.7239 1.0374 0.029*
C8 0.4157 (5) 0.7967 (3) 0.6777 (3) 0.0217 (7)
C9 0.4168 (5) 0.5492 (3) 0.7518 (3) 0.0255 (8)
O1 0.1623 (5) 0.4011 (2) 1.1654 (2) 0.0438 (7)
O2 0.0221 (4) 0.5489 (3) 1.1883 (2) 0.0424 (7)
O3 0.5154 (4) 0.4541 (2) 0.7880 (2) 0.0350 (6)
O4 0.3646 (4) 0.6026 (2) 0.6569 (2) 0.0322 (6)
O5 0.5992 (3) 0.7895 (2) 0.6373 (2) 0.0279 (5)
O6 0.2773 (3) 0.8631 (2) 0.62482 (19) 0.0253 (5)
O7 0.1643 (4) 0.9349 (2) 0.8958 (2) 0.0378 (7)
O8 0.4354 (3) 0.94091 (19) 0.76839 (19) 0.0239 (5)
O1W 1.0173 (5) 1.3157 (3) 0.4326 (3) 0.0583 (9)
H1W 1.1316 1.3136 0.3943 0.087*
H2W 0.9188 1.3422 0.3956 0.087*
O2W 0.3871 (5) 0.2405 (2) 0.8712 (2) 0.0480 (8)
H3W 0.3277 0.2063 0.9367 0.072*
H4W 0.4314 0.2983 0.8694 0.072*
O3W 0.2499 (4) 0.4492 (2) 0.5859 (2) 0.0413 (7)
H5W 0.2851 0.4832 0.6193 0.062*
H6W 0.2712 0.4938 0.5177 0.062*
O4W 0.8268 (4) 1.3977 (3) 0.6357 (2) 0.0457 (7)
H7W 0.7512 1.3945 0.6941 0.069*
H8W 0.9337 1.4228 0.6390 0.069*
O5W 0.8772 (4) 0.8670 (2) 0.7141 (2) 0.0342 (6)
H9W 1.0052 0.8651 0.6965 0.051*
H10W 0.8229 0.8171 0.7068 0.051*
O6W 0.7667 (4) 0.8945 (3) 0.9121 (2) 0.0416 (7)
H11W 0.8793 0.9089 0.9212 0.062*
H12W 0.7799 0.8737 0.8607 0.062*
O7W 0.1910 (4) 1.1559 (2) 0.7608 (2) 0.0322 (6)
H13W 0.1805 1.0929 0.8175 0.048*
H14W 0.2254 1.1929 0.7914 0.048*
O8W 0.6440 (4) 1.1187 (2) 0.7809 (2) 0.0304 (6)
H15W 0.6707 1.0528 0.8295 0.046*
H16W 0.5749 1.1599 0.8095 0.046*
O9W 0.2728 (4) 1.0955 (2) 0.5785 (2) 0.0277 (5)
H18W 0.2966 1.1361 0.5094 0.041*
H17W 0.2814 1.0266 0.5904 0.041*
O10W 0.7342 (4) 1.0795 (2) 0.5925 (2) 0.0275 (5)
H19W 0.7623 1.0126 0.6388 0.041*
H20W 0.7367 1.0866 0.5275 0.041*
O11W 0.5012 (4) 1.2786 (2) 0.5697 (2) 0.0329 (6)
H21W 0.5259 1.3005 0.5003 0.049*
H22W 0.4304 1.3288 0.5857 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0215 (3) 0.0263 (3) 0.0308 (3) −0.00127 (17) −0.00157 (18) −0.0134 (2)
Na1 0.0309 (8) 0.0395 (9) 0.0336 (8) −0.0038 (7) −0.0005 (6) −0.0146 (7)
N1 0.0234 (16) 0.0362 (18) 0.0270 (16) −0.0065 (13) −0.0033 (13) −0.0094 (14)
C1 0.0191 (17) 0.0243 (17) 0.0272 (18) 0.0004 (14) −0.0049 (14) −0.0115 (15)
C2 0.0163 (16) 0.0238 (17) 0.0279 (18) −0.0009 (13) −0.0026 (13) −0.0121 (14)
C3 0.0101 (15) 0.0242 (17) 0.0283 (18) 0.0014 (12) −0.0050 (13) −0.0112 (14)
C4 0.0138 (16) 0.0239 (17) 0.0284 (18) 0.0013 (13) −0.0054 (13) −0.0114 (14)
C5 0.0200 (17) 0.0225 (17) 0.0286 (18) 0.0001 (13) −0.0059 (14) −0.0103 (14)
C6 0.0156 (16) 0.0294 (19) 0.0251 (18) −0.0001 (14) −0.0051 (13) −0.0081 (15)
C7 0.0187 (17) 0.0280 (18) 0.0277 (18) 0.0018 (14) −0.0023 (14) −0.0156 (15)
C8 0.0182 (17) 0.0216 (16) 0.0286 (18) −0.0023 (13) −0.0015 (14) −0.0141 (14)
C9 0.0183 (17) 0.0278 (18) 0.032 (2) −0.0085 (14) 0.0041 (14) −0.0158 (16)
O1 0.0474 (18) 0.0309 (16) 0.0384 (16) −0.0047 (13) −0.0023 (13) −0.0029 (12)
O2 0.0423 (17) 0.0481 (17) 0.0325 (15) −0.0075 (14) 0.0089 (13) −0.0178 (14)
O3 0.0375 (15) 0.0285 (14) 0.0415 (15) 0.0052 (12) −0.0052 (12) −0.0193 (12)
O4 0.0358 (15) 0.0358 (14) 0.0275 (14) −0.0040 (12) −0.0032 (11) −0.0161 (12)
O5 0.0168 (12) 0.0343 (14) 0.0294 (13) −0.0004 (10) 0.0008 (10) −0.0127 (11)
O6 0.0199 (12) 0.0275 (13) 0.0253 (12) 0.0016 (10) −0.0047 (10) −0.0090 (10)
O7 0.0351 (15) 0.0314 (14) 0.0463 (16) −0.0050 (12) 0.0122 (12) −0.0225 (13)
O8 0.0199 (12) 0.0218 (12) 0.0275 (13) −0.0024 (9) 0.0004 (10) −0.0095 (10)
O1W 0.0451 (18) 0.070 (2) 0.0423 (18) 0.0258 (16) −0.0035 (14) −0.0179 (16)
O2W 0.066 (2) 0.0372 (16) 0.0431 (17) −0.0126 (15) 0.0103 (15) −0.0239 (14)
O3W 0.0445 (17) 0.0404 (16) 0.0471 (17) 0.0023 (13) −0.0078 (13) −0.0270 (14)
O4W 0.0373 (16) 0.060 (2) 0.0482 (17) −0.0100 (14) −0.0011 (13) −0.0305 (16)
O5W 0.0208 (13) 0.0348 (14) 0.0501 (17) 0.0011 (11) −0.0051 (11) −0.0219 (13)
O6W 0.0340 (15) 0.0517 (18) 0.0388 (16) −0.0006 (13) −0.0044 (12) −0.0202 (14)
O7W 0.0282 (14) 0.0322 (14) 0.0372 (14) −0.0002 (11) 0.0014 (11) −0.0187 (12)
O8W 0.0329 (14) 0.0314 (14) 0.0302 (14) −0.0012 (11) −0.0060 (11) −0.0159 (11)
O9W 0.0288 (13) 0.0267 (13) 0.0274 (13) −0.0017 (10) −0.0054 (10) −0.0111 (11)
O10W 0.0232 (12) 0.0300 (13) 0.0282 (13) 0.0018 (10) −0.0005 (10) −0.0138 (11)
O11W 0.0394 (15) 0.0237 (13) 0.0310 (14) −0.0019 (11) 0.0016 (11) −0.0104 (11)

Geometric parameters (Å, °)

Cu1—O8 2.028 (2) C8—O5 1.249 (4)
Cu1—O11W 2.040 (3) C8—O6 1.260 (4)
Cu1—O10W 2.052 (2) C9—O4 1.247 (4)
Cu1—O9W 2.061 (2) C9—O3 1.256 (4)
Cu1—O8W 2.086 (2) O1W—H1W 0.8400
Cu1—O7W 2.098 (3) O1W—H2W 0.8399
Na1—O1W 2.318 (4) O2W—H3W 0.8400
Na1—O4W 2.422 (3) O2W—H4W 0.8398
Na1—O8W 2.529 (3) O3W—H5W 0.8401
Na1—O10W 2.574 (3) O3W—H6W 0.8398
Na1—O7Wi 2.593 (3) O4W—H7W 0.8401
Na1—O9Wi 2.770 (3) O4W—H8W 0.8401
N1—O2 1.222 (4) O5W—H9W 0.8401
N1—O1 1.224 (4) O5W—H10W 0.8400
N1—C6 1.464 (5) O6W—H11W 0.8399
C1—O8 1.254 (4) O6W—H12W 0.8400
C1—O7 1.256 (4) O7W—Na1ii 2.593 (3)
C1—C2 1.519 (5) O7W—H13W 0.8400
C2—C7 1.378 (5) O7W—H14W 0.8399
C2—C3 1.400 (5) O8W—H15W 0.8399
C3—C4 1.400 (5) O8W—H16W 0.8399
C3—C8 1.505 (5) O9W—Na1ii 2.769 (3)
C4—C5 1.386 (5) O9W—H18W 0.8398
C4—C9 1.521 (5) O9W—H17W 0.8400
C5—C6 1.372 (5) O10W—H19W 0.8398
C5—H5 0.9300 O10W—H20W 0.8395
C6—C7 1.382 (5) O11W—H21W 0.8400
C7—H7 0.9300 O11W—H22W 0.8401
O8—Cu1—O11W 174.07 (9) C2—C3—C8 121.4 (3)
O8—Cu1—O10W 89.57 (10) C5—C4—C3 119.6 (3)
O11W—Cu1—O10W 85.25 (11) C5—C4—C9 118.6 (3)
O8—Cu1—O9W 85.27 (10) C3—C4—C9 121.8 (3)
O11W—Cu1—O9W 92.50 (11) C6—C5—C4 119.6 (3)
O10W—Cu1—O9W 97.07 (10) C6—C5—H5 120.2
O8—Cu1—O8W 91.76 (10) C4—C5—H5 120.2
O11W—Cu1—O8W 90.54 (11) C5—C6—C7 122.0 (3)
O10W—Cu1—O8W 83.80 (10) C5—C6—N1 119.5 (3)
O9W—Cu1—O8W 176.89 (10) C7—C6—N1 118.5 (3)
O8—Cu1—O7W 94.30 (10) C2—C7—C6 118.5 (3)
O11W—Cu1—O7W 91.04 (11) C2—C7—H7 120.8
O10W—Cu1—O7W 174.87 (10) C6—C7—H7 120.8
O9W—Cu1—O7W 86.61 (10) O5—C8—O6 125.2 (3)
O8W—Cu1—O7W 92.71 (10) O5—C8—C3 118.1 (3)
O8—Cu1—Na1 118.29 (8) O6—C8—C3 116.7 (3)
O11W—Cu1—Na1 59.92 (9) O4—C9—O3 126.4 (3)
O10W—Cu1—Na1 49.22 (8) O4—C9—C4 117.4 (3)
O9W—Cu1—Na1 134.47 (8) O3—C9—C4 116.2 (3)
O8W—Cu1—Na1 48.05 (8) C1—O8—Cu1 128.3 (2)
O7W—Cu1—Na1 125.72 (8) Na1—O1W—H1W 128.5
O1W—Na1—O4W 90.19 (12) Na1—O1W—H2W 115.0
O1W—Na1—O8W 146.32 (13) H1W—O1W—H2W 114.4
O4W—Na1—O8W 91.74 (11) H3W—O2W—H4W 104.9
O1W—Na1—O10W 89.56 (13) H5W—O3W—H6W 105.6
O4W—Na1—O10W 134.16 (11) Na1—O4W—H7W 116.6
O8W—Na1—O10W 65.55 (9) Na1—O4W—H8W 107.4
O1W—Na1—O7Wi 121.61 (12) H7W—O4W—H8W 101.9
O4W—Na1—O7Wi 93.88 (11) H9W—O5W—H10W 112.6
O8W—Na1—O7Wi 91.80 (9) H11W—O6W—H12W 112.2
O10W—Na1—O7Wi 124.37 (10) Cu1—O7W—Na1ii 104.30 (11)
O1W—Na1—O9Wi 76.07 (10) Cu1—O7W—H13W 97.3
O4W—Na1—O9Wi 139.84 (11) Na1ii—O7W—H13W 118.8
O8W—Na1—O9Wi 120.44 (10) Cu1—O7W—H14W 107.2
O10W—Na1—O9Wi 84.04 (8) Na1ii—O7W—H14W 127.7
O7Wi—Na1—O9Wi 64.18 (8) H13W—O7W—H14W 97.3
O1W—Na1—O11W 84.16 (11) Cu1—O8W—Na1 94.13 (10)
O4W—Na1—O11W 74.72 (10) Cu1—O8W—H15W 110.2
O8W—Na1—O11W 64.06 (9) Na1—O8W—H15W 118.7
O10W—Na1—O11W 59.67 (8) Cu1—O8W—H16W 105.0
O7Wi—Na1—O11W 152.36 (9) Na1—O8W—H16W 114.6
O9Wi—Na1—O11W 138.74 (9) H15W—O8W—H16W 111.7
O1W—Na1—Cu1 109.05 (11) Cu1—O9W—Na1ii 99.58 (10)
O4W—Na1—Cu1 101.24 (9) Cu1—O9W—H18W 116.8
O8W—Na1—Cu1 37.82 (6) Na1ii—O9W—H18W 97.8
O10W—Na1—Cu1 37.12 (6) Cu1—O9W—H17W 107.5
O7Wi—Na1—Cu1 126.89 (8) Na1ii—O9W—H17W 126.6
O9Wi—Na1—Cu1 118.89 (7) H18W—O9W—H17W 108.9
O11W—Na1—Cu1 36.68 (5) Cu1—O10W—Na1 93.66 (10)
O2—N1—O1 124.0 (3) Cu1—O10W—H19W 99.1
O2—N1—C6 118.0 (3) Na1—O10W—H19W 108.8
O1—N1—C6 117.9 (3) Cu1—O10W—H20W 118.2
O8—C1—O7 125.5 (3) Na1—O10W—H20W 119.7
O8—C1—C2 116.4 (3) H19W—O10W—H20W 114.0
O7—C1—C2 118.2 (3) Cu1—O11W—H21W 121.0
C7—C2—C3 120.9 (3) Na1—O11W—H21W 99.5
C7—C2—C1 118.4 (3) Cu1—O11W—H22W 118.5
C3—C2—C1 120.7 (3) Na1—O11W—H22W 118.7
C4—C3—C2 119.2 (3) H21W—O11W—H22W 111.2
C4—C3—C8 119.4 (3)

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H2W···O4iii 0.84 2.06 2.883 (4) 166
O1W—H1W···O5iv 0.84 2.19 2.932 (4) 148
O2W—H4W···O3 0.84 1.94 2.706 (4) 151
O2W—H3W···O6Wv 0.84 1.91 2.741 (4) 169
O3W—H6W···O4Wiii 0.84 2.09 2.863 (4) 153
O3W—H5W···O4 0.84 2.01 2.825 (4) 164
O4W—H8W···O3Wvi 0.84 2.11 2.868 (4) 149
O4W—H7W···O3vii 0.84 2.12 2.902 (4) 155
O5W—H10W···O1v 0.84 2.60 3.174 (4) 127
O5W—H10W···O5 0.84 2.05 2.778 (4) 145
O5W—H9W···O6i 0.84 1.89 2.711 (3) 166
O6W—H12W···O5W 0.84 2.00 2.810 (4) 161
O6W—H11W···O7i 0.84 1.91 2.716 (4) 160
O7W—H14W···O2Wvii 0.84 1.98 2.788 (4) 160
O7W—H13W···O7 0.84 1.87 2.657 (4) 156
O8W—H16W···O2Wvii 0.84 1.85 2.679 (4) 171
O8W—H15W···O6W 0.84 1.95 2.774 (4) 167
O9W—H18W···O5iii 0.84 1.82 2.647 (4) 168
O9W—H17W···O6 0.84 1.99 2.823 (3) 175
O10W—H19W···O5W 0.84 1.85 2.674 (4) 166
O10W—H20W···O6iii 0.84 1.88 2.704 (3) 167
O11W—H22W···O3Wvii 0.84 1.85 2.670 (4) 165
O11W—H21W···O4iii 0.84 1.98 2.776 (4) 158

Symmetry codes: (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+2, −z+1; (v) −x+1, −y+1, −z+2; (vi) x+1, y+1, z; (vii) x, y+1, z; (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2712).

References

  1. Bruker (2005). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheng, D.-P., Khan, M.-A. & Houser, R. P. (2004). Cryst. Growth Des.4, 599–604.
  3. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  4. Sheldrick, G. M. (2005). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Yaghi, O. M. & Li, H. (1995). Nature (London), 378, 703–706.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000401/ng2712sup1.cif

e-66-0m132-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000401/ng2712Isup2.hkl

e-66-0m132-Isup2.hkl (181.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES