Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 27;66(Pt 2):o447. doi: 10.1107/S1600536810002631

N 4-(3-Bromo­phen­yl)quinazoline-4,6-diamine

De-Liang Li a, Yang Wu a, Qiang Wang a, Gu He a,*, Luo-Ting Yu a
PMCID: PMC2979868  PMID: 21579862

Abstract

In the title compound, C14H11BrN4, the fused benzene and pyrimidine rings are nearly coplanar, making dihedral angles of 1.26 (14) and 3.53 (15)° in the two independent mol­ecules. In the crystal structure, π–π stacking inter­actions [centroid–centroid distances = 3.4736 (19) and 3.5416 (19) Å] and weak N—H⋯N and N—H⋯Br inter­actions contribute to the stability of the structure.

Related literature

For general background to the biological activity of N 4-(3-bromo­phen­yl)quinazoline derivatives, see: Fry et al. (2005).graphic file with name e-66-0o447-scheme1.jpg

Experimental

Crystal data

  • C14H11BrN4

  • M r = 315.18

  • Triclinic, Inline graphic

  • a = 7.5579 (15) Å

  • b = 11.743 (2) Å

  • c = 15.554 (3) Å

  • α = 110.24 (3)°

  • β = 96.79 (3)°

  • γ = 96.75 (3)°

  • V = 1267.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.23 mm−1

  • T = 113 K

  • 0.36 × 0.26 × 0.23 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan [SADABS (Sheldrick, 1996) using a modified Dwiggins (1975) procedure] T min = 0.389, T max = 0.523

  • 10616 measured reflections

  • 5931 independent reflections

  • 3735 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.110

  • S = 1.02

  • 5931 reflections

  • 360 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.42 e Å−3

  • Δρmin = −1.54 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002631/pb2020sup1.cif

e-66-0o447-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002631/pb2020Isup2.hkl

e-66-0o447-Isup2.hkl (290.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N4i 0.93 (4) 2.28 (4) 3.069 (4) 142 (3)
N4—H4A⋯N3ii 0.88 2.33 3.137 (4) 153
N4—H4B⋯N8iii 0.88 2.39 3.178 (4) 149
N8—H8N1⋯Br1iv 0.89 (4) 2.88 (4) 3.739 (4) 163 (3)
N8—H8N2⋯N7ii 0.77 (4) 2.31 (4) 3.053 (4) 162 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

supplementary crystallographic information

Comment

N4-(3-bromophenyl)quinazoline derivatives are of great importance owing to their wide biological properties (Fry et al. 1994). The title compound is one of the key intermediates in our synthetic investigations of antitumor drugs. We report here its crystal structure. As shown in Fig. 1, the benzene and pyrimidine rings of the title compound (I) are nearly coplanar, with the dihedral angle between them are 1.2° and 3.1°, respectively. A combination of intermolecular π-π packing interaction, N—H···N and N—H···Br hydrogen bonds plays important part in the connection of adjacent molecules.

Experimental

A mixture of N4-(3-bromophenyl)quinazoline-4,6-diamine (3.45 g, 10 mmol), Sodium sulfide nonahydrate (6.00 g, 25 mmol), sodium hydroxide (2.00 g, 50 mmol), ethanol (40 ml) and water (80 ml) was heated for 5.0 h under reflux. The ethanol was removed under vacuum. The solid was filtered, washed with cold water, dried to yield the title compound as a brown solid (2.2 g, 71% yield). Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethyl acetate.

Refinement

H atoms of the amino group were located in a difference map and refined freely. The reminaing H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound.

Crystal data

C14H11BrN4 Z = 4
Mr = 315.18 F(000) = 632
Triclinic, P1 Dx = 1.652 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5579 (15) Å Cell parameters from 3726 reflections
b = 11.743 (2) Å θ = 1.9–27.9°
c = 15.554 (3) Å µ = 3.23 mm1
α = 110.24 (3)° T = 113 K
β = 96.79 (3)° Block, colourless
γ = 96.75 (3)° 0.36 × 0.26 × 0.23 mm
V = 1267.4 (4) Å3

Data collection

Rigaku Saturn CCD area-detector diffractometer 5931 independent reflections
Radiation source: rotating anode 3735 reflections with I > 2σ(I)
confocal Rint = 0.034
Detector resolution: 7.31 pixels mm-1 θmax = 27.9°, θmin = 1.9°
ω and φ scans h = −9→9
Absorption correction: multi-scan [SADABS (Sheldrick, 1996) using a modified Dwiggins (1975) procedure] k = −9→15
Tmin = 0.389, Tmax = 0.523 l = −20→20
10616 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.052P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
5931 reflections Δρmax = 1.42 e Å3
360 parameters Δρmin = −1.54 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0265 (14)

Special details

Experimental. Absorption correction: [interpolation using International Tables for Crystallography (Vol. C, 1992, p. 523, Table 6.3.3.3) for values of µR in the range 0–2.5, and International Tables for X-ray Crystallography (Vol. II, 1959, p. 302, Table 5.3.6B) for µR in the range 2.6–10.0; the interpolation procedure of Dwiggins (1975) was used with some modification]
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.32081 (4) 0.54984 (3) 0.19450 (3) 0.02528 (13)
N1 0.7074 (3) 0.7482 (2) 0.01210 (19) 0.0175 (6)
H1N 0.622 (5) 0.800 (4) 0.026 (3) 0.036 (11)*
N2 0.9911 (3) 0.7443 (2) −0.03199 (19) 0.0176 (6)
N3 1.0997 (3) 0.8702 (2) −0.11423 (19) 0.0175 (6)
N4 0.4365 (3) 1.0316 (2) −0.13941 (19) 0.0184 (6)
H4A 0.3481 1.0082 −0.1139 0.022*
H4B 0.4225 1.0832 −0.1684 0.022*
C1 0.5318 (4) 0.5673 (3) 0.1418 (2) 0.0179 (7)
C2 0.6659 (4) 0.4991 (3) 0.1522 (2) 0.0204 (7)
H2 0.6528 0.4433 0.1839 0.024*
C3 0.8198 (4) 0.5164 (3) 0.1143 (2) 0.0198 (7)
H3 0.9136 0.4711 0.1204 0.024*
C4 0.8412 (4) 0.5974 (3) 0.0679 (2) 0.0180 (7)
H4 0.9484 0.6074 0.0431 0.022*
C5 0.7044 (4) 0.6642 (3) 0.0580 (2) 0.0164 (7)
C6 0.5474 (4) 0.6477 (3) 0.0953 (2) 0.0167 (7)
H6 0.4524 0.6918 0.0885 0.020*
C7 0.8344 (4) 0.7850 (3) −0.0327 (2) 0.0158 (7)
C8 1.1141 (4) 0.7914 (3) −0.0728 (2) 0.0182 (7)
H8 1.2267 0.7632 −0.0710 0.022*
C9 0.9338 (4) 0.9078 (3) −0.1195 (2) 0.0151 (6)
C10 0.7933 (4) 0.8659 (3) −0.0804 (2) 0.0149 (6)
C11 0.6255 (4) 0.9061 (3) −0.0889 (2) 0.0166 (7)
H11 0.5295 0.8771 −0.0633 0.020*
C12 0.5995 (4) 0.9869 (3) −0.1338 (2) 0.0154 (7)
C13 0.7425 (4) 1.0290 (3) −0.1721 (2) 0.0196 (7)
H13 0.7256 1.0854 −0.2026 0.024*
C14 0.9041 (4) 0.9895 (3) −0.1658 (2) 0.0191 (7)
H14 0.9980 1.0175 −0.1929 0.023*
Br2 0.47743 (6) 0.69252 (4) 0.64544 (4) 0.05308 (17)
N5 0.0018 (4) 0.2805 (3) 0.5104 (2) 0.0236 (7)
H5N −0.105 (6) 0.250 (4) 0.497 (3) 0.062 (16)*
N6 0.2839 (4) 0.2212 (3) 0.5094 (2) 0.0225 (6)
N7 0.3236 (3) 0.0159 (3) 0.4224 (2) 0.0220 (6)
N8 −0.4215 (4) −0.1290 (3) 0.3066 (2) 0.0208 (6)
H8N1 −0.470 (5) −0.207 (4) 0.292 (3) 0.031 (11)*
H8N2 −0.467 (5) −0.080 (4) 0.339 (3) 0.029 (12)*
C15 0.2510 (5) 0.5963 (3) 0.6368 (3) 0.0297 (8)
C16 0.1242 (5) 0.6528 (4) 0.6842 (3) 0.0345 (9)
H16 0.1503 0.7376 0.7228 0.041*
C17 −0.0417 (5) 0.5833 (4) 0.6743 (3) 0.0353 (9)
H17 −0.1317 0.6202 0.7067 0.042*
C18 −0.0788 (5) 0.4601 (3) 0.6177 (3) 0.0294 (8)
H18 −0.1943 0.4132 0.6112 0.035*
C19 0.0523 (5) 0.4039 (3) 0.5700 (2) 0.0237 (8)
C20 0.2198 (5) 0.4734 (3) 0.5799 (3) 0.0270 (8)
H20 0.3112 0.4375 0.5483 0.032*
C21 0.1078 (4) 0.1919 (3) 0.4798 (2) 0.0200 (7)
C22 0.3821 (4) 0.1307 (3) 0.4780 (2) 0.0237 (8)
H22 0.5091 0.1530 0.4988 0.028*
C23 0.1403 (4) −0.0162 (3) 0.3923 (2) 0.0176 (7)
C24 0.0232 (4) 0.0702 (3) 0.4192 (2) 0.0179 (7)
C25 −0.1655 (4) 0.0310 (3) 0.3887 (2) 0.0209 (7)
H25 −0.2446 0.0894 0.4047 0.025*
C26 −0.2359 (4) −0.0901 (3) 0.3363 (2) 0.0200 (7)
C27 −0.1169 (4) −0.1752 (3) 0.3086 (2) 0.0208 (7)
H27 −0.1645 −0.2585 0.2707 0.025*
C28 0.0670 (4) −0.1386 (3) 0.3358 (2) 0.0209 (7)
H28 0.1452 −0.1968 0.3162 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0237 (2) 0.0263 (2) 0.0295 (2) 0.00205 (15) 0.01249 (15) 0.01294 (17)
N1 0.0181 (13) 0.0173 (14) 0.0246 (17) 0.0096 (12) 0.0100 (12) 0.0127 (13)
N2 0.0158 (13) 0.0171 (14) 0.0222 (16) 0.0055 (11) 0.0069 (11) 0.0078 (13)
N3 0.0127 (12) 0.0170 (14) 0.0236 (16) 0.0032 (11) 0.0076 (11) 0.0068 (13)
N4 0.0159 (13) 0.0229 (15) 0.0244 (17) 0.0091 (12) 0.0096 (11) 0.0148 (14)
C1 0.0198 (16) 0.0165 (16) 0.0178 (18) 0.0030 (13) 0.0068 (13) 0.0058 (15)
C2 0.0245 (17) 0.0170 (17) 0.023 (2) 0.0053 (14) 0.0063 (14) 0.0095 (16)
C3 0.0224 (17) 0.0168 (17) 0.0229 (19) 0.0085 (14) 0.0046 (14) 0.0085 (15)
C4 0.0146 (15) 0.0190 (17) 0.0223 (19) 0.0058 (13) 0.0055 (13) 0.0082 (16)
C5 0.0207 (16) 0.0130 (15) 0.0144 (18) 0.0011 (13) 0.0053 (13) 0.0037 (14)
C6 0.0181 (16) 0.0149 (16) 0.0170 (18) 0.0061 (13) 0.0058 (13) 0.0036 (14)
C7 0.0145 (15) 0.0128 (15) 0.0182 (18) 0.0010 (13) 0.0063 (13) 0.0025 (14)
C8 0.0141 (15) 0.0147 (16) 0.027 (2) 0.0059 (13) 0.0073 (13) 0.0059 (15)
C9 0.0158 (15) 0.0131 (15) 0.0158 (17) 0.0030 (13) 0.0051 (12) 0.0036 (14)
C10 0.0150 (15) 0.0130 (15) 0.0163 (18) 0.0034 (13) 0.0058 (12) 0.0034 (14)
C11 0.0165 (15) 0.0152 (16) 0.0203 (19) 0.0038 (13) 0.0078 (13) 0.0075 (15)
C12 0.0137 (15) 0.0149 (16) 0.0163 (18) 0.0029 (13) 0.0025 (12) 0.0041 (14)
C13 0.0217 (17) 0.0207 (17) 0.0217 (19) 0.0057 (14) 0.0085 (14) 0.0120 (16)
C14 0.0164 (16) 0.0224 (18) 0.0209 (19) 0.0026 (14) 0.0082 (13) 0.0095 (16)
Br2 0.0563 (3) 0.0275 (2) 0.0698 (4) −0.0053 (2) 0.0215 (3) 0.0114 (2)
N5 0.0242 (16) 0.0195 (16) 0.0269 (18) 0.0083 (14) 0.0065 (13) 0.0060 (14)
N6 0.0227 (15) 0.0241 (16) 0.0220 (17) 0.0070 (13) 0.0061 (12) 0.0084 (14)
N7 0.0180 (14) 0.0264 (16) 0.0234 (17) 0.0076 (13) 0.0052 (12) 0.0095 (14)
N8 0.0166 (14) 0.0225 (17) 0.0203 (18) 0.0056 (14) 0.0022 (12) 0.0037 (15)
C15 0.040 (2) 0.025 (2) 0.025 (2) 0.0030 (17) 0.0080 (17) 0.0102 (18)
C16 0.061 (3) 0.0206 (19) 0.024 (2) 0.0124 (19) 0.0130 (19) 0.0071 (18)
C17 0.047 (2) 0.035 (2) 0.030 (2) 0.015 (2) 0.0186 (19) 0.011 (2)
C18 0.038 (2) 0.026 (2) 0.028 (2) 0.0114 (17) 0.0147 (17) 0.0081 (18)
C19 0.0319 (19) 0.0238 (19) 0.019 (2) 0.0098 (16) 0.0056 (15) 0.0098 (17)
C20 0.036 (2) 0.0237 (19) 0.026 (2) 0.0098 (17) 0.0119 (16) 0.0119 (18)
C21 0.0244 (17) 0.0224 (18) 0.0176 (19) 0.0081 (15) 0.0091 (14) 0.0096 (16)
C22 0.0206 (17) 0.030 (2) 0.025 (2) 0.0069 (15) 0.0076 (14) 0.0129 (18)
C23 0.0187 (16) 0.0224 (18) 0.0144 (18) 0.0057 (14) 0.0046 (13) 0.0086 (15)
C24 0.0177 (16) 0.0239 (18) 0.0180 (18) 0.0092 (14) 0.0056 (13) 0.0121 (16)
C25 0.0221 (17) 0.0228 (18) 0.0201 (19) 0.0094 (15) 0.0079 (14) 0.0074 (16)
C26 0.0229 (17) 0.0239 (18) 0.0162 (19) 0.0067 (15) 0.0046 (13) 0.0094 (16)
C27 0.0242 (17) 0.0228 (18) 0.0160 (18) 0.0065 (15) 0.0050 (13) 0.0067 (15)
C28 0.0245 (17) 0.0270 (19) 0.0199 (19) 0.0160 (15) 0.0120 (14) 0.0128 (16)

Geometric parameters (Å, °)

Br1—C1 1.899 (3) Br2—C15 1.900 (4)
N1—C7 1.365 (4) N5—C21 1.376 (4)
N1—C5 1.403 (4) N5—C19 1.401 (5)
N1—H1N 0.93 (4) N5—H5N 0.82 (4)
N2—C7 1.328 (4) N6—C21 1.319 (4)
N2—C8 1.354 (4) N6—C22 1.353 (4)
N3—C8 1.305 (4) N7—C22 1.313 (4)
N3—C9 1.380 (4) N7—C23 1.372 (4)
N4—C12 1.400 (4) N8—C26 1.392 (4)
N4—H4A 0.8800 N8—H8N1 0.89 (4)
N4—H4B 0.8800 N8—H8N2 0.77 (4)
C1—C6 1.377 (4) C15—C16 1.372 (5)
C1—C2 1.391 (4) C15—C20 1.381 (5)
C2—C3 1.390 (4) C16—C17 1.374 (5)
C2—H2 0.9500 C16—H16 0.9500
C3—C4 1.384 (4) C17—C18 1.383 (5)
C3—H3 0.9500 C17—H17 0.9500
C4—C5 1.395 (4) C18—C19 1.399 (5)
C4—H4 0.9500 C18—H18 0.9500
C5—C6 1.403 (4) C19—C20 1.384 (5)
C6—H6 0.9500 C20—H20 0.9500
C7—C10 1.433 (4) C21—C24 1.431 (5)
C8—H8 0.9500 C22—H22 0.9500
C9—C10 1.406 (4) C23—C28 1.402 (5)
C9—C14 1.407 (4) C23—C24 1.412 (4)
C10—C11 1.412 (4) C24—C25 1.416 (4)
C11—C12 1.378 (4) C25—C26 1.374 (5)
C11—H11 0.9500 C25—H25 0.9500
C12—C13 1.414 (4) C26—C27 1.413 (4)
C13—C14 1.362 (4) C27—C28 1.375 (4)
C13—H13 0.9500 C27—H27 0.9500
C14—H14 0.9500 C28—H28 0.9500
C7—N1—C5 131.2 (2) C21—N5—C19 129.5 (3)
C7—N1—H1N 114 (2) C21—N5—H5N 111 (3)
C5—N1—H1N 113 (2) C19—N5—H5N 119 (3)
C7—N2—C8 115.9 (2) C21—N6—C22 116.5 (3)
C8—N3—C9 115.2 (3) C22—N7—C23 116.0 (3)
C12—N4—H4A 120.0 C26—N8—H8N1 121 (2)
C12—N4—H4B 120.0 C26—N8—H8N2 106 (3)
H4A—N4—H4B 120.0 H8N1—N8—H8N2 117 (4)
C6—C1—C2 122.4 (3) C16—C15—C20 123.2 (4)
C6—C1—Br1 118.8 (2) C16—C15—Br2 118.7 (3)
C2—C1—Br1 118.8 (2) C20—C15—Br2 118.1 (3)
C1—C2—C3 117.0 (3) C15—C16—C17 118.1 (4)
C1—C2—H2 121.5 C15—C16—H16 121.0
C3—C2—H2 121.5 C17—C16—H16 121.0
C4—C3—C2 122.3 (3) C16—C17—C18 120.6 (4)
C4—C3—H3 118.9 C16—C17—H17 119.7
C2—C3—H3 118.9 C18—C17—H17 119.7
C3—C4—C5 119.5 (3) C17—C18—C19 120.5 (4)
C3—C4—H4 120.2 C17—C18—H18 119.7
C5—C4—H4 120.2 C19—C18—H18 119.7
C4—C5—C6 119.1 (3) C20—C19—C18 119.1 (3)
C4—C5—N1 125.6 (3) C20—C19—N5 123.6 (3)
C6—C5—N1 115.3 (3) C18—C19—N5 117.2 (3)
C1—C6—C5 119.6 (3) C15—C20—C19 118.5 (3)
C1—C6—H6 120.2 C15—C20—H20 120.7
C5—C6—H6 120.2 C19—C20—H20 120.7
N2—C7—N1 119.6 (3) N6—C21—N5 118.7 (3)
N2—C7—C10 121.8 (3) N6—C21—C24 122.1 (3)
N1—C7—C10 118.6 (2) N5—C21—C24 119.1 (3)
N3—C8—N2 129.1 (3) N7—C22—N6 128.0 (3)
N3—C8—H8 115.4 N7—C22—H22 116.0
N2—C8—H8 115.4 N6—C22—H22 116.0
N3—C9—C10 121.7 (3) N7—C23—C28 119.3 (3)
N3—C9—C14 119.1 (3) N7—C23—C24 121.5 (3)
C10—C9—C14 119.1 (3) C28—C23—C24 119.2 (3)
C9—C10—C11 119.4 (3) C23—C24—C25 119.2 (3)
C9—C10—C7 116.1 (2) C23—C24—C21 115.8 (3)
C11—C10—C7 124.6 (3) C25—C24—C21 125.0 (3)
C12—C11—C10 120.6 (3) C26—C25—C24 121.0 (3)
C12—C11—H11 119.7 C26—C25—H25 119.5
C10—C11—H11 119.7 C24—C25—H25 119.5
C11—C12—N4 121.3 (3) C25—C26—N8 121.1 (3)
C11—C12—C13 119.4 (3) C25—C26—C27 119.2 (3)
N4—C12—C13 119.2 (3) N8—C26—C27 119.6 (3)
C14—C13—C12 120.7 (3) C28—C27—C26 120.7 (3)
C14—C13—H13 119.7 C28—C27—H27 119.7
C12—C13—H13 119.7 C26—C27—H27 119.7
C13—C14—C9 120.8 (3) C27—C28—C23 120.7 (3)
C13—C14—H14 119.6 C27—C28—H28 119.7
C9—C14—H14 119.6 C23—C28—H28 119.7

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···N4i 0.93 (4) 2.28 (4) 3.069 (4) 142 (3)
N4—H4A···N3ii 0.88 2.33 3.137 (4) 153
N4—H4B···N8iii 0.88 2.39 3.178 (4) 149
N8—H8N1···Br1iv 0.89 (4) 2.88 (4) 3.739 (4) 163 (3)
N8—H8N2···N7ii 0.77 (4) 2.31 (4) 3.053 (4) 162 (4)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x−1, y, z; (iii) −x, −y+1, −z; (iv) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2020).

References

  1. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  2. Dwiggins, C. W. (1975). Acta Cryst. A31, 146–148.
  3. Fry, D. W., Krer, A. J. & Denny, W. (1994). Science, 265, 1093–1108.
  4. Fry, D. W., Krer, A. J. & Denny, W. (2005). Russ. Chem. Bull.54, 864–904.
  5. Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (1996). SADABS University of Göottingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810002631/pb2020sup1.cif

e-66-0o447-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002631/pb2020Isup2.hkl

e-66-0o447-Isup2.hkl (290.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES