Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 13;66(Pt 2):o355. doi: 10.1107/S160053680905541X

Ethyl 4-(dimethyl­amino)benzoate

J Kalyana Sundar a, V Natarajan b, M Arivanandhan c,*, Y Hayakawa c, S Natarajan a
PMCID: PMC2979858  PMID: 21579781

Abstract

Mol­ecules of the title compound, C11H15NO2, are essentially planar (r.m.s. deviation = 0.035 Å) and are linked into a chain along the a axis by weak C—H⋯O hydrogen bonds.

Related literature

Benzoic acid and its derivatives are good inhibitors of influenza viruses, see: Luo et al. (1995). For the use of benzoic acid derivatives such as 4-amino­benzoic acid as bifunctional organic ligands due to the variety of their coordination modes, see: Amiraslanov et al. (1979); Chen & Chen (2002); Hauptmann et al. (2000). For the use of the title compound as a part of a self-curing two-part system comprising degradable copolymers with applications in medicine and dentistry as root-canal sealants, root-canal filling materials, dental restorative materials, implant materials, bone cements and pulp-capping materials, see: Jia & Jin (2004).graphic file with name e-66-0o355-scheme1.jpg

Experimental

Crystal data

  • C11H15NO2

  • M r = 193.24

  • Monoclinic, Inline graphic

  • a = 12.6949 (8) Å

  • b = 6.6596 (4) Å

  • c = 12.8529 (9) Å

  • β = 98.672 (11)°

  • V = 1074.20 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.13 mm

Data collection

  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.985, T max = 0.989

  • 4088 measured reflections

  • 1873 independent reflections

  • 1424 reflections with I > 2σ(I)

  • R int = 0.051

  • 3 standard reflections every 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.134

  • S = 1.05

  • 1873 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905541X/ci2998sup1.cif

e-66-0o355-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905541X/ci2998Isup2.hkl

e-66-0o355-Isup2.hkl (90.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.55 3.4682 (19) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the DST for the FIST programme.

supplementary crystallographic information

Comment

Benzoic acid and its derivatives are good inhibitors of influenza viruses (Luo et al., 1995). Some benzoic acid derivatives such as 4-aminobenzoic acid have been extensively reported in coordination chemistry as bifunctional organic ligands due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound, a tertiary amine, is used as a part of self-curing two part system for dental/ medical compositions comprising degradable copolymers which are suitable for use as root canal sealants, root canal filling materials, dental restorative materials, implant materials, bone cements and pulp capping materials (Jia et al., 2004).

The molecule of the title compound, C11H15N O2, is essentially planar (r.m.s. deviation 0.035 Å). The molecules are linked into a chain along the a axis by weak C—H···O hydrogen bonds.

Experimental

Ethyl 4-(dimethylamino)benzoate (EDMAB) obtained from Sigma–Aldrich, India, was dissolved in ethanol. The saturated solution was transferred to a crystallizer and covered by a perforated polyethylene sheet for controlled evaporation at room temperature. Colourless crystals were harvested, after five days

Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms, with C-H = 0.93–0.97 Å and Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for CH3 group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C11H15NO2 F(000) = 416
Mr = 193.24 Dx = 1.195 Mg m3
Monoclinic, P21/a Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yab Cell parameters from 25 reflections
a = 12.6949 (8) Å θ = 2–25°
b = 6.6596 (4) Å µ = 0.08 mm1
c = 12.8529 (9) Å T = 293 K
β = 98.672 (11)° Block, colourless
V = 1074.20 (12) Å3 0.18 × 0.15 × 0.13 mm
Z = 4

Data collection

Nonius MACH-3 diffractometer 1424 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.051
graphite θmax = 25.0°, θmin = 3.2°
ω–2θ scans h = −1→15
Absorption correction: ψ scan (North et al., 1968) k = −7→7
Tmin = 0.985, Tmax = 0.989 l = −15→15
4088 measured reflections 3 standard reflections every 60 min
1873 independent reflections intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.2249P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
1873 reflections Δρmax = 0.16 e Å3
131 parameters Δρmin = −0.13 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.018 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.40072 (9) 0.08183 (18) 0.88044 (9) 0.0572 (4)
O2 0.54776 (10) 0.0855 (2) 0.80386 (11) 0.0707 (4)
C1 0.34843 (11) −0.5441 (3) 0.66547 (12) 0.0469 (4)
C4 0.42325 (12) −0.1813 (3) 0.76552 (12) 0.0461 (4)
N1 0.31326 (11) −0.7203 (3) 0.61807 (13) 0.0627 (5)
C7 0.46496 (12) 0.0065 (3) 0.81690 (12) 0.0497 (4)
C3 0.32462 (12) −0.2619 (3) 0.77847 (12) 0.0479 (4)
H3 0.2828 −0.1950 0.8208 0.057*
C6 0.44776 (12) −0.4608 (3) 0.65238 (13) 0.0528 (5)
H6 0.4900 −0.5262 0.6098 0.063*
C2 0.28788 (12) −0.4375 (3) 0.73023 (13) 0.0491 (4)
H2 0.2217 −0.4869 0.7405 0.059*
C5 0.48322 (12) −0.2852 (3) 0.70133 (13) 0.0531 (5)
H5 0.5492 −0.2343 0.6913 0.064*
C8 0.43523 (14) 0.2641 (3) 0.93720 (13) 0.0574 (5)
H8A 0.4448 0.3713 0.8884 0.069*
H8B 0.5023 0.2419 0.9829 0.069*
C1A 0.37347 (16) −0.8242 (3) 0.54815 (15) 0.0685 (5)
H1A1 0.3762 −0.7437 0.4867 0.103*
H1A2 0.3397 −0.9501 0.5277 0.103*
H1A3 0.4445 −0.8481 0.5835 0.103*
C2A 0.21248 (14) −0.8068 (3) 0.63395 (17) 0.0690 (6)
H2A1 0.2090 −0.8138 0.7080 0.103*
H2A2 0.2062 −0.9395 0.6044 0.103*
H2A3 0.1553 −0.7247 0.6000 0.103*
C9 0.34993 (18) 0.3176 (3) 1.00051 (16) 0.0767 (6)
H9A 0.2835 0.3340 0.9545 0.115*
H9B 0.3683 0.4409 1.0376 0.115*
H9C 0.3431 0.2125 1.0502 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0615 (7) 0.0553 (8) 0.0586 (7) −0.0047 (6) 0.0215 (6) −0.0083 (6)
O2 0.0583 (7) 0.0663 (9) 0.0929 (10) −0.0141 (7) 0.0289 (7) −0.0111 (7)
C1 0.0436 (8) 0.0519 (10) 0.0451 (8) 0.0024 (7) 0.0062 (6) 0.0041 (7)
C4 0.0448 (8) 0.0495 (10) 0.0459 (8) 0.0027 (7) 0.0129 (7) 0.0052 (7)
N1 0.0543 (8) 0.0650 (11) 0.0710 (10) −0.0081 (7) 0.0163 (7) −0.0160 (8)
C7 0.0481 (8) 0.0529 (10) 0.0500 (9) 0.0034 (8) 0.0132 (7) 0.0061 (8)
C3 0.0465 (8) 0.0507 (10) 0.0500 (9) 0.0056 (7) 0.0186 (7) 0.0041 (7)
C6 0.0470 (8) 0.0591 (11) 0.0560 (10) 0.0024 (8) 0.0200 (7) −0.0052 (8)
C2 0.0399 (8) 0.0560 (11) 0.0535 (9) 0.0010 (7) 0.0139 (7) 0.0055 (8)
C5 0.0431 (8) 0.0622 (12) 0.0578 (10) −0.0045 (8) 0.0198 (7) −0.0025 (8)
C8 0.0711 (11) 0.0483 (10) 0.0526 (10) −0.0032 (9) 0.0089 (8) −0.0005 (8)
C1A 0.0794 (13) 0.0657 (13) 0.0612 (11) 0.0003 (11) 0.0133 (9) −0.0123 (10)
C2A 0.0613 (11) 0.0597 (12) 0.0851 (13) −0.0125 (10) 0.0083 (9) −0.0028 (10)
C9 0.0951 (15) 0.0653 (13) 0.0750 (13) 0.0003 (12) 0.0296 (11) −0.0139 (11)

Geometric parameters (Å, °)

O1—C7 1.3361 (19) C2—H2 0.9300
O1—C8 1.449 (2) C5—H5 0.9300
O2—C7 1.2095 (19) C8—C9 1.493 (2)
C1—N1 1.365 (2) C8—H8A 0.9700
C1—C2 1.408 (2) C8—H8B 0.9700
C1—C6 1.411 (2) C1A—H1A1 0.9600
C4—C5 1.389 (2) C1A—H1A2 0.9600
C4—C3 1.395 (2) C1A—H1A3 0.9600
C4—C7 1.475 (3) C2A—H2A1 0.9600
N1—C1A 1.442 (2) C2A—H2A2 0.9600
N1—C2A 1.446 (2) C2A—H2A3 0.9600
C3—C2 1.372 (2) C9—H9A 0.9600
C3—H3 0.9300 C9—H9B 0.9600
C6—C5 1.372 (3) C9—H9C 0.9600
C6—H6 0.9300
C7—O1—C8 117.15 (13) O1—C8—C9 106.59 (14)
N1—C1—C2 121.76 (14) O1—C8—H8A 110.4
N1—C1—C6 121.51 (14) C9—C8—H8A 110.4
C2—C1—C6 116.73 (16) O1—C8—H8B 110.4
C5—C4—C3 117.49 (16) C9—C8—H8B 110.4
C5—C4—C7 119.76 (14) H8A—C8—H8B 108.6
C3—C4—C7 122.75 (14) N1—C1A—H1A1 109.5
C1—N1—C1A 121.48 (15) N1—C1A—H1A2 109.5
C1—N1—C2A 121.10 (15) H1A1—C1A—H1A2 109.5
C1A—N1—C2A 117.40 (16) N1—C1A—H1A3 109.5
O2—C7—O1 123.00 (17) H1A1—C1A—H1A3 109.5
O2—C7—C4 124.59 (15) H1A2—C1A—H1A3 109.5
O1—C7—C4 112.41 (13) N1—C2A—H2A1 109.5
C2—C3—C4 121.61 (15) N1—C2A—H2A2 109.5
C2—C3—H3 119.2 H2A1—C2A—H2A2 109.5
C4—C3—H3 119.2 N1—C2A—H2A3 109.5
C5—C6—C1 121.20 (14) H2A1—C2A—H2A3 109.5
C5—C6—H6 119.4 H2A2—C2A—H2A3 109.5
C1—C6—H6 119.4 C8—C9—H9A 109.5
C3—C2—C1 121.24 (15) C8—C9—H9B 109.5
C3—C2—H2 119.4 H9A—C9—H9B 109.5
C1—C2—H2 119.4 C8—C9—H9C 109.5
C6—C5—C4 121.73 (15) H9A—C9—H9C 109.5
C6—C5—H5 119.1 H9B—C9—H9C 109.5
C4—C5—H5 119.1
C2—C1—N1—C1A 177.23 (16) C7—C4—C3—C2 −179.64 (15)
C6—C1—N1—C1A −3.2 (3) N1—C1—C6—C5 −179.15 (16)
C2—C1—N1—C2A −1.0 (3) C2—C1—C6—C5 0.5 (2)
C6—C1—N1—C2A 178.53 (16) C4—C3—C2—C1 0.1 (2)
C8—O1—C7—O2 −1.5 (2) N1—C1—C2—C3 179.19 (15)
C8—O1—C7—C4 178.51 (13) C6—C1—C2—C3 −0.4 (2)
C5—C4—C7—O2 3.6 (3) C1—C6—C5—C4 −0.2 (3)
C3—C4—C7—O2 −176.55 (16) C3—C4—C5—C6 −0.2 (2)
C5—C4—C7—O1 −176.49 (14) C7—C4—C5—C6 179.69 (15)
C3—C4—C7—O1 3.4 (2) C7—O1—C8—C9 179.26 (15)
C5—C4—C3—C2 0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O2i 0.93 2.55 3.4682 (19) 168

Symmetry codes: (i) x−1/2, −y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2998).

References

  1. Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim.20, 1075–1080.
  2. Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.
  3. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  5. Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct.215, 169–172.
  6. Jia, W.-T. & Jin, S.-H. (2004). US Patent No. 6787584.
  7. Luo, M., Jedrzejas, M. J., Singh, S., White, C. L., Brouillette, W. J., Air, G. M. & Laver, W. G. (1995). Acta Cryst. D51, 504–510. [DOI] [PubMed]
  8. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905541X/ci2998sup1.cif

e-66-0o355-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905541X/ci2998Isup2.hkl

e-66-0o355-Isup2.hkl (90.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES