Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 23;66(Pt 2):o436. doi: 10.1107/S1600536810002084

N-(3,4-Dimethyl­phen­yl)succinamic acid

B Thimme Gowda a,*, Sabine Foro b, B S Saraswathi a, Hartmut Fuess b
PMCID: PMC2979820  PMID: 21579851

Abstract

The asymmetric unit of the title compound, C12H15NO3, contains two independent mol­ecules. In both mol­ecules, the conformations of the amide oxygen and the carbonyl O atom of the acid segment are anti to the adjacent CH2 groups. In the crystal, both molecules form inversion dimers linked by pairs of O—H⋯O hydrogen bonds and N—H⋯O interactions link the dimers into [100] chains.

Related literature

For the crystal structures of related anilides, see: Gowda et al. (2007); Gowda, Foro, Saraswathi & Fuess (2009); Gowda, Foro, Saraswathi et al. (2009). For the modes of inter­linking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976); Jagannathan et al. (1994).graphic file with name e-66-0o436-scheme1.jpg

Experimental

Crystal data

  • C12H15NO3

  • M r = 221.25

  • Triclinic, Inline graphic

  • a = 9.736 (1) Å

  • b = 9.919 (1) Å

  • c = 12.601 (2) Å

  • α = 106.42 (1)°

  • β = 100.98 (1)°

  • γ = 99.81 (1)°

  • V = 1112.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 299 K

  • 0.44 × 0.40 × 0.16 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.959, T max = 0.985

  • 7776 measured reflections

  • 4538 independent reflections

  • 3173 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.118

  • S = 1.03

  • 4538 reflections

  • 305 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002084/rz2408sup1.cif

e-66-0o436-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002084/rz2408Isup2.hkl

e-66-0o436-Isup2.hkl (222.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O5i 0.85 (2) 1.82 (2) 2.6681 (18) 174 (2)
N1—H1N⋯O4ii 0.894 (18) 2.127 (18) 2.9909 (18) 162.5 (15)
O6—H6O⋯O2i 0.88 (2) 1.78 (2) 2.6555 (18) 175 (2)
N2—H2N⋯O1 0.87 (2) 2.26 (2) 3.0676 (19) 154.7 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

As a part of studying the effect of the ring and side chain substitutions on the crystal structures of anilides (Gowda et al., 2007; Gowda, Foro, Saraswathi & Fuess, 2009; Gowda, Foro, Saraswathi et al., 2009), we report herein the crystal structure of N-(3,4-dimethylphenyl)succinamic acid (I). The asymmetric unit of (I) contains two independent molecules (Fig. 1). The conformations of the N—H and C═O bonds in the amide segments are anti to each other. Further, the conformation of the amide oxygen and the carbonyl oxygen of the acid segment are anti to the H atoms of their adjacent CH2 groups, while the conformation of the C=O and O—H bonds of the acid group are in syn position to each other, similar to that observed in N-(3,4-dichlorophenyl)succinamic acid monohydrate (II) (Gowda, Foro, Saraswathi & Fuess, 2009) and N-(2,6-dimethylphenyl)succinamic acid (III) (Gowda, Foro, Saraswathi et al., 2009).

The conformation of the amide hydrogen in (I) is syn to the meta-methyl group in the benzene ring, contrary to the anti conformation observed between the amide hydrogen and the meta-Cl in (II). Further, the conformation of the amide oxygen and the carbonyl oxygen of the acid segment are syn to each other, contrary to the anti conformation observed in (II). N—H···O and O—H···O intermolecular hydrogen bonds pack the molecules into chains running parallel to the a axis (Table 1, Fig. 2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Experimental

A solution of succinic anhydride (0.02 mol) in toluene (25 ml) was treated dropwise with a solution of 3,4-dimethylaniline (0.02 mol) in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,4-dimethylaniline. The resultant solid N-(3,4-dimethylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol.

The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra. The rod like colourless single crystals used in X-ray diffraction studies were grown by slow evaporation at room temperature of an ethanolic solution.

Refinement

The H atoms of the NH groups were located in a difference Fourier map and their positions refined with N—H = 0.87 (2)–0.89 (2) %A. The H atoms of the OH groups were located in a difference Fourier map and the O—H distance restrained to 0.82 (2) Å. All other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å and refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C12H15NO3 Z = 4
Mr = 221.25 F(000) = 472
Triclinic, P1 Dx = 1.320 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.736 (1) Å Cell parameters from 2369 reflections
b = 9.919 (1) Å θ = 3.1–27.7°
c = 12.601 (2) Å µ = 0.10 mm1
α = 106.42 (1)° T = 299 K
β = 100.98 (1)° Rod, colourless
γ = 99.81 (1)° 0.44 × 0.40 × 0.16 mm
V = 1112.9 (2) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 4538 independent reflections
Radiation source: fine-focus sealed tube 3173 reflections with I > 2σ(I)
graphite Rint = 0.013
Rotation method data acquisition using ω and φ scans. θmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −11→12
Tmin = 0.959, Tmax = 0.985 k = −12→10
7776 measured reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2735P] where P = (Fo2 + 2Fc2)/3
4538 reflections (Δ/σ)max < 0.001
305 parameters Δρmax = 0.17 e Å3
2 restraints Δρmin = −0.17 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.25568 (12) 0.46649 (13) 0.13575 (10) 0.0454 (3)
O2 0.15120 (14) 0.11617 (14) 0.05553 (10) 0.0529 (3)
O3 0.20038 (15) 0.09014 (14) −0.11316 (10) 0.0530 (3)
H3O 0.243 (2) 0.030 (2) −0.0934 (17) 0.064*
N1 0.08150 (14) 0.53340 (15) 0.22197 (11) 0.0380 (3)
H1N −0.013 (2) 0.5115 (19) 0.2162 (14) 0.046*
C1 0.16800 (16) 0.63065 (16) 0.32941 (13) 0.0344 (4)
C2 0.11108 (17) 0.64457 (17) 0.42386 (14) 0.0382 (4)
H2 0.0170 0.5949 0.4138 0.046*
C3 0.19110 (18) 0.73073 (17) 0.53296 (14) 0.0395 (4)
C4 0.33168 (18) 0.80814 (18) 0.54764 (14) 0.0409 (4)
C5 0.38529 (18) 0.79638 (18) 0.45219 (15) 0.0436 (4)
H5 0.4780 0.8489 0.4613 0.052*
C6 0.30594 (17) 0.70921 (17) 0.34342 (14) 0.0409 (4)
H6 0.3448 0.7036 0.2808 0.049*
C7 0.12894 (16) 0.45212 (17) 0.13761 (13) 0.0344 (3)
C8 0.01037 (17) 0.33813 (18) 0.04349 (13) 0.0404 (4)
H8A −0.0624 0.3841 0.0153 0.048*
H8B −0.0348 0.2689 0.0750 0.048*
C9 0.06420 (18) 0.25797 (19) −0.05577 (13) 0.0423 (4)
H9A −0.0173 0.2094 −0.1214 0.051*
H9B 0.1280 0.3278 −0.0758 0.051*
C10 0.14225 (17) 0.14906 (17) −0.03140 (13) 0.0386 (4)
C11 0.1276 (2) 0.7378 (2) 0.63389 (15) 0.0568 (5)
H11A 0.0286 0.6851 0.6075 0.068*
H11B 0.1334 0.8370 0.6751 0.068*
H11C 0.1804 0.6960 0.6834 0.068*
C12 0.4230 (2) 0.9026 (2) 0.66431 (15) 0.0592 (5)
H12A 0.5170 0.9429 0.6584 0.071*
H12B 0.4315 0.8457 0.7144 0.071*
H12C 0.3788 0.9794 0.6945 0.071*
O4 0.75949 (12) 0.46145 (14) 0.15126 (10) 0.0545 (4)
O5 0.66192 (15) 0.10463 (14) 0.06567 (10) 0.0548 (3)
O6 0.71268 (15) 0.07822 (14) −0.10294 (10) 0.0524 (3)
H6O 0.756 (2) 0.015 (2) −0.0837 (17) 0.063*
N2 0.57898 (15) 0.50597 (17) 0.23359 (12) 0.0478 (4)
H2N 0.486 (2) 0.484 (2) 0.2237 (16) 0.057*
C13 0.66100 (17) 0.61991 (18) 0.33598 (13) 0.0390 (4)
C14 0.66191 (17) 0.60174 (18) 0.44074 (14) 0.0398 (4)
H14 0.6180 0.5122 0.4434 0.048*
C15 0.72698 (17) 0.71425 (18) 0.54223 (13) 0.0385 (4)
C16 0.79482 (17) 0.84812 (17) 0.53795 (14) 0.0387 (4)
C17 0.79743 (19) 0.86189 (18) 0.43201 (15) 0.0448 (4)
H17 0.8453 0.9495 0.4286 0.054*
C18 0.73127 (19) 0.7499 (2) 0.33125 (14) 0.0457 (4)
H18 0.7342 0.7623 0.2612 0.055*
C19 0.63180 (17) 0.43683 (17) 0.14927 (13) 0.0363 (4)
C20 0.51791 (18) 0.32399 (19) 0.05010 (14) 0.0434 (4)
H20A 0.4690 0.2529 0.0782 0.052*
H20B 0.4470 0.3706 0.0201 0.052*
C21 0.57788 (19) 0.24675 (19) −0.04634 (13) 0.0441 (4)
H21A 0.4993 0.1993 −0.1143 0.053*
H21B 0.6441 0.3182 −0.0629 0.053*
C22 0.65414 (17) 0.13717 (17) −0.02138 (13) 0.0389 (4)
C23 0.7220 (2) 0.6912 (2) 0.65422 (15) 0.0559 (5)
H23A 0.6822 0.5908 0.6411 0.067*
H23B 0.6628 0.7483 0.6900 0.067*
H23C 0.8177 0.7199 0.7031 0.067*
C24 0.8606 (2) 0.9755 (2) 0.64499 (15) 0.0536 (5)
H24A 0.9336 0.9518 0.6945 0.064*
H24B 0.7873 0.9991 0.6833 0.064*
H24C 0.9029 1.0570 0.6255 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0328 (6) 0.0520 (7) 0.0422 (7) 0.0089 (5) 0.0099 (5) 0.0014 (5)
O2 0.0701 (9) 0.0541 (8) 0.0409 (7) 0.0255 (7) 0.0226 (6) 0.0134 (6)
O3 0.0680 (9) 0.0579 (8) 0.0407 (7) 0.0301 (7) 0.0231 (6) 0.0127 (6)
N1 0.0285 (7) 0.0405 (8) 0.0367 (7) 0.0091 (6) 0.0057 (6) 0.0011 (6)
C1 0.0318 (8) 0.0303 (8) 0.0355 (8) 0.0101 (7) 0.0051 (6) 0.0031 (7)
C2 0.0330 (8) 0.0350 (8) 0.0421 (9) 0.0073 (7) 0.0106 (7) 0.0054 (7)
C3 0.0425 (9) 0.0358 (9) 0.0386 (9) 0.0148 (7) 0.0092 (7) 0.0073 (7)
C4 0.0394 (9) 0.0362 (9) 0.0393 (9) 0.0115 (7) 0.0026 (7) 0.0039 (7)
C5 0.0324 (8) 0.0384 (9) 0.0493 (10) 0.0036 (7) 0.0069 (7) 0.0032 (8)
C6 0.0382 (9) 0.0389 (9) 0.0419 (9) 0.0079 (7) 0.0134 (7) 0.0062 (7)
C7 0.0327 (8) 0.0348 (8) 0.0335 (8) 0.0098 (7) 0.0056 (6) 0.0085 (7)
C8 0.0340 (8) 0.0410 (9) 0.0378 (9) 0.0092 (7) 0.0041 (7) 0.0032 (7)
C9 0.0414 (9) 0.0450 (10) 0.0316 (8) 0.0101 (8) 0.0041 (7) 0.0022 (7)
C10 0.0394 (9) 0.0354 (9) 0.0303 (8) 0.0037 (7) 0.0069 (7) −0.0012 (7)
C11 0.0591 (12) 0.0626 (13) 0.0442 (11) 0.0140 (10) 0.0158 (9) 0.0091 (9)
C12 0.0544 (12) 0.0601 (12) 0.0453 (11) 0.0113 (10) −0.0011 (9) 0.0001 (9)
O4 0.0315 (6) 0.0638 (8) 0.0517 (8) 0.0084 (6) 0.0116 (5) −0.0053 (6)
O5 0.0720 (9) 0.0607 (8) 0.0413 (7) 0.0297 (7) 0.0245 (6) 0.0165 (6)
O6 0.0651 (9) 0.0557 (8) 0.0399 (7) 0.0249 (7) 0.0220 (6) 0.0093 (6)
N2 0.0291 (7) 0.0580 (9) 0.0406 (8) 0.0045 (7) 0.0091 (6) −0.0046 (7)
C13 0.0322 (8) 0.0439 (9) 0.0348 (9) 0.0094 (7) 0.0093 (7) 0.0029 (7)
C14 0.0379 (9) 0.0368 (9) 0.0439 (9) 0.0088 (7) 0.0129 (7) 0.0105 (7)
C15 0.0391 (9) 0.0415 (9) 0.0354 (8) 0.0146 (7) 0.0099 (7) 0.0099 (7)
C16 0.0355 (8) 0.0386 (9) 0.0384 (9) 0.0113 (7) 0.0075 (7) 0.0065 (7)
C17 0.0470 (10) 0.0371 (9) 0.0489 (10) 0.0056 (8) 0.0138 (8) 0.0136 (8)
C18 0.0479 (10) 0.0553 (11) 0.0353 (9) 0.0117 (9) 0.0126 (8) 0.0159 (8)
C19 0.0325 (8) 0.0383 (9) 0.0351 (8) 0.0104 (7) 0.0072 (7) 0.0071 (7)
C20 0.0353 (9) 0.0443 (10) 0.0405 (9) 0.0095 (7) 0.0049 (7) 0.0016 (8)
C21 0.0449 (9) 0.0467 (10) 0.0313 (9) 0.0100 (8) 0.0037 (7) 0.0029 (7)
C22 0.0380 (9) 0.0377 (9) 0.0309 (8) 0.0038 (7) 0.0072 (7) −0.0005 (7)
C23 0.0693 (13) 0.0605 (12) 0.0423 (10) 0.0198 (10) 0.0161 (9) 0.0195 (9)
C24 0.0522 (11) 0.0458 (10) 0.0491 (11) 0.0100 (9) 0.0061 (9) −0.0003 (9)

Geometric parameters (Å, °)

O1—C7 1.2233 (18) O4—C19 1.2194 (18)
O2—C10 1.2203 (19) O5—C22 1.221 (2)
O3—C10 1.3106 (19) O6—C22 1.3115 (19)
O3—H3O 0.850 (15) O6—H6O 0.875 (15)
N1—C7 1.3500 (19) N2—C19 1.334 (2)
N1—C1 1.4224 (19) N2—C13 1.434 (2)
N1—H1N 0.894 (18) N2—H2N 0.87 (2)
C1—C6 1.385 (2) C13—C18 1.376 (2)
C1—C2 1.388 (2) C13—C14 1.381 (2)
C2—C3 1.389 (2) C14—C15 1.388 (2)
C2—H2 0.9300 C14—H14 0.9300
C3—C4 1.401 (2) C15—C16 1.399 (2)
C3—C11 1.506 (2) C15—C23 1.500 (2)
C4—C5 1.383 (2) C16—C17 1.384 (2)
C4—C12 1.506 (2) C16—C24 1.503 (2)
C5—C6 1.386 (2) C17—C18 1.381 (2)
C5—H5 0.9300 C17—H17 0.9300
C6—H6 0.9300 C18—H18 0.9300
C7—C8 1.514 (2) C19—C20 1.517 (2)
C8—C9 1.517 (2) C20—C21 1.517 (2)
C8—H8A 0.9700 C20—H20A 0.9700
C8—H8B 0.9700 C20—H20B 0.9700
C9—C10 1.489 (2) C21—C22 1.487 (2)
C9—H9A 0.9700 C21—H21A 0.9700
C9—H9B 0.9700 C21—H21B 0.9700
C11—H11A 0.9600 C23—H23A 0.9600
C11—H11B 0.9600 C23—H23B 0.9600
C11—H11C 0.9600 C23—H23C 0.9600
C12—H12A 0.9600 C24—H24A 0.9600
C12—H12B 0.9600 C24—H24B 0.9600
C12—H12C 0.9600 C24—H24C 0.9600
C10—O3—H3O 108.4 (14) C22—O6—H6O 109.0 (14)
C7—N1—C1 126.35 (13) C19—N2—C13 125.70 (14)
C7—N1—H1N 116.8 (11) C19—N2—H2N 117.3 (13)
C1—N1—H1N 115.6 (11) C13—N2—H2N 116.9 (13)
C6—C1—C2 119.26 (14) C18—C13—C14 119.74 (15)
C6—C1—N1 122.85 (14) C18—C13—N2 120.78 (15)
C2—C1—N1 117.89 (14) C14—C13—N2 119.36 (15)
C1—C2—C3 121.68 (15) C13—C14—C15 121.39 (16)
C1—C2—H2 119.2 C13—C14—H14 119.3
C3—C2—H2 119.2 C15—C14—H14 119.3
C2—C3—C4 119.12 (15) C14—C15—C16 119.12 (15)
C2—C3—C11 120.02 (16) C14—C15—C23 119.71 (16)
C4—C3—C11 120.84 (15) C16—C15—C23 121.16 (15)
C5—C4—C3 118.47 (15) C17—C16—C15 118.37 (15)
C5—C4—C12 120.40 (16) C17—C16—C24 120.35 (16)
C3—C4—C12 121.13 (16) C15—C16—C24 121.26 (15)
C4—C5—C6 122.41 (16) C18—C17—C16 122.22 (16)
C4—C5—H5 118.8 C18—C17—H17 118.9
C6—C5—H5 118.8 C16—C17—H17 118.9
C1—C6—C5 119.02 (15) C13—C18—C17 119.08 (16)
C1—C6—H6 120.5 C13—C18—H18 120.5
C5—C6—H6 120.5 C17—C18—H18 120.5
O1—C7—N1 124.17 (14) O4—C19—N2 123.43 (15)
O1—C7—C8 121.87 (14) O4—C19—C20 122.88 (14)
N1—C7—C8 113.96 (13) N2—C19—C20 113.68 (14)
C7—C8—C9 113.04 (13) C21—C20—C19 113.63 (14)
C7—C8—H8A 109.0 C21—C20—H20A 108.8
C9—C8—H8A 109.0 C19—C20—H20A 108.8
C7—C8—H8B 109.0 C21—C20—H20B 108.8
C9—C8—H8B 109.0 C19—C20—H20B 108.8
H8A—C8—H8B 107.8 H20A—C20—H20B 107.7
C10—C9—C8 113.76 (14) C22—C21—C20 114.09 (14)
C10—C9—H9A 108.8 C22—C21—H21A 108.7
C8—C9—H9A 108.8 C20—C21—H21A 108.7
C10—C9—H9B 108.8 C22—C21—H21B 108.7
C8—C9—H9B 108.8 C20—C21—H21B 108.7
H9A—C9—H9B 107.7 H21A—C21—H21B 107.6
O2—C10—O3 122.68 (16) O5—C22—O6 123.06 (16)
O2—C10—C9 123.86 (15) O5—C22—C21 123.93 (15)
O3—C10—C9 113.46 (15) O6—C22—C21 113.01 (15)
C3—C11—H11A 109.5 C15—C23—H23A 109.5
C3—C11—H11B 109.5 C15—C23—H23B 109.5
H11A—C11—H11B 109.5 H23A—C23—H23B 109.5
C3—C11—H11C 109.5 C15—C23—H23C 109.5
H11A—C11—H11C 109.5 H23A—C23—H23C 109.5
H11B—C11—H11C 109.5 H23B—C23—H23C 109.5
C4—C12—H12A 109.5 C16—C24—H24A 109.5
C4—C12—H12B 109.5 C16—C24—H24B 109.5
H12A—C12—H12B 109.5 H24A—C24—H24B 109.5
C4—C12—H12C 109.5 C16—C24—H24C 109.5
H12A—C12—H12C 109.5 H24A—C24—H24C 109.5
H12B—C12—H12C 109.5 H24B—C24—H24C 109.5
C7—N1—C1—C6 33.1 (2) C19—N2—C13—C18 63.8 (2)
C7—N1—C1—C2 −145.84 (16) C19—N2—C13—C14 −120.24 (19)
C6—C1—C2—C3 −2.7 (2) C18—C13—C14—C15 2.9 (2)
N1—C1—C2—C3 176.29 (14) N2—C13—C14—C15 −173.11 (15)
C1—C2—C3—C4 1.5 (2) C13—C14—C15—C16 −1.0 (2)
C1—C2—C3—C11 −177.34 (15) C13—C14—C15—C23 178.29 (15)
C2—C3—C4—C5 0.4 (2) C14—C15—C16—C17 −1.6 (2)
C11—C3—C4—C5 179.24 (16) C23—C15—C16—C17 179.16 (16)
C2—C3—C4—C12 −179.75 (16) C14—C15—C16—C24 177.00 (15)
C11—C3—C4—C12 −0.9 (3) C23—C15—C16—C24 −2.2 (2)
C3—C4—C5—C6 −1.1 (3) C15—C16—C17—C18 2.3 (3)
C12—C4—C5—C6 179.05 (16) C24—C16—C17—C18 −176.32 (16)
C2—C1—C6—C5 2.0 (2) C14—C13—C18—C17 −2.2 (2)
N1—C1—C6—C5 −176.97 (15) N2—C13—C18—C17 173.74 (15)
C4—C5—C6—C1 −0.1 (3) C16—C17—C18—C13 −0.4 (3)
C1—N1—C7—O1 −10.9 (3) C13—N2—C19—O4 1.7 (3)
C1—N1—C7—C8 168.62 (15) C13—N2—C19—C20 −178.33 (16)
O1—C7—C8—C9 −6.0 (2) O4—C19—C20—C21 −0.8 (2)
N1—C7—C8—C9 174.42 (14) N2—C19—C20—C21 179.30 (15)
C7—C8—C9—C10 75.78 (18) C19—C20—C21—C22 75.46 (19)
C8—C9—C10—O2 6.6 (2) C20—C21—C22—O5 4.0 (2)
C8—C9—C10—O3 −173.82 (14) C20—C21—C22—O6 −176.04 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O5i 0.85 (2) 1.82 (2) 2.6681 (18) 174 (2)
N1—H1N···O4ii 0.894 (18) 2.127 (18) 2.9909 (18) 162.5 (15)
O6—H6O···O2i 0.88 (2) 1.78 (2) 2.6555 (18) 175 (2)
N2—H2N···O1 0.87 (2) 2.26 (2) 3.0676 (19) 154.7 (17)

Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2408).

References

  1. Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o1722. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.
  4. Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr.24, 75–78.
  5. Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002084/rz2408sup1.cif

e-66-0o436-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002084/rz2408Isup2.hkl

e-66-0o436-Isup2.hkl (222.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES