Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 16;66(Pt 2):o378. doi: 10.1107/S1600536810000437

1-Methyl-3-(4-vinyl­benz­yl)imidazolium hexa­fluoro­phosphate

Xiang-Yong Lu a, Jia-Feng Sun b, Lin Zhang c, Xue-Tai Chen a,*
PMCID: PMC2979844  PMID: 21579800

Abstract

In the title compound, C13H15N2 +·PF6 , the dihedral angle between the two aromatic rings is 85.48 (7)°. In the crystal, C—H⋯F hydrogen bonds connect the imidazolium and hexa­fluoro­phosphate ions.

Related literature

For N-heterocyclic carbenes, see: Herrmann (2002). For the synthesis of the title compound, see: Kim et al. (2005). For a silver compound with 1-methyl-3-(4-vinyl­benz­yl)imidazol-2-yl­idene, see: Lu et al. (2009).graphic file with name e-66-0o378-scheme1.jpg

Experimental

Crystal data

  • C13H15N2 +·PF6

  • M r = 344.24

  • Orthorhombic, Inline graphic

  • a = 10.482 (2) Å

  • b = 11.272 (3) Å

  • c = 12.556 (3) Å

  • V = 1483.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.32 × 0.29 × 0.26 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.925, T max = 0.939

  • 9185 measured reflections

  • 3542 independent reflections

  • 3407 reflections with I > 2σ(I)

  • R int = 0.085

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.127

  • S = 1.03

  • 3542 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.89 e Å−3

  • Absolute structure: Flack (1983), 1484 Friedel pairs

  • Flack parameter: 0.05 (13)

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000437/bt5162sup1.cif

e-66-0o378-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000437/bt5162Isup2.hkl

e-66-0o378-Isup2.hkl (173.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯F1i 0.93 2.36 3.266 (3) 164
C3—H3⋯F6ii 0.93 2.25 3.044 (3) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by National Natural Science Foundation of China-NSAF (No. 10676012)

supplementary crystallographic information

Comment

N-heterocyclic carbenes have attracted great attention as they can act as efficient supporting ligands in organometallic chemistry and homogeneous catalysis (Herrmann, 2002). Imidazolium salts are the useful precusors of the N-heterocyclic carbenes. The silver compound with 1-methyl-3-(4-vinylbenzyl)imidazol-2-ylidene has been synthesized (Lu et al., 2009).

The structure of the title compound is shown in Fig. 1. The two aromatic rings enclose a dihedral angle of 85.48 (7)°. The hexafluorophosphate anions are linked to 1-methyl-3-(4-vinylbenzyl)imidazolium cations via C—H···F hydrogen bonds (Table 1 and Fig. 2). These interacions stabilize the crystal structure.

Experimental

1-Methyl-3-(4-vinylbenzyl)imidazolium chloride was synthesized according to the literature method (Kim et al., 2005). The resulting white solid (0.70 g, 3.00 mmol) was dissolved in acetone (30 ml) and then potassium hexafluorophosphate (1.38 g, 7.50 mmol) was added. The mixture was stirred at room temperature for 26 h and the solvent was removed under reduced pressure. The residue was then dissolved in distilled water and extracted with CH2Cl2. The white solid was abtained after the removal of solvent. Yield: 0.78 g (76%). Anal. Calcd for C13H15F6N2P: C,45.36; H, 4.39; N, 8.14. Found: C, 45.13; H, 4.03; N, 8.35. The elemental analyses were performed with Vario MICRO elemental analyzer.

Refinement

The H-atoms were included in the riding-model approximation with C—H = 0.93 Å and C—H = 0.96 Å, and with Uiso(H) = 1.2Ueq(C-aromatic) and Uiso(H) = 1.5Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H15N2+·PF6 F(000) = 704
Mr = 344.24 Dx = 1.541 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 6513 reflections
a = 10.482 (2) Å θ = 2.4–28.3°
b = 11.272 (3) Å µ = 0.25 mm1
c = 12.556 (3) Å T = 298 K
V = 1483.4 (6) Å3 Block, colorless
Z = 4 0.32 × 0.29 × 0.26 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3542 independent reflections
Radiation source: fine-focus sealed tube 3407 reflections with I > 2σ(I)
graphite Rint = 0.085
phi and ω scans θmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −13→11
Tmin = 0.925, Tmax = 0.939 k = −14→14
9185 measured reflections l = −16→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0549P)2 + 1.5672P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3542 reflections Δρmax = 0.65 e Å3
200 parameters Δρmin = −0.89 e Å3
0 restraints Absolute structure: Flack (1983), 1484 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.05 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8710 (3) 0.2998 (3) 0.0944 (2) 0.0351 (7)
H1A 0.9248 0.2527 0.1396 0.053*
H1B 0.9017 0.3800 0.0931 0.053*
H1C 0.8722 0.2679 0.0235 0.053*
C2 0.6394 (3) 0.3609 (2) 0.0958 (2) 0.0283 (6)
H2 0.6415 0.4128 0.0382 0.034*
C3 0.5369 (3) 0.3342 (2) 0.1548 (2) 0.0249 (5)
H3 0.4549 0.3641 0.1460 0.030*
C4 0.6999 (3) 0.2335 (2) 0.21741 (19) 0.0204 (5)
H4 0.7497 0.1826 0.2583 0.025*
C5 0.4948 (3) 0.2031 (3) 0.3150 (2) 0.0228 (5)
H5A 0.4678 0.2657 0.3630 0.027*
H5B 0.5440 0.1461 0.3558 0.027*
C6 0.3787 (2) 0.1426 (2) 0.26935 (19) 0.0192 (5)
C7 0.2587 (3) 0.1657 (2) 0.3101 (2) 0.0236 (5)
H7 0.2489 0.2225 0.3632 0.028*
C8 0.1529 (3) 0.1050 (3) 0.2724 (2) 0.0234 (5)
H8 0.0729 0.1216 0.3008 0.028*
C9 0.1643 (2) 0.0194 (2) 0.19242 (19) 0.0191 (5)
C10 0.2861 (2) −0.0017 (2) 0.14997 (18) 0.0190 (5)
H10 0.2960 −0.0569 0.0956 0.023*
C11 0.3914 (2) 0.0584 (2) 0.1878 (2) 0.0199 (5)
H11 0.4714 0.0429 0.1590 0.024*
C12 0.0501 (3) −0.0449 (2) 0.1563 (2) 0.0230 (5)
H12 −0.0282 −0.0177 0.1812 0.028*
C13 0.0480 (3) −0.1377 (3) 0.0917 (2) 0.0260 (5)
H13A 0.1239 −0.1681 0.0647 0.031*
H13B −0.0294 −0.1725 0.0733 0.031*
F1 0.67298 (19) 0.98396 (17) 0.85265 (12) 0.0364 (4)
F2 0.75104 (15) 0.85036 (13) 0.96990 (13) 0.0245 (3)
F3 0.54994 (15) 0.92291 (15) 0.99001 (14) 0.0297 (4)
F4 0.70480 (17) 0.97546 (17) 1.10592 (12) 0.0305 (4)
F5 0.62797 (17) 1.11050 (14) 0.98847 (14) 0.0309 (4)
F6 0.82848 (16) 1.03763 (16) 0.96874 (17) 0.0359 (4)
N1 0.7402 (2) 0.2980 (2) 0.13540 (17) 0.0247 (5)
N2 0.5760 (2) 0.25420 (19) 0.23092 (17) 0.0191 (4)
P1 0.68904 (6) 0.98115 (6) 0.97936 (5) 0.01785 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0343 (15) 0.0449 (17) 0.0259 (13) −0.0109 (14) 0.0098 (12) −0.0043 (13)
C2 0.0468 (16) 0.0210 (12) 0.0170 (11) −0.0073 (12) −0.0057 (12) 0.0022 (10)
C3 0.0371 (14) 0.0197 (12) 0.0179 (11) 0.0005 (11) −0.0092 (11) 0.0012 (9)
C4 0.0257 (12) 0.0206 (12) 0.0149 (10) −0.0049 (10) −0.0021 (9) −0.0001 (8)
C5 0.0254 (12) 0.0298 (13) 0.0130 (10) −0.0031 (11) −0.0006 (10) 0.0008 (10)
C6 0.0227 (11) 0.0222 (12) 0.0128 (10) 0.0002 (10) −0.0020 (9) 0.0007 (9)
C7 0.0295 (13) 0.0235 (12) 0.0180 (10) 0.0022 (11) 0.0003 (10) −0.0052 (10)
C8 0.0218 (12) 0.0274 (13) 0.0212 (11) 0.0045 (10) 0.0049 (10) −0.0042 (10)
C9 0.0244 (12) 0.0188 (11) 0.0142 (9) 0.0014 (9) −0.0009 (9) 0.0024 (9)
C10 0.0266 (12) 0.0191 (12) 0.0114 (9) 0.0024 (9) 0.0013 (9) −0.0005 (8)
C11 0.0197 (11) 0.0246 (12) 0.0154 (10) 0.0046 (10) 0.0016 (9) 0.0024 (9)
C12 0.0210 (11) 0.0288 (13) 0.0192 (11) −0.0004 (10) 0.0015 (10) 0.0016 (10)
C13 0.0262 (12) 0.0297 (14) 0.0223 (12) −0.0030 (11) −0.0030 (10) −0.0017 (11)
F1 0.0519 (11) 0.0436 (10) 0.0136 (7) 0.0145 (9) −0.0002 (7) −0.0030 (7)
F2 0.0282 (8) 0.0221 (7) 0.0234 (7) 0.0037 (6) −0.0019 (7) −0.0001 (6)
F3 0.0214 (7) 0.0343 (9) 0.0336 (9) −0.0042 (6) −0.0004 (7) 0.0058 (7)
F4 0.0384 (9) 0.0382 (9) 0.0149 (7) 0.0029 (8) 0.0031 (6) 0.0037 (6)
F5 0.0343 (8) 0.0240 (8) 0.0343 (9) 0.0064 (7) 0.0045 (8) 0.0040 (7)
F6 0.0238 (8) 0.0317 (9) 0.0521 (11) −0.0055 (7) −0.0052 (8) −0.0098 (8)
N1 0.0333 (12) 0.0256 (11) 0.0153 (9) −0.0103 (10) 0.0007 (9) −0.0018 (9)
N2 0.0234 (10) 0.0191 (10) 0.0147 (9) −0.0025 (8) −0.0026 (8) 0.0011 (8)
P1 0.0191 (3) 0.0204 (3) 0.0141 (3) 0.0009 (2) −0.0008 (2) 0.0002 (2)

Geometric parameters (Å, °)

C1—N1 1.464 (4) C7—H7 0.9300
C1—H1A 0.9600 C8—C9 1.398 (4)
C1—H1B 0.9600 C8—H8 0.9300
C1—H1C 0.9600 C9—C10 1.404 (3)
C2—C3 1.339 (4) C9—C12 1.471 (4)
C2—N1 1.367 (4) C10—C11 1.379 (4)
C2—H2 0.9300 C10—H10 0.9300
C3—N2 1.377 (3) C11—H11 0.9300
C3—H3 0.9300 C12—C13 1.324 (4)
C4—N1 1.330 (3) C12—H12 0.9300
C4—N2 1.330 (3) C13—H13A 0.9300
C4—H4 0.9300 C13—H13B 0.9300
C5—N2 1.473 (3) F1—P1 1.6001 (17)
C5—C6 1.508 (4) F2—P1 1.6156 (16)
C5—H5A 0.9700 F3—P1 1.6046 (17)
C5—H5B 0.9700 F4—P1 1.5988 (16)
C6—C7 1.383 (4) F5—P1 1.5964 (17)
C6—C11 1.403 (4) F6—P1 1.5998 (18)
C7—C8 1.387 (4)
N1—C1—H1A 109.5 C11—C10—C9 120.9 (2)
N1—C1—H1B 109.5 C11—C10—H10 119.5
H1A—C1—H1B 109.5 C9—C10—H10 119.5
N1—C1—H1C 109.5 C10—C11—C6 120.5 (2)
H1A—C1—H1C 109.5 C10—C11—H11 119.7
H1B—C1—H1C 109.5 C6—C11—H11 119.7
C3—C2—N1 107.6 (2) C13—C12—C9 126.3 (3)
C3—C2—H2 126.2 C13—C12—H12 116.9
N1—C2—H2 126.2 C9—C12—H12 116.9
C2—C3—N2 107.0 (3) C12—C13—H13A 120.0
C2—C3—H3 126.5 C12—C13—H13B 120.0
N2—C3—H3 126.5 H13A—C13—H13B 120.0
N1—C4—N2 108.3 (2) C4—N1—C2 108.6 (2)
N1—C4—H4 125.9 C4—N1—C1 125.3 (3)
N2—C4—H4 125.9 C2—N1—C1 126.0 (3)
N2—C5—C6 111.8 (2) C4—N2—C3 108.5 (2)
N2—C5—H5A 109.3 C4—N2—C5 125.9 (2)
C6—C5—H5A 109.3 C3—N2—C5 125.6 (2)
N2—C5—H5B 109.3 F5—P1—F4 90.40 (10)
C6—C5—H5B 109.3 F5—P1—F6 90.51 (10)
H5A—C5—H5B 107.9 F4—P1—F6 90.25 (10)
C7—C6—C11 118.9 (2) F5—P1—F1 90.63 (10)
C7—C6—C5 120.6 (2) F4—P1—F1 178.83 (11)
C11—C6—C5 120.5 (2) F6—P1—F1 90.30 (11)
C6—C7—C8 120.6 (2) F5—P1—F3 90.19 (10)
C6—C7—H7 119.7 F4—P1—F3 89.69 (10)
C8—C7—H7 119.7 F6—P1—F3 179.30 (10)
C7—C8—C9 121.2 (2) F1—P1—F3 89.74 (10)
C7—C8—H8 119.4 F5—P1—F2 179.86 (11)
C9—C8—H8 119.4 F4—P1—F2 89.71 (9)
C8—C9—C10 117.8 (2) F6—P1—F2 89.39 (9)
C8—C9—C12 119.5 (2) F1—P1—F2 89.27 (9)
C10—C9—C12 122.7 (2) F3—P1—F2 89.91 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···F1i 0.93 2.36 3.266 (3) 164
C3—H3···F6ii 0.93 2.25 3.044 (3) 143

Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) x−1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5162).

References

  1. Bruker (2005). SMART, SAINT, SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Herrmann, W. A. (2002). Angew. Chem. Int. Ed. Engl.41, 1290–1309.
  4. Kim, J.-H., Kim, J.-W., Shokouhimehr, M. & Lee, Y.-S. (2005). J. Org. Chem.70, 6714–6720. [DOI] [PubMed]
  5. Lu, X.-Y., CHen, F., Xu, W.-F. & Chen, X.-T. (2009). Inorg. Chim. Acta, 362, 5113–5116.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000437/bt5162sup1.cif

e-66-0o378-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000437/bt5162Isup2.hkl

e-66-0o378-Isup2.hkl (173.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES