Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 9;66(Pt 2):o323. doi: 10.1107/S1600536810000590

5-Bromo-3-ethyl­sulfinyl-2-(4-fluoro­phenyl)-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2979841  PMID: 21579753

Abstract

In the title compound, C16H12BrFO2S, the 4-fluoro­phenyl ring is rotated out of the benzofuran plane, as indicated by the dihedral angle of 5.94 (5)°. The crystal structure exhibits aromatic π–π inter­actions between the benzene ring and the 4-fluoro­phenyl ring of an adjacent mol­ecule [centroid–centroid distance = 3.632 (2) Å], and a Br⋯O halogen bond with a Br⋯O distance of 3.101 (1) Å.

Related literature

For the crystal structures of similar 2-(4-fluoro­phen­yl)-5-halo-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2009, 2010a,b ). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Howlett et al. (1999). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).graphic file with name e-66-0o323-scheme1.jpg

Experimental

Crystal data

  • C16H12BrFO2S

  • M r = 367.23

  • Triclinic, Inline graphic

  • a = 7.2806 (5) Å

  • b = 9.4999 (6) Å

  • c = 10.8334 (6) Å

  • α = 101.360 (3)°

  • β = 98.783 (3)°

  • γ = 104.771 (3)°

  • V = 693.87 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 100 K

  • 0.30 × 0.26 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.457, T max = 0.606

  • 12298 measured reflections

  • 3202 independent reflections

  • 3040 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.068

  • S = 1.01

  • 3202 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000590/si2236sup1.cif

e-66-0o323-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000590/si2236Isup2.hkl

e-66-0o323-Isup2.hkl (157.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Benzofuran ring systems have drawn considerable attention due to their diverse biological activities (Aslam et al., 2006; Galal et al., 2009; Howlett et al. 1999) and these compounds are occurring in natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2009, 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran and the 4-fluorophenyl ring is 5.94 (5)°. The crystal packing (Fig. 2) is stabilized by aromatic π–π interactions between the benzene ring and the 4-fluorophenyl ring of an adjacent molecule. The Cg1-Cg2i distance is 3.632 (2) Å (Cg1 and Cg2 are the centroids of the C2-C7 benzene ring and the C9-C14 4-fluorophenyl ring, respectively). The crystal packing (Fig. 2) is further stabilized by a Br···O halogen bond between the bromine and the oxygen of the S═O unit [Br···O2ii = 3.101 (1) Å; C–Br···O2 = 168.51 (6)°] (Politzer et al., 2007).

Experimental

77% 3-Chloroperoxybenzoic acid (208 mg, 0.93 mmol) was added in small portions to a stirred solution of 5-bromo-3-ethylsulfanyl-2-(4-fluorophenyl)-1-benzofuran (298 mg, 0.85 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 428-429 K; Rf = 0.58 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aryl, 0.97 Å for methylene, and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for all H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

π–π and C–Br···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x, - y + 1, - z + 1; (ii) - x +1, - y + 1, - z.]

Crystal data

C16H12BrFO2S Z = 2
Mr = 367.23 F(000) = 368
Triclinic, P1 Dx = 1.758 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2806 (5) Å Cell parameters from 8968 reflections
b = 9.4999 (6) Å θ = 2.3–27.5°
c = 10.8334 (6) Å µ = 3.12 mm1
α = 101.360 (3)° T = 100 K
β = 98.783 (3)° Block, colourless
γ = 104.771 (3)° 0.30 × 0.26 × 0.18 mm
V = 693.87 (8) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3202 independent reflections
Radiation source: Rotating Anode 3040 reflections with I > 2σ(I)
HELIOS Rint = 0.033
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 2.0°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −12→12
Tmin = 0.457, Tmax = 0.606 l = −14→14
12298 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: difference Fourier map
wR(F2) = 0.068 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.3178P] where P = (Fo2 + 2Fc2)/3
3202 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.27979 (3) 0.266152 (19) −0.060167 (15) 0.02863 (7)
S 0.45510 (6) 0.80533 (4) 0.40790 (4) 0.02178 (10)
O1 0.20904 (16) 0.41876 (12) 0.48809 (11) 0.0196 (2)
O2 0.59525 (19) 0.79599 (16) 0.32187 (14) 0.0323 (3)
F 0.25971 (19) 0.84421 (15) 1.01927 (11) 0.0399 (3)
C1 0.3410 (2) 0.62021 (18) 0.41607 (15) 0.0189 (3)
C2 0.2982 (2) 0.48799 (18) 0.31181 (15) 0.0186 (3)
C3 0.3185 (2) 0.45934 (19) 0.18372 (15) 0.0207 (3)
H3 0.3712 0.5366 0.1468 0.025*
C4 0.2567 (2) 0.31116 (19) 0.11464 (16) 0.0222 (3)
C5 0.1791 (2) 0.19150 (19) 0.16709 (17) 0.0246 (3)
H5 0.1407 0.0933 0.1168 0.030*
C6 0.1596 (2) 0.21979 (19) 0.29435 (17) 0.0233 (3)
H6 0.1091 0.1425 0.3319 0.028*
C7 0.2188 (2) 0.36812 (18) 0.36236 (15) 0.0191 (3)
C8 0.2848 (2) 0.57296 (17) 0.51972 (16) 0.0186 (3)
C9 0.2833 (2) 0.64583 (19) 0.65130 (15) 0.0193 (3)
C10 0.2268 (2) 0.5583 (2) 0.73659 (17) 0.0238 (3)
H10 0.1946 0.4542 0.7098 0.029*
C11 0.2185 (3) 0.6250 (2) 0.86028 (17) 0.0272 (4)
H11 0.1786 0.5668 0.9165 0.033*
C12 0.2703 (3) 0.7792 (2) 0.89850 (17) 0.0277 (4)
C13 0.3302 (3) 0.8695 (2) 0.81914 (18) 0.0283 (4)
H13 0.3672 0.9736 0.8483 0.034*
C14 0.3342 (2) 0.8021 (2) 0.69475 (17) 0.0243 (3)
H14 0.3715 0.8617 0.6390 0.029*
C15 0.2449 (3) 0.8353 (2) 0.31525 (17) 0.0256 (3)
H15A 0.2868 0.9230 0.2818 0.031*
H15B 0.1836 0.7493 0.2425 0.031*
C16 0.0982 (3) 0.8580 (2) 0.39692 (19) 0.0278 (4)
H16A 0.1582 0.9436 0.4686 0.033*
H16B 0.0539 0.7702 0.4282 0.033*
H16C −0.0104 0.8745 0.3457 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.03874 (12) 0.02938 (11) 0.01775 (10) 0.01314 (8) 0.00627 (7) 0.00147 (7)
S 0.02209 (19) 0.01876 (19) 0.0229 (2) 0.00193 (15) 0.00670 (15) 0.00547 (15)
O1 0.0233 (5) 0.0168 (5) 0.0184 (5) 0.0045 (4) 0.0059 (4) 0.0045 (4)
O2 0.0298 (6) 0.0334 (7) 0.0362 (7) 0.0059 (5) 0.0179 (6) 0.0107 (6)
F 0.0514 (7) 0.0480 (7) 0.0191 (5) 0.0180 (6) 0.0106 (5) −0.0016 (5)
C1 0.0184 (7) 0.0182 (7) 0.0198 (7) 0.0051 (6) 0.0045 (6) 0.0044 (6)
C2 0.0170 (7) 0.0189 (7) 0.0203 (8) 0.0060 (6) 0.0039 (6) 0.0047 (6)
C3 0.0214 (7) 0.0227 (8) 0.0191 (8) 0.0073 (6) 0.0055 (6) 0.0057 (6)
C4 0.0234 (7) 0.0261 (8) 0.0181 (8) 0.0107 (6) 0.0043 (6) 0.0033 (6)
C5 0.0276 (8) 0.0205 (8) 0.0246 (8) 0.0094 (7) 0.0034 (6) 0.0019 (6)
C6 0.0254 (8) 0.0188 (8) 0.0260 (8) 0.0066 (6) 0.0054 (6) 0.0061 (6)
C7 0.0195 (7) 0.0212 (8) 0.0186 (7) 0.0080 (6) 0.0052 (6) 0.0059 (6)
C8 0.0174 (7) 0.0167 (7) 0.0213 (8) 0.0052 (6) 0.0036 (6) 0.0045 (6)
C9 0.0171 (7) 0.0233 (8) 0.0174 (7) 0.0064 (6) 0.0033 (5) 0.0044 (6)
C10 0.0268 (8) 0.0239 (8) 0.0212 (8) 0.0076 (7) 0.0054 (6) 0.0060 (6)
C11 0.0310 (9) 0.0351 (10) 0.0189 (8) 0.0117 (7) 0.0073 (7) 0.0097 (7)
C12 0.0273 (8) 0.0383 (10) 0.0167 (8) 0.0132 (7) 0.0043 (6) 0.0006 (7)
C13 0.0307 (9) 0.0253 (9) 0.0249 (9) 0.0078 (7) 0.0050 (7) −0.0014 (7)
C14 0.0261 (8) 0.0239 (8) 0.0218 (8) 0.0059 (6) 0.0066 (6) 0.0043 (6)
C15 0.0303 (8) 0.0237 (8) 0.0241 (8) 0.0082 (7) 0.0052 (7) 0.0094 (7)
C16 0.0247 (8) 0.0258 (9) 0.0323 (10) 0.0070 (7) 0.0045 (7) 0.0078 (7)

Geometric parameters (Å, °)

Br—O2i 3.101 (1) C6—H6 0.9300
Br—C4 1.901 (2) C8—C9 1.460 (2)
S—O2 1.491 (1) C9—C10 1.399 (2)
S—C1 1.769 (2) C9—C14 1.398 (2)
S—C15 1.816 (2) C10—C11 1.382 (2)
O1—C7 1.372 (2) C10—H10 0.9300
O1—C8 1.378 (2) C11—C12 1.375 (3)
F—C12 1.355 (2) C11—H11 0.9300
C1—C8 1.369 (2) C12—C13 1.371 (3)
C1—C2 1.444 (2) C13—C14 1.381 (2)
C2—C7 1.392 (2) C13—H13 0.9300
C2—C3 1.398 (2) C14—H14 0.9300
C3—C4 1.380 (2) C15—C16 1.517 (3)
C3—H3 0.9300 C15—H15A 0.9700
C4—C5 1.400 (2) C15—H15B 0.9700
C5—C6 1.388 (2) C16—H16A 0.9600
C5—H5 0.9300 C16—H16B 0.9600
C6—C7 1.378 (2) C16—H16C 0.9600
C4—Br—O2i 168.51 (6) C10—C9—C8 119.77 (15)
O2—S—C1 107.40 (8) C14—C9—C8 121.70 (15)
O2—S—C15 106.91 (8) C11—C10—C9 120.65 (16)
C1—S—C15 97.23 (8) C11—C10—H10 119.7
C7—O1—C8 107.06 (12) C9—C10—H10 119.7
C8—C1—C2 107.15 (14) C12—C11—C10 118.61 (16)
C8—C1—S 128.11 (13) C12—C11—H11 120.7
C2—C1—S 124.69 (12) C10—C11—H11 120.7
C7—C2—C3 119.18 (15) F—C12—C13 118.78 (17)
C7—C2—C1 105.14 (14) F—C12—C11 118.47 (17)
C3—C2—C1 135.68 (15) C13—C12—C11 122.75 (17)
C4—C3—C2 116.93 (15) C12—C13—C14 118.37 (17)
C4—C3—H3 121.5 C12—C13—H13 120.8
C2—C3—H3 121.5 C14—C13—H13 120.8
C3—C4—C5 123.31 (15) C13—C14—C9 121.07 (16)
C3—C4—Br 118.62 (13) C13—C14—H14 119.5
C5—C4—Br 118.07 (13) C9—C14—H14 119.5
C6—C5—C4 119.80 (16) C16—C15—S 111.41 (12)
C6—C5—H5 120.1 C16—C15—H15A 109.3
C4—C5—H5 120.1 S—C15—H15A 109.3
C7—C6—C5 116.67 (15) C16—C15—H15B 109.3
C7—C6—H6 121.7 S—C15—H15B 109.3
C5—C6—H6 121.7 H15A—C15—H15B 108.0
O1—C7—C6 125.37 (14) C15—C16—H16A 109.5
O1—C7—C2 110.52 (14) C15—C16—H16B 109.5
C6—C7—C2 124.10 (15) H16A—C16—H16B 109.5
C1—C8—O1 110.12 (14) C15—C16—H16C 109.5
C1—C8—C9 135.64 (15) H16A—C16—H16C 109.5
O1—C8—C9 114.23 (13) H16B—C16—H16C 109.5
C10—C9—C14 118.52 (15)
O2—S—C1—C8 143.78 (15) C2—C1—C8—O1 0.09 (17)
C15—S—C1—C8 −105.92 (15) S—C1—C8—O1 −177.28 (11)
O2—S—C1—C2 −33.17 (15) C2—C1—C8—C9 −178.63 (16)
C15—S—C1—C2 77.13 (14) S—C1—C8—C9 4.0 (3)
C8—C1—C2—C7 −0.47 (17) C7—O1—C8—C1 0.32 (17)
S—C1—C2—C7 177.02 (12) C7—O1—C8—C9 179.35 (12)
C8—C1—C2—C3 179.55 (17) C1—C8—C9—C10 −175.02 (17)
S—C1—C2—C3 −3.0 (3) O1—C8—C9—C10 6.3 (2)
C7—C2—C3—C4 0.2 (2) C1—C8—C9—C14 6.0 (3)
C1—C2—C3—C4 −179.86 (17) O1—C8—C9—C14 −172.71 (14)
C2—C3—C4—C5 −0.9 (2) C14—C9—C10—C11 1.1 (2)
C2—C3—C4—Br 179.69 (11) C8—C9—C10—C11 −177.92 (15)
C3—C4—C5—C6 0.7 (3) C9—C10—C11—C12 −1.2 (3)
Br—C4—C5—C6 −179.91 (13) C10—C11—C12—F 179.22 (16)
C4—C5—C6—C7 0.3 (2) C10—C11—C12—C13 −0.1 (3)
C8—O1—C7—C6 179.18 (15) F—C12—C13—C14 −177.84 (16)
C8—O1—C7—C2 −0.64 (16) C11—C12—C13—C14 1.5 (3)
C5—C6—C7—O1 179.14 (15) C12—C13—C14—C9 −1.6 (3)
C5—C6—C7—C2 −1.1 (2) C10—C9—C14—C13 0.3 (2)
C3—C2—C7—O1 −179.33 (13) C8—C9—C14—C13 179.32 (15)
C1—C2—C7—O1 0.68 (17) O2—S—C15—C16 −175.84 (12)
C3—C2—C7—C6 0.9 (2) C1—S—C15—C16 73.45 (14)
C1—C2—C7—C6 −179.14 (15)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2236).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2608. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o44. [DOI] [PMC free article] [PubMed]
  7. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o104. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett.19, 2420–2428. [DOI] [PubMed]
  10. Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J 340, 283–289. [PMC free article] [PubMed]
  11. Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model 13, 305–311. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000590/si2236sup1.cif

e-66-0o323-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000590/si2236Isup2.hkl

e-66-0o323-Isup2.hkl (157.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES