Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 9;66(Pt 2):o304. doi: 10.1107/S1600536810000218

6-Chloro-3-[5-(4-fluoro­phen­yl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]-2-methyl-4-phenyl­quinoline

Wan-Sin Loh a,, Hoong-Kun Fun a,*,§, S Sarveswari b, V Vijayakumar b, B Palakshi Reddy b
PMCID: PMC2979872  PMID: 21579737

Abstract

In the title compound, C31H23ClFN3, the pyrazole ring forms dihedral angles of 72.75 (7), 18.08 (9) and 86.26 (9)° with the quinoline ring system, the phenyl ring and the fluoro­phenyl ring, respectively. In the crystal, inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into chains propagating along the c axis. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For a related structure and background to quinolines and pyrazolines, see: Loh et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-0o304-scheme1.jpg

Experimental

Crystal data

  • C31H23ClFN3

  • M r = 491.97

  • Monoclinic, Inline graphic

  • a = 9.4303 (2) Å

  • b = 28.2155 (6) Å

  • c = 9.6028 (2) Å

  • β = 106.636 (1)°

  • V = 2448.17 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.49 × 0.23 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.914, T max = 0.973

  • 38888 measured reflections

  • 8947 independent reflections

  • 6981 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.171

  • S = 1.08

  • 8947 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000218/hb5303sup1.cif

e-66-0o304-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000218/hb5303Isup2.hkl

e-66-0o304-Isup2.hkl (437.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1/C1/C2/C7–C9 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N1i 0.93 2.57 3.493 (2) 173
C17—H17ACg1 0.97 2.86 3.6307 (19) 137
C31—H31BCg2ii 0.96 2.86 3.584 (2) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks Malaysian government and USM for the award of the post of Assistant Research Officer under Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

As part of our onging studies of substituted pyrazoline derivatives (Loh et al., 2009), we now report the synthesis and structure of the title compound, (I).

The pyrazole ring (C16–C18/N2/N3) in (I) forms dihedral angles of 72.75 (7), 18.08 (9) and 86.26 (9) ° with the quinoline ring system (C1–C9/N1), phenyl (C25–C30) and fluorophenyl (C19–C24) rings, respectively. The quinoline ring system is approximately planar with a maximum deviation of 0.025 (2) Å at atom C9. Bond lengths and angles observed are comparable to a related structure (Loh et al., 2009).

In the crystal packing, intermolecular C15—H15A···N1 hydrogen bonds link the molecules into extended one-dimensional chains along c axis. The crystal structure is further stabilized by C—H···π interactions.

Experimental

A mixture of 1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(4-flourophenyl) prop-2-en-1-one (0.001 M) and phenyl hydrazine in (0.007 M) in distilled methanol was refluxed for about 8 h. The resulting mixture was concentrated to remove methanol then poured on to ice and neutralized with diluted HCl. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of chloroform and petroleum ether. The compound was recrystallized from methanol to yield yellow blocks of (I). M. p.: 433–435 K, yield: 60%.

Refinement

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of (I), showing extended one-dimensional chains along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C31H23ClFN3 F(000) = 1024
Mr = 491.97 Dx = 1.335 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9957 reflections
a = 9.4303 (2) Å θ = 2.3–31.9°
b = 28.2155 (6) Å µ = 0.19 mm1
c = 9.6028 (2) Å T = 100 K
β = 106.636 (1)° Block, yellow
V = 2448.17 (9) Å3 0.49 × 0.23 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 8947 independent reflections
Radiation source: fine-focus sealed tube 6981 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 32.7°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→14
Tmin = 0.914, Tmax = 0.973 k = −42→33
38888 measured reflections l = −14→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0749P)2 + 1.6204P] where P = (Fo2 + 2Fc2)/3
8947 reflections (Δ/σ)max < 0.001
326 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.17020 (5) 0.245611 (18) 0.84092 (5) 0.03203 (12)
F1 0.83364 (15) −0.06367 (4) 0.85393 (14) 0.0396 (3)
N1 0.30003 (16) 0.28484 (5) 0.56387 (15) 0.0211 (3)
N2 0.48193 (15) 0.15134 (5) 0.42869 (15) 0.0202 (3)
N3 0.59506 (15) 0.11718 (5) 0.45432 (14) 0.0206 (3)
C1 0.38175 (18) 0.25044 (6) 0.53450 (17) 0.0197 (3)
C2 0.19192 (18) 0.27355 (5) 0.62820 (18) 0.0198 (3)
C3 0.1078 (2) 0.31116 (6) 0.6618 (2) 0.0263 (3)
H3A 0.1269 0.3422 0.6396 0.032*
C4 −0.0011 (2) 0.30245 (6) 0.7265 (2) 0.0278 (4)
H4A −0.0551 0.3273 0.7494 0.033*
C5 −0.03054 (19) 0.25528 (6) 0.75826 (19) 0.0235 (3)
C6 0.04711 (18) 0.21773 (6) 0.72696 (18) 0.0211 (3)
H6A 0.0248 0.1870 0.7484 0.025*
C7 0.16176 (16) 0.22620 (5) 0.66153 (16) 0.0174 (3)
C8 0.25181 (16) 0.18942 (5) 0.62996 (16) 0.0170 (3)
C9 0.36189 (17) 0.20185 (5) 0.56766 (16) 0.0173 (3)
C10 0.23459 (16) 0.13863 (5) 0.66548 (17) 0.0175 (3)
C11 0.20683 (18) 0.10451 (6) 0.55481 (18) 0.0218 (3)
H11A 0.1874 0.1139 0.4584 0.026*
C12 0.20828 (19) 0.05650 (6) 0.5891 (2) 0.0263 (3)
H12A 0.1870 0.0340 0.5154 0.032*
C13 0.2413 (2) 0.04223 (6) 0.7329 (2) 0.0274 (4)
H13A 0.2470 0.0101 0.7558 0.033*
C14 0.26595 (19) 0.07580 (6) 0.8428 (2) 0.0244 (3)
H14A 0.2863 0.0661 0.9391 0.029*
C15 0.26037 (17) 0.12397 (6) 0.80953 (18) 0.0201 (3)
H15A 0.2738 0.1464 0.8833 0.024*
C16 0.47176 (17) 0.16606 (5) 0.55166 (17) 0.0179 (3)
C17 0.58110 (18) 0.14337 (6) 0.68073 (17) 0.0230 (3)
H17A 0.5326 0.1215 0.7301 0.028*
H17B 0.6342 0.1670 0.7494 0.028*
C18 0.68460 (17) 0.11731 (6) 0.60858 (17) 0.0193 (3)
H18A 0.7747 0.1360 0.6195 0.023*
C19 0.72498 (17) 0.06821 (6) 0.67002 (17) 0.0194 (3)
C20 0.86967 (18) 0.05790 (6) 0.74894 (17) 0.0206 (3)
H20A 0.9426 0.0809 0.7596 0.025*
C21 0.90692 (19) 0.01333 (6) 0.81253 (18) 0.0235 (3)
H21A 1.0037 0.0064 0.8656 0.028*
C22 0.7969 (2) −0.01989 (6) 0.7946 (2) 0.0268 (4)
C23 0.6518 (2) −0.01129 (7) 0.7168 (2) 0.0320 (4)
H23A 0.5797 −0.0346 0.7062 0.038*
C24 0.61669 (19) 0.03317 (7) 0.6547 (2) 0.0276 (4)
H24A 0.5195 0.0398 0.6021 0.033*
C25 0.65853 (18) 0.10922 (6) 0.34114 (17) 0.0192 (3)
C26 0.5758 (2) 0.11696 (7) 0.19626 (19) 0.0267 (3)
H26A 0.4805 0.1293 0.1751 0.032*
C27 0.6368 (2) 0.10606 (7) 0.0851 (2) 0.0304 (4)
H27A 0.5812 0.1110 −0.0107 0.037*
C28 0.7796 (2) 0.08782 (6) 0.1134 (2) 0.0269 (4)
H28A 0.8191 0.0805 0.0377 0.032*
C29 0.86119 (19) 0.08080 (6) 0.25647 (18) 0.0216 (3)
H29A 0.9571 0.0691 0.2768 0.026*
C30 0.80235 (17) 0.09098 (5) 0.37050 (18) 0.0193 (3)
H30A 0.8583 0.0857 0.4660 0.023*
C31 0.5017 (2) 0.26415 (6) 0.4675 (2) 0.0254 (3)
H31A 0.5007 0.2979 0.4539 0.038*
H31B 0.4851 0.2486 0.3753 0.038*
H31C 0.5961 0.2547 0.5307 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0240 (2) 0.0383 (3) 0.0390 (3) 0.00459 (17) 0.01745 (18) −0.00127 (19)
F1 0.0510 (8) 0.0263 (6) 0.0492 (7) 0.0099 (5) 0.0267 (6) 0.0157 (5)
N1 0.0244 (6) 0.0182 (6) 0.0218 (6) 0.0019 (5) 0.0085 (5) 0.0027 (5)
N2 0.0189 (6) 0.0219 (6) 0.0206 (6) 0.0059 (5) 0.0070 (5) 0.0023 (5)
N3 0.0203 (6) 0.0259 (7) 0.0159 (6) 0.0081 (5) 0.0057 (5) 0.0012 (5)
C1 0.0216 (7) 0.0195 (7) 0.0187 (7) 0.0014 (5) 0.0072 (6) 0.0028 (5)
C2 0.0222 (7) 0.0161 (7) 0.0218 (7) 0.0020 (5) 0.0075 (6) 0.0007 (5)
C3 0.0319 (9) 0.0167 (7) 0.0335 (9) 0.0054 (6) 0.0145 (7) 0.0009 (6)
C4 0.0307 (9) 0.0219 (8) 0.0334 (9) 0.0078 (7) 0.0134 (7) −0.0018 (7)
C5 0.0207 (7) 0.0267 (8) 0.0252 (8) 0.0046 (6) 0.0097 (6) −0.0012 (6)
C6 0.0200 (7) 0.0202 (7) 0.0244 (7) 0.0023 (6) 0.0085 (6) 0.0005 (6)
C7 0.0175 (6) 0.0156 (6) 0.0196 (7) 0.0026 (5) 0.0061 (5) 0.0004 (5)
C8 0.0170 (6) 0.0159 (6) 0.0181 (6) 0.0012 (5) 0.0048 (5) −0.0009 (5)
C9 0.0180 (6) 0.0176 (6) 0.0166 (6) 0.0037 (5) 0.0054 (5) 0.0014 (5)
C10 0.0160 (6) 0.0142 (6) 0.0231 (7) −0.0003 (5) 0.0070 (5) −0.0025 (5)
C11 0.0202 (7) 0.0220 (7) 0.0231 (7) −0.0013 (6) 0.0058 (6) −0.0048 (6)
C12 0.0242 (8) 0.0200 (7) 0.0365 (9) −0.0059 (6) 0.0117 (7) −0.0105 (7)
C13 0.0268 (8) 0.0172 (7) 0.0422 (10) −0.0036 (6) 0.0162 (8) −0.0012 (7)
C14 0.0259 (8) 0.0209 (7) 0.0288 (8) −0.0012 (6) 0.0115 (7) 0.0039 (6)
C15 0.0211 (7) 0.0181 (7) 0.0229 (7) −0.0018 (6) 0.0091 (6) −0.0020 (6)
C16 0.0171 (6) 0.0179 (7) 0.0196 (7) 0.0021 (5) 0.0065 (5) 0.0009 (5)
C17 0.0227 (7) 0.0287 (8) 0.0171 (7) 0.0083 (6) 0.0051 (6) −0.0009 (6)
C18 0.0174 (6) 0.0227 (7) 0.0175 (7) 0.0032 (5) 0.0043 (5) −0.0001 (6)
C19 0.0188 (7) 0.0231 (7) 0.0176 (7) 0.0027 (6) 0.0072 (5) 0.0009 (5)
C20 0.0200 (7) 0.0234 (7) 0.0184 (7) 0.0021 (6) 0.0053 (6) −0.0001 (6)
C21 0.0247 (8) 0.0261 (8) 0.0199 (7) 0.0054 (6) 0.0064 (6) 0.0030 (6)
C22 0.0352 (9) 0.0229 (8) 0.0267 (8) 0.0055 (7) 0.0157 (7) 0.0071 (6)
C23 0.0297 (9) 0.0296 (9) 0.0397 (10) −0.0053 (7) 0.0146 (8) 0.0029 (8)
C24 0.0199 (7) 0.0304 (9) 0.0320 (9) −0.0005 (7) 0.0066 (7) 0.0016 (7)
C25 0.0217 (7) 0.0191 (7) 0.0185 (7) 0.0020 (5) 0.0086 (6) −0.0007 (5)
C26 0.0256 (8) 0.0335 (9) 0.0216 (8) 0.0065 (7) 0.0076 (6) 0.0012 (7)
C27 0.0329 (9) 0.0391 (10) 0.0201 (8) 0.0052 (8) 0.0088 (7) 0.0013 (7)
C28 0.0338 (9) 0.0268 (8) 0.0256 (8) 0.0018 (7) 0.0170 (7) −0.0025 (7)
C29 0.0239 (7) 0.0179 (7) 0.0261 (8) 0.0006 (6) 0.0122 (6) −0.0013 (6)
C30 0.0193 (7) 0.0179 (7) 0.0219 (7) 0.0010 (5) 0.0082 (6) −0.0009 (5)
C31 0.0261 (8) 0.0247 (8) 0.0291 (8) 0.0012 (6) 0.0137 (7) 0.0054 (7)

Geometric parameters (Å, °)

Cl1—C5 1.7429 (17) C14—H14A 0.9300
F1—C22 1.363 (2) C15—H15A 0.9300
N1—C1 1.319 (2) C16—C17 1.509 (2)
N1—C2 1.372 (2) C17—C18 1.536 (2)
N2—C16 1.281 (2) C17—H17A 0.9700
N2—N3 1.4062 (18) C17—H17B 0.9700
N3—C25 1.4009 (19) C18—C19 1.511 (2)
N3—C18 1.480 (2) C18—H18A 0.9800
C1—C9 1.432 (2) C19—C20 1.389 (2)
C1—C31 1.503 (2) C19—C24 1.399 (2)
C2—C3 1.417 (2) C20—C21 1.398 (2)
C2—C7 1.421 (2) C20—H20A 0.9300
C3—C4 1.366 (2) C21—C22 1.372 (3)
C3—H3A 0.9300 C21—H21A 0.9300
C4—C5 1.411 (3) C22—C23 1.380 (3)
C4—H4A 0.9300 C23—C24 1.387 (3)
C5—C6 1.369 (2) C23—H23A 0.9300
C6—C7 1.418 (2) C24—H24A 0.9300
C6—H6A 0.9300 C25—C30 1.402 (2)
C7—C8 1.427 (2) C25—C26 1.404 (2)
C8—C9 1.384 (2) C26—C27 1.385 (2)
C8—C10 1.493 (2) C26—H26A 0.9300
C9—C16 1.486 (2) C27—C28 1.393 (3)
C10—C15 1.397 (2) C27—H27A 0.9300
C10—C11 1.402 (2) C28—C29 1.384 (3)
C11—C12 1.393 (2) C28—H28A 0.9300
C11—H11A 0.9300 C29—C30 1.392 (2)
C12—C13 1.386 (3) C29—H29A 0.9300
C12—H12A 0.9300 C30—H30A 0.9300
C13—C14 1.387 (3) C31—H31A 0.9600
C13—H13A 0.9300 C31—H31B 0.9600
C14—C15 1.393 (2) C31—H31C 0.9600
C1—N1—C2 118.69 (14) C16—C17—H17A 111.4
C16—N2—N3 108.31 (13) C18—C17—H17A 111.4
C25—N3—N2 116.45 (12) C16—C17—H17B 111.4
C25—N3—C18 121.92 (13) C18—C17—H17B 111.4
N2—N3—C18 111.12 (12) H17A—C17—H17B 109.3
N1—C1—C9 122.37 (14) N3—C18—C19 113.35 (13)
N1—C1—C31 117.34 (14) N3—C18—C17 101.44 (12)
C9—C1—C31 120.26 (14) C19—C18—C17 112.60 (13)
N1—C2—C3 117.73 (14) N3—C18—H18A 109.7
N1—C2—C7 122.82 (14) C19—C18—H18A 109.7
C3—C2—C7 119.45 (15) C17—C18—H18A 109.7
C4—C3—C2 120.78 (16) C20—C19—C24 118.88 (16)
C4—C3—H3A 119.6 C20—C19—C18 120.24 (14)
C2—C3—H3A 119.6 C24—C19—C18 120.81 (14)
C3—C4—C5 119.22 (15) C19—C20—C21 120.77 (16)
C3—C4—H4A 120.4 C19—C20—H20A 119.6
C5—C4—H4A 120.4 C21—C20—H20A 119.6
C6—C5—C4 122.13 (15) C22—C21—C20 118.24 (16)
C6—C5—Cl1 120.01 (14) C22—C21—H21A 120.9
C4—C5—Cl1 117.86 (12) C20—C21—H21A 120.9
C5—C6—C7 119.37 (15) F1—C22—C21 118.29 (17)
C5—C6—H6A 120.3 F1—C22—C23 118.68 (17)
C7—C6—H6A 120.3 C21—C22—C23 123.02 (17)
C6—C7—C2 119.04 (14) C22—C23—C24 117.98 (17)
C6—C7—C8 123.17 (14) C22—C23—H23A 121.0
C2—C7—C8 117.77 (13) C24—C23—H23A 121.0
C9—C8—C7 118.24 (14) C23—C24—C19 121.11 (17)
C9—C8—C10 119.10 (13) C23—C24—H24A 119.4
C7—C8—C10 122.63 (13) C19—C24—H24A 119.4
C8—C9—C1 120.07 (14) N3—C25—C30 120.43 (14)
C8—C9—C16 120.27 (14) N3—C25—C26 120.27 (14)
C1—C9—C16 119.23 (13) C30—C25—C26 119.21 (14)
C15—C10—C11 119.28 (14) C27—C26—C25 119.55 (16)
C15—C10—C8 120.74 (13) C27—C26—H26A 120.2
C11—C10—C8 119.67 (14) C25—C26—H26A 120.2
C12—C11—C10 120.08 (16) C26—C27—C28 121.60 (17)
C12—C11—H11A 120.0 C26—C27—H27A 119.2
C10—C11—H11A 120.0 C28—C27—H27A 119.2
C13—C12—C11 120.18 (16) C29—C28—C27 118.55 (15)
C13—C12—H12A 119.9 C29—C28—H28A 120.7
C11—C12—H12A 119.9 C27—C28—H28A 120.7
C12—C13—C14 120.02 (16) C28—C29—C30 121.20 (16)
C12—C13—H13A 120.0 C28—C29—H29A 119.4
C14—C13—H13A 120.0 C30—C29—H29A 119.4
C13—C14—C15 120.30 (16) C29—C30—C25 119.88 (15)
C13—C14—H14A 119.8 C29—C30—H30A 120.1
C15—C14—H14A 119.8 C25—C30—H30A 120.1
C14—C15—C10 120.02 (15) C1—C31—H31A 109.5
C14—C15—H15A 120.0 C1—C31—H31B 109.5
C10—C15—H15A 120.0 H31A—C31—H31B 109.5
N2—C16—C9 123.64 (14) C1—C31—H31C 109.5
N2—C16—C17 113.94 (13) H31A—C31—H31C 109.5
C9—C16—C17 122.42 (13) H31B—C31—H31C 109.5
C16—C17—C18 101.86 (12)
C16—N2—N3—C25 −158.10 (14) C8—C10—C15—C14 −170.26 (14)
C16—N2—N3—C18 −12.48 (18) N3—N2—C16—C9 −178.89 (14)
C2—N1—C1—C9 −0.2 (2) N3—N2—C16—C17 0.53 (19)
C2—N1—C1—C31 −178.48 (15) C8—C9—C16—N2 114.72 (18)
C1—N1—C2—C3 178.56 (16) C1—C9—C16—N2 −72.8 (2)
C1—N1—C2—C7 −1.5 (2) C8—C9—C16—C17 −64.7 (2)
N1—C2—C3—C4 −179.70 (17) C1—C9—C16—C17 107.78 (18)
C7—C2—C3—C4 0.4 (3) N2—C16—C17—C18 10.63 (19)
C2—C3—C4—C5 −0.8 (3) C9—C16—C17—C18 −169.94 (14)
C3—C4—C5—C6 0.3 (3) C25—N3—C18—C19 −77.43 (18)
C3—C4—C5—Cl1 179.96 (15) N2—N3—C18—C19 139.13 (13)
C4—C5—C6—C7 0.5 (3) C25—N3—C18—C17 161.61 (15)
Cl1—C5—C6—C7 −179.14 (13) N2—N3—C18—C17 18.17 (17)
C5—C6—C7—C2 −0.8 (2) C16—C17—C18—N3 −16.11 (16)
C5—C6—C7—C8 177.67 (15) C16—C17—C18—C19 −137.59 (14)
N1—C2—C7—C6 −179.49 (15) N3—C18—C19—C20 132.50 (15)
C3—C2—C7—C6 0.4 (2) C17—C18—C19—C20 −113.06 (16)
N1—C2—C7—C8 1.9 (2) N3—C18—C19—C24 −50.6 (2)
C3—C2—C7—C8 −178.16 (15) C17—C18—C19—C24 63.8 (2)
C6—C7—C8—C9 −179.16 (15) C24—C19—C20—C21 −0.2 (2)
C2—C7—C8—C9 −0.6 (2) C18—C19—C20—C21 176.76 (14)
C6—C7—C8—C10 −1.0 (2) C19—C20—C21—C22 0.1 (2)
C2—C7—C8—C10 177.52 (14) C20—C21—C22—F1 178.66 (14)
C7—C8—C9—C1 −0.9 (2) C20—C21—C22—C23 0.0 (3)
C10—C8—C9—C1 −179.15 (14) F1—C22—C23—C24 −178.82 (16)
C7—C8—C9—C16 171.44 (14) C21—C22—C23—C24 −0.2 (3)
C10—C8—C9—C16 −6.8 (2) C22—C23—C24—C19 0.2 (3)
N1—C1—C9—C8 1.4 (2) C20—C19—C24—C23 0.0 (3)
C31—C1—C9—C8 179.67 (15) C18—C19—C24—C23 −176.91 (16)
N1—C1—C9—C16 −171.04 (15) N2—N3—C25—C30 155.63 (15)
C31—C1—C9—C16 7.2 (2) C18—N3—C25—C30 14.0 (2)
C9—C8—C10—C15 114.82 (17) N2—N3—C25—C26 −27.9 (2)
C7—C8—C10—C15 −63.3 (2) C18—N3—C25—C26 −169.55 (16)
C9—C8—C10—C11 −58.7 (2) N3—C25—C26—C27 −175.89 (17)
C7—C8—C10—C11 123.13 (16) C30—C25—C26—C27 0.6 (3)
C15—C10—C11—C12 −1.4 (2) C25—C26—C27—C28 −0.5 (3)
C8—C10—C11—C12 172.27 (14) C26—C27—C28—C29 −0.3 (3)
C10—C11—C12—C13 −1.8 (2) C27—C28—C29—C30 0.9 (3)
C11—C12—C13—C14 3.1 (3) C28—C29—C30—C25 −0.8 (2)
C12—C13—C14—C15 −1.2 (3) N3—C25—C30—C29 176.51 (15)
C13—C14—C15—C10 −2.1 (2) C26—C25—C30—C29 0.0 (2)
C11—C10—C15—C14 3.3 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1/C2/C7–C9 and C10–C15 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C15—H15A···N1i 0.93 2.57 3.493 (2) 173
C17—H17A···Cg1 0.97 2.86 3.6307 (19) 137
C31—H31B···Cg2ii 0.96 2.86 3.584 (2) 133

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5303).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  3. Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144–o3145. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000218/hb5303sup1.cif

e-66-0o304-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000218/hb5303Isup2.hkl

e-66-0o304-Isup2.hkl (437.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES