Abstract
In the title compound, C8H5Br3ClNO, the conformation of the N—H bond is syn to the 2-chloro substituent in the benzene ring. There are no classical intermolecular hydrogen bonds, but intramolecular N—H⋯Br and N—H⋯Cl contacts occur.
Related literature
For preparation of the title compound, see: Gowda et al. (2003 ▶). For background to our studies on the effect of the ring and the side-chain substituents on the crystal structures of N-aromatic amides, see: Gowda et al. (2007 ▶, 2009 ▶). For the conformations of other amides, see: Brown (1966 ▶).
Experimental
Crystal data
C8H5Br3ClNO
M r = 406.31
Orthorhombic,
a = 9.1947 (6) Å
b = 12.9645 (7) Å
c = 9.5213 (6) Å
V = 1134.98 (12) Å3
Z = 4
Mo Kα radiation
μ = 10.86 mm−1
T = 299 K
0.40 × 0.40 × 0.34 mm
Data collection
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 ▶) T min = 0.098, T max = 0.120
4524 measured reflections
1645 independent reflections
1491 reflections with I > 2σ(I)
R int = 0.022
Refinement
R[F 2 > 2σ(F 2)] = 0.027
wR(F 2) = 0.066
S = 1.07
1645 reflections
131 parameters
2 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.77 e Å−3
Δρmin = −0.56 e Å−3
Absolute structure: Flack (1983 ▶), 416 Friedel pairs
Flack parameter: 0.049 (18)
Data collection: CrysAlis CCD (Oxford Diffraction, 2009 ▶); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 ▶); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2009 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001467/bt5167sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001467/bt5167Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1N⋯Br1 | 0.85 (3) | 2.78 (8) | 3.155 (6) | 109 (6) |
| N1—H1N⋯Cl1 | 0.85 (3) | 2.59 (7) | 2.961 (5) | 107 (5) |
Acknowledgments
PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.
supplementary crystallographic information
Comment
As a part of studying the effect of the ring and the side chain substituents on the crystal structures of N-aromatic amides (Gowda et al., 2007, 2009), in the present work, the structure of N-(2-chlorophenyl)2,2,2-tribromoacetamide (I) has been determined (Fig.1). The conformation of the N—H bond is syn to the 2-chloro substituent in the benzene ring, similar to that observed in N-(2-chlorophenyl)acetamide and N-(2-chlorophenyl)2,2,2-trichloroacetamide (Gowda et al., 2007), but contrary to the anti conformation observed between the N—H bond and the 3-methyl group in N-(3-methylphenyl)2,2,2-tribromoacetamide (Gowda et al., 2009). Further, the conformation of the N—H bond in the structure is anti to the C=O bond in the side chain, similar to that observed in N-(phenyl)2,2,2-tribromoacetamide (Gowda et al., 2009) and other amides (Brown, 1966; Gowda et al., 2007, 2009). The structure shows simultaneous N—H···Br and N—H···Cl intramolecular H-bonding. The packing diagram of the molecules is shown in Fig. 2.
Experimental
The title compound was prepared from 2-chloroaniline, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its ethanolic solution at room temperature.
Refinement
The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (3) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.
Figures
Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and the H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonds shown as dashed lines.
Crystal data
| C8H5Br3ClNO | F(000) = 760 |
| Mr = 406.31 | Dx = 2.378 Mg m−3 |
| Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2c -2n | Cell parameters from 3507 reflections |
| a = 9.1947 (6) Å | θ = 2.7–27.8° |
| b = 12.9645 (7) Å | µ = 10.86 mm−1 |
| c = 9.5213 (6) Å | T = 299 K |
| V = 1134.98 (12) Å3 | Rod, colourless |
| Z = 4 | 0.40 × 0.40 × 0.34 mm |
Data collection
| Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 1645 independent reflections |
| Radiation source: fine-focus sealed tube | 1491 reflections with I > 2σ(I) |
| graphite | Rint = 0.022 |
| Rotation method data acquisition using ω and φ scans. | θmax = 26.4°, θmin = 2.7° |
| Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −11→11 |
| Tmin = 0.098, Tmax = 0.120 | k = −16→15 |
| 4524 measured reflections | l = −11→6 |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0357P)2 + 1.2795P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.066 | (Δ/σ)max = 0.004 |
| S = 1.07 | Δρmax = 0.77 e Å−3 |
| 1645 reflections | Δρmin = −0.56 e Å−3 |
| 131 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 2 restraints | Extinction coefficient: 0.0072 (5) |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 416 Friedel pairs |
| Secondary atom site location: difference Fourier map | Flack parameter: 0.049 (18) |
Special details
| Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.56049 (8) | 0.28366 (5) | 1.15778 (8) | 0.0510 (2) | |
| Br2 | 0.43394 (7) | 0.06152 (5) | 1.19542 (7) | 0.0483 (2) | |
| Br3 | 0.70743 (6) | 0.09279 (5) | 1.00260 (9) | 0.0474 (2) | |
| Cl1 | 0.5017 (2) | 0.46215 (12) | 0.7770 (2) | 0.0536 (5) | |
| O1 | 0.3140 (5) | 0.1287 (4) | 0.9233 (5) | 0.0521 (13) | |
| N1 | 0.4832 (5) | 0.2390 (4) | 0.8407 (6) | 0.0366 (12) | |
| H1N | 0.554 (5) | 0.277 (4) | 0.866 (9) | 0.044* | |
| C1 | 0.4101 (6) | 0.2689 (4) | 0.7164 (7) | 0.0311 (12) | |
| C2 | 0.4114 (6) | 0.3709 (4) | 0.6763 (7) | 0.0360 (14) | |
| C3 | 0.3435 (8) | 0.4026 (5) | 0.5526 (7) | 0.0475 (17) | |
| H3 | 0.3476 | 0.4712 | 0.5244 | 0.057* | |
| C4 | 0.2701 (8) | 0.3305 (6) | 0.4724 (8) | 0.0573 (19) | |
| H4 | 0.2235 | 0.3506 | 0.3901 | 0.069* | |
| C5 | 0.2660 (9) | 0.2308 (6) | 0.5136 (9) | 0.063 (2) | |
| H5 | 0.2152 | 0.1829 | 0.4598 | 0.076* | |
| C6 | 0.3362 (8) | 0.1987 (5) | 0.6347 (7) | 0.0471 (17) | |
| H6 | 0.3335 | 0.1296 | 0.6607 | 0.057* | |
| C7 | 0.4282 (6) | 0.1716 (4) | 0.9346 (6) | 0.0278 (12) | |
| C8 | 0.5253 (6) | 0.1542 (4) | 1.0638 (7) | 0.0288 (12) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.0744 (5) | 0.0373 (3) | 0.0411 (4) | −0.0059 (3) | −0.0169 (4) | −0.0036 (3) |
| Br2 | 0.0476 (4) | 0.0509 (4) | 0.0464 (4) | −0.0058 (3) | 0.0000 (3) | 0.0248 (3) |
| Br3 | 0.0328 (3) | 0.0471 (4) | 0.0623 (5) | 0.0097 (3) | 0.0018 (3) | 0.0139 (4) |
| Cl1 | 0.0620 (10) | 0.0384 (8) | 0.0604 (12) | −0.0142 (8) | −0.0155 (9) | 0.0153 (8) |
| O1 | 0.047 (3) | 0.067 (3) | 0.043 (3) | −0.025 (2) | −0.009 (2) | 0.011 (3) |
| N1 | 0.040 (3) | 0.035 (3) | 0.035 (3) | −0.007 (2) | −0.008 (2) | 0.013 (3) |
| C1 | 0.035 (3) | 0.032 (3) | 0.026 (3) | 0.008 (2) | 0.000 (2) | 0.004 (2) |
| C2 | 0.032 (3) | 0.036 (3) | 0.040 (4) | 0.004 (2) | 0.004 (3) | 0.004 (3) |
| C3 | 0.057 (4) | 0.052 (4) | 0.033 (4) | 0.018 (3) | 0.004 (3) | 0.018 (3) |
| C4 | 0.074 (5) | 0.070 (5) | 0.028 (4) | 0.010 (4) | −0.017 (4) | 0.012 (4) |
| C5 | 0.092 (5) | 0.065 (5) | 0.033 (4) | 0.011 (4) | −0.020 (4) | −0.016 (4) |
| C6 | 0.068 (4) | 0.039 (3) | 0.034 (4) | 0.011 (3) | −0.005 (4) | −0.002 (3) |
| C7 | 0.028 (3) | 0.027 (3) | 0.029 (3) | 0.002 (2) | 0.000 (2) | 0.000 (2) |
| C8 | 0.032 (3) | 0.027 (3) | 0.027 (3) | 0.001 (2) | −0.001 (2) | 0.008 (2) |
Geometric parameters (Å, °)
| Br1—C8 | 1.929 (6) | C2—C3 | 1.395 (9) |
| Br2—C8 | 1.929 (6) | C3—C4 | 1.383 (10) |
| Br3—C8 | 1.944 (6) | C3—H3 | 0.9300 |
| Cl1—C2 | 1.735 (7) | C4—C5 | 1.351 (11) |
| O1—C7 | 1.193 (6) | C4—H4 | 0.9300 |
| N1—C7 | 1.349 (7) | C5—C6 | 1.385 (10) |
| N1—C1 | 1.415 (8) | C5—H5 | 0.9300 |
| N1—H1N | 0.85 (3) | C6—H6 | 0.9300 |
| C1—C6 | 1.377 (9) | C7—C8 | 1.537 (8) |
| C1—C2 | 1.376 (8) | ||
| C7—N1—C1 | 123.6 (5) | C4—C5—C6 | 121.1 (7) |
| C7—N1—H1N | 118 (6) | C4—C5—H5 | 119.5 |
| C1—N1—H1N | 116 (5) | C6—C5—H5 | 119.5 |
| C6—C1—C2 | 118.8 (6) | C1—C6—C5 | 120.1 (6) |
| C6—C1—N1 | 121.7 (5) | C1—C6—H6 | 119.9 |
| C2—C1—N1 | 119.4 (6) | C5—C6—H6 | 119.9 |
| C1—C2—C3 | 120.9 (6) | O1—C7—N1 | 124.9 (6) |
| C1—C2—Cl1 | 120.4 (5) | O1—C7—C8 | 121.0 (5) |
| C3—C2—Cl1 | 118.7 (5) | N1—C7—C8 | 114.1 (4) |
| C4—C3—C2 | 119.0 (6) | C7—C8—Br1 | 110.0 (4) |
| C4—C3—H3 | 120.5 | C7—C8—Br2 | 111.0 (4) |
| C2—C3—H3 | 120.5 | Br1—C8—Br2 | 108.3 (3) |
| C5—C4—C3 | 120.0 (6) | C7—C8—Br3 | 108.7 (4) |
| C5—C4—H4 | 120.0 | Br1—C8—Br3 | 110.5 (3) |
| C3—C4—H4 | 120.0 | Br2—C8—Br3 | 108.3 (3) |
| C7—N1—C1—C6 | −41.6 (9) | N1—C1—C6—C5 | −179.9 (6) |
| C7—N1—C1—C2 | 137.9 (6) | C4—C5—C6—C1 | 0.9 (12) |
| C6—C1—C2—C3 | −2.1 (9) | C1—N1—C7—O1 | 1.1 (9) |
| N1—C1—C2—C3 | 178.4 (6) | C1—N1—C7—C8 | −177.9 (5) |
| C6—C1—C2—Cl1 | 179.4 (5) | O1—C7—C8—Br1 | −121.3 (5) |
| N1—C1—C2—Cl1 | −0.1 (8) | N1—C7—C8—Br1 | 57.7 (6) |
| C1—C2—C3—C4 | 2.2 (10) | O1—C7—C8—Br2 | −1.5 (7) |
| Cl1—C2—C3—C4 | −179.4 (5) | N1—C7—C8—Br2 | 177.5 (4) |
| C2—C3—C4—C5 | −0.7 (11) | O1—C7—C8—Br3 | 117.5 (5) |
| C3—C4—C5—C6 | −0.9 (12) | N1—C7—C8—Br3 | −63.4 (5) |
| C2—C1—C6—C5 | 0.6 (10) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1N···Br1 | 0.85 (3) | 2.78 (8) | 3.155 (6) | 109 (6) |
| N1—H1N···Cl1 | 0.85 (3) | 2.59 (7) | 2.961 (5) | 107 (5) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5167).
References
- Brown, C. J. (1966). Acta Cryst.21, 442–445.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o3242. [DOI] [PMC free article] [PubMed]
- Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267.
- Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001467/bt5167sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001467/bt5167Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


