Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 20;66(Pt 2):o411–o412. doi: 10.1107/S1600536810000577

Imatinibium dipicrate

Jerry P Jasinski a,*, Ray J Butcher b, Q N M Hakim Al-Arique c, H S Yathirajan c, B Narayana d
PMCID: PMC2979873  PMID: 21579830

Abstract

In the crystal structure of imatinibium dipicrate [systematic name: 1-methyl-4-(4-{4-methyl-3-[4-(3-pyrid­yl)pyrimidin-2-yl­amino]­anilinocarbon­yl}benz­yl)piperazine-1,4-diium dipicrate], C29H33N7O2+·2C6H2N3O7 , the imatinibium cation is proton­ated at both of the pyrimidine N atoms. Each of the two picrate anions inter­acts with the diprotonated cation through bifurcated N—H⋯O hydrogen bonds forming R 1 2(6) ring motifs. Also, an R 2 2(24) graph set is formed between the benzamidium –NH– group and the 4-pyridyl N atom inter­acting through N—H⋯N hydrogen-bond inter­actions. Additional weak C—H⋯Cg π-ring and π–π inter­molecular inter­actions are observed which also influence crystal packing.

Related literature

For related structures, see: Bindya et al. (2007); Harrison, Bindya et al. (2007); Harrison, Sreevidya et al. (2007); Jasinski et al. (2009a ,b ); Swamy et al. (2007); Szumma et al. (2000); Yathirajan et al. (2007a ,b ). For a rationally developed anticancer drug, see: Capdeville et al. (2002). For its use in chronic myeloid leukaemia, see: Moen et al. (2007). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-66-0o411-scheme1.jpg

Experimental

Crystal data

  • C29H33N7O2+·2C6H2N3O7

  • M r = 951.84

  • Triclinic, Inline graphic

  • a = 8.560 (1) Å

  • b = 10.734 (1) Å

  • c = 23.060 (1) Å

  • α = 96.74 (3)°

  • β = 92.69 (2)°

  • γ = 101.46 (7)°

  • V = 2056.9 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.02 mm−1

  • T = 110 K

  • 0.45 × 0.39 × 0.24 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.596, T max = 0.782

  • 15890 measured reflections

  • 8082 independent reflections

  • 6946 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.158

  • S = 1.06

  • 8082 reflections

  • 640 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL, enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000577/bt5129sup1.cif

e-66-0o411-sup1.cif (35.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000577/bt5129Isup2.hkl

e-66-0o411-Isup2.hkl (395.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1B 0.85 (3) 1.85 (3) 2.658 (3) 157 (3)
N1—H1⋯O62B 0.85 (3) 2.35 (3) 2.890 (3) 122 (2)
N2—H2⋯O1A 0.89 (4) 1.85 (4) 2.678 (3) 154 (3)
N2—H2⋯O62A 0.89 (4) 2.41 (4) 3.009 (3) 125 (3)
N14—H14⋯N31i 0.85 (3) 2.23 (3) 3.069 (3) 171 (3)
C5—H5B⋯O41Aii 0.98 2.48 3.258 (4) 136
C4—H4B⋯O42Biii 0.99 2.33 3.199 (3) 146
C3—H3A⋯O61Biv 0.99 2.57 3.199 (3) 121
C3—H3B⋯O1B 0.99 2.34 3.072 (3) 130
C12—H12A⋯O42Biii 0.95 2.63 3.423 (3) 142
C19—H19A⋯O61Bv 0.98 2.50 3.435 (4) 159
C19—H19A⋯N6Bv 0.98 2.65 3.541 (4) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Table 2. π-Ring hydrogen-bond geometry (Å, °) for (I).

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33ACg5vi 0.95 2.90 3.545 (8) 127

Symmetry code: (vi) x + 1, y, z. Cg5 is the centroid of the C15–C21 ring.

Table 3. π–π stacking geometry (Å) for (I).

Cg2⋯Cg7v 3.740 (4)
Cg3⋯Cg3v 3.496 (7)
Cg6⋯Cg6vii 3.396 (0)

Symmetry codes: (v) −x + 1, −y + 1, −z + 1; (vii) −x + 2, −y + 2, −z. Cg2, Cg3, Cg6 and Cg7 are the centroids of the C25–C27/N28/C23/N4, C32–C34/C29//C30/N31, C1A–C6A and C1B–C6B rings, respectively.

Acknowledgments

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Imatinib, marketed as a cancer drug by Novartix, [Gleevec(USA), Glivec(Europe/Australia)] (systematic name: 4-(4-methyl-piperazin-1-yl-methyl-N-[4-methyl-3-(4-pyridin-3-ylpyrimidin-2-yl-amino)-phenyl]-benzamide) is a synthetic tyrosine kinase inhibitor used in treating chronic myelogenous leukemia (CML), gastrointestinal stromal tumours (GISTs) and a number of other malignancies. It is a 2-phenylaminopyrimidine derivative and is the first member of a new class of agents that act by inhibiting particular tyrpsine kinase enzymes, instead of non-specifically inhibiting rapidly dividing cells. Reviews on the use of imatinib in chronic myeloid leukaemia (Moen et al., 2007) and on the rationally developed targeted anticancer drug have been published (Capdeville et al., 2002). Picrates form charge-transfer complexes with organic compounds, function as acceptors in the formation of π- stacking complexes with aromatic biomolecules and as an acidic ligand forming salts with polar biomolecules. In this context, the crystal and molecular structures of related compounds include amitriptylinium picrate (Bindya et al., 2007), mepazinium picrate (Yathirajan et al., 2007a), trifluperazinium dipicrate (Yathirajan et al., 2007b), imipraminium picrate (Harrison, Bindya et al., 2007), nevirapiniumpicrate (Harrison, Sreevidya et al., 2007), desipraminium picrate (Swamy et al., 2007) and propiverinium picrate (Jasinski et al., 2009a) have been reported. In view of the importance of imatinib and to study the hydrogen bonding patterns in the title compound, (I), C29H33N7O2+ (C6H2N3O7-)2, a dipicrate salt of Imatinib, a crystal structure is reported.

The imatinibium cation contains a doubly charged methyl piperazine group bonded at the 4 position of a p-methyl benzamide group and a 2-phenylaminopyrimidine(pyridine) derivative bonded to the amino end. The 6-membered methyl piperazine group adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and φ of 0.572 (5) Å, 176.1 (5)° and 168.174 (3)°, respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. An R22(24) graph-set motif is formed between the benzamidium –NH– group and the 4-pyridiyl N atom interacting through a N–H···N hydrogen bond interaction (Fig.2a). The dihedral angle between the mean plane of the benzyl ring in the benzamide group and the mean planes of the piperazine, amino phenyl, pyrimidine and pyridine groups are 81.1 (7)°, 50.8 (5)°, 57.1 (7)° and 46.1 (4)°, respectively. The mean planes of the pyrimidine and pyridine rings are twisted by 11.1 (9)°. The dihedral angles between mean planes of the aminobenzyl group and the pyrimidine and pyridine groups are 30.7 (3)° and 32.3 (2)°, while the dihedral angles between the mean planes of the piperizine group and the aminobenzyl, pyrimidine and pyridine groups are 48.3 (9)°, 59.2 (1)° and 69.3 (9)°, respectively. The two picrate anions, labeled A and B, each interact with the diprotonated cation through bifurcated N–H···O hydrogen bonds forming an R21(6) ring-motif creating an ···ab··· and ···cd··· array of hydrogen bonding patterns (Fig.2 b,c). The mean plane of the two o-NO2 groups in the two picrate anions are twisted by 16.1 (9)° and 39.1 (9)° in the A-ring and 27.1 (5)° and 47.4 (1)° in the B-ring with respect to the mean planes of the 6-membered benzene rings. The difference in the twist angles of the mean planes of the two o-NO2 groups in each picrate anion can be attributed to an intermolecular "side" hydrogen bond interaction (Szumma et al., 2000) between the N1 and N2 atoms of the cation piperizine group with a two-centered hydrogen bond to the singly bonded oxygen atom (O1A & O1B) and to one oxygen atom of an adjacent o-NO2 group (O62A & O62B), respectively, [N1—H1···O1B & N1—H1···O62B and N2—H2···O1A & N2—H2···O62A, see Table 1, Fig.1]. The difference in angles between the mean planes of the o-O61A—N6A—O62A (16.1 (9)°) and o-O21a—N2a—O22A (39.1 (9)°) groups with the mean plane of the benzene ring in picrate A (23°) and those of the o-O21B—N2B—O22B (47.4 (1)°) and o-O61B—N6B—O62B (27.1 (5)°) with the mean plane of the benzene ringin picrate B (16.2 (3)°) are a direct result of the N2—H2···O62A and N1—H1···O62B hydrogen bonds. The p-NO2 groups in both picrate anions are essentially in the plane of the ring (torsion angles C5A—C4A—N4A—O41A = 179.9 (2)°; C5B—C4B—N4B—O41B = 176.1 (2)°). Crystal packing is also influenced by N—H···N hydrogen bond interactions between the benzamide and pyridine groups (N14—H14···N31), intermediate C—H···O hydrogen bond interactions (C5—H5B···O41A, C4—H4···H42B & C3—H3A···O61B) between the piperizine group and o-NO2 & p-NO2 groups of picrates A & B and weak C—H···O hydrogen bond interactions involving the benzamide, phenyl, o-NO2 andp-NO2 groups (C12—H12A···O42B, C19—H19···O61B & C19—H19A···N6B;Table 1) which produces a two-dimensional network arranged along the (101)plane of the unit cell (Fig.3). In addition there are weak C—H···π (Table 2) and weak π-π intermolecular interactions (Table 3) similar to that observed in 3-(2-Chloroethyl)-2-methyl-4H-pyrido[1,2-a] pyrimidinium-4-one picrate (Jasinski et al., 2009b).

Experimental

The title compound was synthesized by mixing an aqueous solution (10 ml) of picric acid (0.92 g, 2 mmol) and N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylamino)phenyl)-4-((4-methyl piperazin-1-yl)methyl)benzamide (1.18 g, 2 mmol) in methanolic aqueous solution (10 ml) and the resulting solution was stirred well at 313 K. The formation of a yellow precipitate of the charge transfer complex was noticed almost instantaneously. The formed complex was filtered off, washed with distilled water and dried in vacuo over CaCl2. The purity of the synthesized compound was improved by a successive recrystallization process with methanol (yield: 76.2%). The crystals for X-ray studies were grown from slow evaporation of a methanol solution. The melting range was found to be 490–493 K.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.85–0.89, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.15–1.51Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, C29H33N7O2+ (C6H2N3O7-)2, showing the cation-dianion unit that comprises the asymmetric unit, the atom labeling scheme and 30% probability displacement ellipsoids. Picrate anions A & B are labeled accordingly.

Fig. 2.

Fig. 2.

Diagrams of the (a) R22(24) ···ee···, (b) R21(6) ···ab··· and (c) R21(6) ···cd··· graph-set motifs in the cation (a) and anions (b, c) of the title compound, (I).

Fig. 3.

Fig. 3.

Packing diagram of the title compound, (I), viewed down the b axis. Dashed lines indicate intermolecular N—H···O, N—H···N & C—H···O hydrogen bond interactions which produces a two-dimensional network arranged along the (101) plane of the unit cell.

Crystal data

C29H33N7O2+·2C6H2N3O7 Z = 2
Mr = 951.84 F(000) = 988
Triclinic, P1 Dx = 1.537 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54178 Å
a = 8.560 (1) Å Cell parameters from 9389 reflections
b = 10.734 (1) Å θ = 4.2–74.0°
c = 23.060 (1) Å µ = 1.02 mm1
α = 96.74 (3)° T = 110 K
β = 92.69 (2)° Chunk, pale yellow
γ = 101.46 (7)° 0.45 × 0.39 × 0.24 mm
V = 2056.9 (6) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector 8082 independent reflections
Radiation source: Enhance (Cu) X-ray Source 6946 reflections with I > 2σ(I)
graphite Rint = 0.023
Detector resolution: 10.5081 pixels mm-1 θmax = 74.1°, θmin = 4.2°
ω scans h = −10→8
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −13→13
Tmin = 0.596, Tmax = 0.782 l = −28→28
15890 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0615P)2 + 3.3059P] where P = (Fo2 + 2Fc2)/3
8082 reflections (Δ/σ)max = 0.001
640 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3153 (2) 0.58462 (17) 0.49702 (9) 0.0356 (4)
N1 0.4213 (2) 0.4360 (2) 0.19545 (10) 0.0242 (4)
H1 0.465 (4) 0.514 (3) 0.2058 (13) 0.028 (8)*
N2 0.2325 (3) 0.4773 (2) 0.09313 (10) 0.0259 (5)
H2 0.182 (4) 0.397 (4) 0.0809 (15) 0.044 (9)*
C1 0.4665 (3) 0.4017 (2) 0.13475 (12) 0.0274 (5)
H1A 0.4187 0.3106 0.1211 0.033*
H1B 0.5841 0.4127 0.1349 0.033*
C2 0.4094 (3) 0.4851 (2) 0.09331 (12) 0.0291 (5)
H2A 0.4655 0.5752 0.1049 0.035*
H2B 0.4371 0.4581 0.0532 0.035*
C3 0.1853 (3) 0.5056 (2) 0.15391 (11) 0.0264 (5)
H3A 0.0675 0.4925 0.1534 0.032*
H3B 0.2307 0.5965 0.1689 0.032*
C4 0.2433 (3) 0.4209 (2) 0.19414 (11) 0.0255 (5)
H4A 0.2118 0.4431 0.2342 0.031*
H4B 0.1922 0.3303 0.1807 0.031*
C5 0.1813 (4) 0.5660 (3) 0.05447 (13) 0.0342 (6)
H5A 0.0661 0.5612 0.0558 0.051*
H5B 0.2058 0.5413 0.0142 0.051*
H5C 0.2386 0.6539 0.0680 0.051*
C6 0.4812 (3) 0.3553 (2) 0.23719 (12) 0.0294 (6)
H6A 0.4361 0.2637 0.2235 0.035*
H6B 0.5990 0.3686 0.2370 0.035*
C7 0.4370 (3) 0.3868 (2) 0.29871 (12) 0.0284 (5)
C8 0.5091 (3) 0.5012 (2) 0.33399 (12) 0.0305 (6)
H8A 0.5904 0.5608 0.3193 0.037*
C9 0.4627 (3) 0.5279 (2) 0.38995 (12) 0.0304 (6)
H9A 0.5108 0.6066 0.4130 0.036*
C10 0.3464 (3) 0.4409 (2) 0.41296 (12) 0.0276 (5)
C11 0.2752 (3) 0.3270 (2) 0.37767 (12) 0.0279 (5)
H11A 0.1957 0.2667 0.3927 0.033*
C12 0.3182 (3) 0.3006 (2) 0.32147 (12) 0.0289 (6)
H12A 0.2668 0.2233 0.2980 0.035*
C13 0.2977 (3) 0.4734 (2) 0.47391 (12) 0.0292 (5)
N14 0.2326 (3) 0.3702 (2) 0.49985 (10) 0.0290 (5)
H14 0.250 (4) 0.298 (3) 0.4857 (13) 0.030 (8)*
C15 0.1556 (3) 0.3663 (2) 0.55298 (12) 0.0276 (5)
C16 0.0846 (3) 0.4640 (3) 0.57780 (12) 0.0314 (6)
H16A 0.0945 0.5428 0.5620 0.038*
C17 −0.0012 (3) 0.4419 (3) 0.62653 (13) 0.0339 (6)
H17A −0.0498 0.5080 0.6438 0.041*
C18 −0.0199 (3) 0.3286 (3) 0.65133 (12) 0.0315 (6)
C19 −0.1298 (4) 0.3073 (3) 0.70004 (14) 0.0437 (7)
H19A −0.0708 0.2871 0.7340 0.066*
H19B −0.2194 0.2357 0.6867 0.066*
H19C −0.1708 0.3851 0.7111 0.066*
C20 0.0583 (3) 0.2345 (2) 0.62720 (11) 0.0264 (5)
C21 0.1447 (3) 0.2542 (2) 0.57814 (12) 0.0274 (5)
H21A 0.1971 0.1896 0.5617 0.033*
N22 0.0369 (3) 0.1166 (2) 0.65091 (10) 0.0295 (5)
H22 −0.053 (4) 0.098 (3) 0.6678 (15) 0.040 (9)*
C23 0.1200 (3) 0.0202 (2) 0.64192 (11) 0.0264 (5)
N24 0.0467 (3) −0.0938 (2) 0.65697 (10) 0.0304 (5)
C25 0.1278 (3) −0.1869 (3) 0.64831 (13) 0.0341 (6)
H25A 0.0816 −0.2684 0.6589 0.041*
C26 0.2749 (3) −0.1733 (2) 0.62498 (13) 0.0322 (6)
H26A 0.3286 −0.2426 0.6189 0.039*
C27 0.3399 (3) −0.0522 (2) 0.61095 (11) 0.0267 (5)
N28 0.2636 (3) 0.0452 (2) 0.62024 (9) 0.0270 (5)
C29 0.4951 (3) −0.0229 (2) 0.58435 (11) 0.0267 (5)
C30 0.5691 (3) −0.1204 (2) 0.56171 (12) 0.0290 (5)
H30A 0.5167 −0.2065 0.5635 0.035*
N31 0.7095 (3) −0.1001 (2) 0.53756 (10) 0.0314 (5)
C32 0.7788 (3) 0.0217 (3) 0.53364 (12) 0.0303 (6)
H32A 0.8790 0.0380 0.5169 0.036*
C33 0.7121 (3) 0.1247 (3) 0.55272 (12) 0.0308 (6)
H33A 0.7635 0.2094 0.5479 0.037*
C34 0.5695 (3) 0.1028 (2) 0.57896 (12) 0.0291 (5)
H34A 0.5225 0.1724 0.5932 0.035*
O1A 0.1518 (2) 0.22087 (16) 0.07622 (8) 0.0291 (4)
O21A 0.3381 (2) 0.07732 (17) 0.12752 (9) 0.0346 (4)
O22A 0.3131 (2) −0.0904 (2) 0.06313 (10) 0.0396 (5)
O41A −0.2360 (2) −0.33957 (17) 0.04481 (10) 0.0395 (5)
O42A −0.4305 (2) −0.2407 (2) 0.03722 (12) 0.0493 (6)
O61A −0.3332 (3) 0.2150 (2) 0.07480 (12) 0.0520 (6)
O62A −0.1032 (3) 0.32666 (18) 0.06299 (11) 0.0427 (5)
N2A 0.2595 (3) −0.0043 (2) 0.08996 (10) 0.0287 (5)
N4A −0.2888 (3) −0.2408 (2) 0.04636 (10) 0.0311 (5)
N6A −0.1906 (3) 0.2244 (2) 0.06879 (10) 0.0301 (5)
C1A 0.0479 (3) 0.1211 (2) 0.07465 (10) 0.0242 (5)
C2A 0.0909 (3) −0.0022 (2) 0.07761 (11) 0.0253 (5)
C3A −0.0144 (3) −0.1176 (2) 0.06785 (11) 0.0265 (5)
H3AA 0.0223 −0.1956 0.0674 0.032*
C4A −0.1766 (3) −0.1186 (2) 0.05852 (11) 0.0272 (5)
C5A −0.2330 (3) −0.0062 (2) 0.06039 (11) 0.0261 (5)
H5AA −0.3445 −0.0084 0.0562 0.031*
C6A −0.1240 (3) 0.1095 (2) 0.06843 (11) 0.0259 (5)
O1B 0.4787 (2) 0.68998 (16) 0.21876 (9) 0.0303 (4)
O21B 0.2684 (2) 0.84672 (18) 0.19341 (9) 0.0348 (4)
O22B 0.3412 (3) 0.9982 (2) 0.26585 (11) 0.0493 (6)
O41B 0.8703 (3) 1.24447 (18) 0.21586 (10) 0.0441 (5)
O42B 1.0597 (2) 1.13663 (18) 0.20751 (9) 0.0363 (5)
O61B 0.9270 (2) 0.6835 (2) 0.16693 (9) 0.0392 (5)
O62B 0.7440 (2) 0.58469 (18) 0.21578 (10) 0.0405 (5)
N2B 0.3710 (3) 0.9196 (2) 0.22702 (11) 0.0316 (5)
N4B 0.9186 (3) 1.1430 (2) 0.21198 (10) 0.0327 (5)
N6B 0.8091 (3) 0.6809 (2) 0.19535 (10) 0.0285 (5)
C1B 0.5803 (3) 0.7898 (2) 0.21517 (11) 0.0248 (5)
C2B 0.5386 (3) 0.9143 (2) 0.22026 (11) 0.0267 (5)
C3B 0.6441 (3) 1.0279 (2) 0.22022 (12) 0.0298 (6)
H3BA 0.6099 1.1072 0.2255 0.036*
C4B 0.8035 (3) 1.0239 (2) 0.21222 (11) 0.0281 (5)
C5B 0.8561 (3) 0.9107 (2) 0.20437 (11) 0.0263 (5)
H5BA 0.9650 0.9103 0.1982 0.032*
C6B 0.7471 (3) 0.7972 (2) 0.20563 (11) 0.0257 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0430 (11) 0.0197 (9) 0.0408 (11) 0.0000 (8) 0.0037 (9) 0.0007 (8)
N1 0.0236 (10) 0.0124 (10) 0.0347 (12) −0.0010 (8) 0.0009 (8) 0.0036 (8)
N2 0.0293 (11) 0.0130 (10) 0.0334 (11) 0.0003 (8) −0.0010 (9) 0.0033 (8)
C1 0.0243 (12) 0.0182 (12) 0.0379 (14) 0.0009 (9) 0.0048 (10) 0.0009 (10)
C2 0.0289 (13) 0.0207 (12) 0.0353 (14) −0.0011 (10) 0.0052 (11) 0.0030 (10)
C3 0.0249 (12) 0.0173 (12) 0.0345 (13) 0.0006 (9) −0.0003 (10) 0.0005 (9)
C4 0.0228 (12) 0.0179 (11) 0.0338 (13) −0.0003 (9) 0.0027 (10) 0.0021 (9)
C5 0.0409 (16) 0.0195 (13) 0.0407 (15) 0.0019 (11) −0.0042 (12) 0.0079 (11)
C6 0.0290 (13) 0.0189 (12) 0.0408 (15) 0.0051 (10) −0.0005 (11) 0.0066 (10)
C7 0.0289 (13) 0.0214 (12) 0.0345 (14) 0.0037 (10) −0.0034 (10) 0.0067 (10)
C8 0.0268 (13) 0.0197 (12) 0.0432 (15) −0.0011 (10) −0.0014 (11) 0.0087 (11)
C9 0.0315 (14) 0.0196 (12) 0.0361 (14) −0.0020 (10) −0.0058 (11) 0.0033 (10)
C10 0.0273 (13) 0.0183 (12) 0.0360 (14) 0.0027 (10) −0.0041 (10) 0.0051 (10)
C11 0.0279 (13) 0.0176 (12) 0.0357 (14) −0.0021 (10) −0.0024 (10) 0.0070 (10)
C12 0.0310 (13) 0.0154 (11) 0.0373 (14) −0.0012 (10) −0.0064 (11) 0.0047 (10)
C13 0.0250 (12) 0.0241 (13) 0.0370 (14) 0.0040 (10) −0.0023 (10) 0.0023 (10)
N14 0.0307 (12) 0.0198 (11) 0.0366 (12) 0.0066 (9) 0.0035 (9) 0.0011 (9)
C15 0.0225 (12) 0.0234 (12) 0.0342 (14) 0.0018 (10) −0.0001 (10) −0.0014 (10)
C16 0.0321 (14) 0.0206 (12) 0.0403 (15) 0.0038 (10) 0.0015 (11) 0.0026 (10)
C17 0.0354 (15) 0.0239 (13) 0.0427 (16) 0.0090 (11) 0.0077 (12) −0.0017 (11)
C18 0.0299 (14) 0.0305 (14) 0.0329 (14) 0.0057 (11) 0.0032 (11) −0.0001 (11)
C19 0.0502 (19) 0.0387 (17) 0.0472 (18) 0.0180 (14) 0.0163 (15) 0.0062 (13)
C20 0.0224 (12) 0.0215 (12) 0.0331 (13) 0.0004 (9) −0.0005 (10) 0.0023 (10)
C21 0.0235 (12) 0.0221 (12) 0.0350 (14) 0.0036 (10) 0.0017 (10) −0.0012 (10)
N22 0.0268 (11) 0.0266 (12) 0.0352 (12) 0.0034 (9) 0.0078 (9) 0.0056 (9)
C23 0.0272 (13) 0.0218 (12) 0.0278 (12) 0.0018 (10) −0.0007 (10) 0.0004 (9)
N24 0.0291 (11) 0.0239 (11) 0.0349 (12) −0.0015 (9) 0.0038 (9) 0.0017 (9)
C25 0.0356 (15) 0.0207 (13) 0.0420 (16) −0.0040 (11) 0.0009 (12) 0.0055 (11)
C26 0.0339 (14) 0.0179 (12) 0.0440 (16) 0.0042 (10) 0.0013 (12) 0.0030 (11)
C27 0.0295 (13) 0.0216 (12) 0.0278 (13) 0.0046 (10) −0.0018 (10) 0.0013 (9)
N28 0.0268 (11) 0.0213 (10) 0.0318 (11) 0.0029 (8) 0.0010 (9) 0.0026 (8)
C29 0.0270 (13) 0.0240 (13) 0.0285 (13) 0.0054 (10) −0.0022 (10) 0.0024 (10)
C30 0.0319 (14) 0.0218 (12) 0.0333 (14) 0.0062 (10) 0.0002 (11) 0.0029 (10)
N31 0.0322 (12) 0.0281 (12) 0.0346 (12) 0.0100 (9) 0.0014 (9) 0.0011 (9)
C32 0.0258 (13) 0.0308 (14) 0.0335 (14) 0.0049 (11) 0.0008 (10) 0.0026 (11)
C33 0.0266 (13) 0.0245 (13) 0.0388 (15) 0.0014 (10) −0.0021 (11) 0.0026 (11)
C34 0.0271 (13) 0.0217 (13) 0.0372 (14) 0.0052 (10) −0.0009 (11) −0.0003 (10)
O1A 0.0314 (10) 0.0166 (9) 0.0370 (10) 0.0004 (7) 0.0015 (8) 0.0026 (7)
O21A 0.0308 (10) 0.0213 (9) 0.0475 (12) −0.0027 (8) −0.0050 (8) 0.0048 (8)
O22A 0.0385 (11) 0.0330 (11) 0.0494 (12) 0.0142 (9) 0.0052 (9) 0.0018 (9)
O41A 0.0412 (11) 0.0168 (9) 0.0567 (13) −0.0008 (8) −0.0033 (9) 0.0037 (8)
O42A 0.0267 (11) 0.0258 (11) 0.0909 (18) −0.0039 (8) 0.0026 (11) 0.0056 (11)
O61A 0.0363 (12) 0.0296 (11) 0.0924 (19) 0.0103 (9) 0.0199 (12) 0.0051 (11)
O62A 0.0376 (11) 0.0187 (10) 0.0708 (15) 0.0010 (8) −0.0036 (10) 0.0125 (9)
N2A 0.0293 (11) 0.0201 (11) 0.0369 (12) 0.0033 (9) 0.0043 (9) 0.0073 (9)
N4A 0.0311 (12) 0.0205 (11) 0.0388 (13) −0.0022 (9) 0.0040 (9) 0.0042 (9)
N6A 0.0331 (12) 0.0214 (11) 0.0345 (12) 0.0043 (9) 0.0013 (9) 0.0005 (9)
C1A 0.0299 (13) 0.0159 (11) 0.0250 (12) 0.0012 (10) 0.0022 (10) 0.0012 (9)
C2A 0.0272 (13) 0.0207 (12) 0.0275 (12) 0.0036 (10) 0.0026 (10) 0.0030 (9)
C3A 0.0318 (13) 0.0167 (11) 0.0304 (13) 0.0036 (10) 0.0037 (10) 0.0029 (9)
C4A 0.0324 (14) 0.0195 (12) 0.0268 (12) −0.0014 (10) 0.0031 (10) 0.0024 (9)
C5A 0.0256 (12) 0.0223 (12) 0.0291 (13) 0.0016 (10) 0.0045 (10) 0.0029 (10)
C6A 0.0310 (13) 0.0196 (12) 0.0269 (12) 0.0043 (10) 0.0031 (10) 0.0032 (9)
O1B 0.0242 (9) 0.0149 (8) 0.0490 (11) −0.0015 (7) 0.0018 (8) 0.0028 (7)
O21B 0.0261 (9) 0.0239 (10) 0.0516 (12) −0.0020 (7) −0.0013 (8) 0.0064 (8)
O22B 0.0426 (12) 0.0380 (12) 0.0659 (15) 0.0149 (10) 0.0069 (11) −0.0120 (11)
O41B 0.0470 (13) 0.0176 (10) 0.0635 (14) −0.0038 (9) 0.0048 (10) 0.0060 (9)
O42B 0.0337 (11) 0.0279 (10) 0.0409 (11) −0.0099 (8) 0.0034 (8) 0.0049 (8)
O61B 0.0339 (11) 0.0346 (11) 0.0510 (12) 0.0102 (9) 0.0110 (9) 0.0052 (9)
O62B 0.0268 (10) 0.0191 (9) 0.0747 (15) −0.0013 (8) 0.0050 (9) 0.0118 (9)
N2B 0.0314 (12) 0.0186 (11) 0.0450 (13) 0.0038 (9) 0.0050 (10) 0.0055 (9)
N4B 0.0387 (14) 0.0216 (11) 0.0326 (12) −0.0061 (10) 0.0018 (10) 0.0033 (9)
N6B 0.0217 (10) 0.0215 (11) 0.0396 (12) 0.0005 (8) −0.0022 (9) 0.0009 (9)
C1B 0.0266 (13) 0.0175 (12) 0.0278 (12) 0.0003 (10) −0.0008 (10) 0.0008 (9)
C2B 0.0261 (13) 0.0200 (12) 0.0322 (13) 0.0020 (10) 0.0004 (10) 0.0010 (10)
C3B 0.0367 (14) 0.0166 (12) 0.0347 (14) 0.0035 (10) −0.0008 (11) 0.0022 (10)
C4B 0.0323 (14) 0.0188 (12) 0.0289 (13) −0.0047 (10) 0.0000 (10) 0.0036 (9)
C5B 0.0244 (12) 0.0241 (13) 0.0266 (12) −0.0033 (10) 0.0002 (9) 0.0026 (9)
C6B 0.0267 (13) 0.0192 (12) 0.0289 (13) 0.0010 (10) −0.0012 (10) 0.0015 (9)

Geometric parameters (Å, °)

O1—C13 1.226 (3) C23—N28 1.339 (3)
N1—C1 1.494 (3) C23—N24 1.352 (3)
N1—C4 1.498 (3) N24—C25 1.328 (4)
N1—C6 1.505 (3) C25—C26 1.380 (4)
N1—H1 0.85 (3) C25—H25A 0.9500
N2—C3 1.490 (3) C26—C27 1.390 (4)
N2—C5 1.491 (3) C26—H26A 0.9500
N2—C2 1.500 (3) C27—N28 1.341 (3)
N2—H2 0.89 (4) C27—C29 1.482 (4)
C1—C2 1.511 (4) C29—C30 1.391 (4)
C1—H1A 0.9900 C29—C34 1.395 (4)
C1—H1B 0.9900 C30—N31 1.338 (4)
C2—H2A 0.9900 C30—H30A 0.9500
C2—H2B 0.9900 N31—C32 1.340 (4)
C3—C4 1.506 (3) C32—C33 1.379 (4)
C3—H3A 0.9900 C32—H32A 0.9500
C3—H3B 0.9900 C33—C34 1.378 (4)
C4—H4A 0.9900 C33—H33A 0.9500
C4—H4B 0.9900 C34—H34A 0.9500
C5—H5A 0.9800 O1A—C1A 1.245 (3)
C5—H5B 0.9800 O21A—N2A 1.226 (3)
C5—H5C 0.9800 O22A—N2A 1.228 (3)
C6—C7 1.503 (4) O41A—N4A 1.231 (3)
C6—H6A 0.9900 O42A—N4A 1.221 (3)
C6—H6B 0.9900 O61A—N6A 1.221 (3)
C7—C12 1.399 (4) O62A—N6A 1.225 (3)
C7—C8 1.403 (4) N2A—C2A 1.463 (3)
C8—C9 1.383 (4) N4A—C4A 1.452 (3)
C8—H8A 0.9500 N6A—C6A 1.457 (3)
C9—C10 1.393 (4) C1A—C2A 1.451 (3)
C9—H9A 0.9500 C1A—C6A 1.451 (4)
C10—C11 1.397 (3) C2A—C3A 1.367 (3)
C10—C13 1.506 (4) C3A—C4A 1.393 (4)
C11—C12 1.377 (4) C3A—H3AA 0.9500
C11—H11A 0.9500 C4A—C5A 1.382 (4)
C12—H12A 0.9500 C5A—C6A 1.384 (3)
C13—N14 1.356 (3) C5A—H5AA 0.9500
N14—C15 1.419 (3) O1B—C1B 1.252 (3)
N14—H14 0.85 (3) O21B—N2B 1.227 (3)
C15—C21 1.385 (4) O22B—N2B 1.228 (3)
C15—C16 1.394 (4) O41B—N4B 1.235 (3)
C16—C17 1.389 (4) O42B—N4B 1.232 (3)
C16—H16A 0.9500 O61B—N6B 1.226 (3)
C17—C18 1.388 (4) O62B—N6B 1.229 (3)
C17—H17A 0.9500 N2B—C2B 1.462 (3)
C18—C20 1.396 (4) N4B—C4B 1.451 (3)
C18—C19 1.508 (4) N6B—C6B 1.450 (3)
C19—H19A 0.9800 C1B—C6B 1.443 (4)
C19—H19B 0.9800 C1B—C2B 1.443 (3)
C19—H19C 0.9800 C2B—C3B 1.366 (4)
C20—C21 1.394 (4) C3B—C4B 1.394 (4)
C20—N22 1.419 (3) C3B—H3BA 0.9500
C21—H21A 0.9500 C4B—C5B 1.373 (4)
N22—C23 1.369 (3) C5B—C6B 1.384 (3)
N22—H22 0.87 (4) C5B—H5BA 0.9500
C1—N1—C4 108.6 (2) C18—C20—N22 118.4 (2)
C1—N1—C6 111.1 (2) C15—C21—C20 121.1 (2)
C4—N1—C6 111.62 (19) C15—C21—H21A 119.5
C1—N1—H1 107 (2) C20—C21—H21A 119.5
C4—N1—H1 109 (2) C23—N22—C20 129.0 (2)
C6—N1—H1 109 (2) C23—N22—H22 116 (2)
C3—N2—C5 110.9 (2) C20—N22—H22 113 (2)
C3—N2—C2 110.4 (2) N28—C23—N24 125.8 (2)
C5—N2—C2 110.8 (2) N28—C23—N22 119.1 (2)
C3—N2—H2 105 (2) N24—C23—N22 115.2 (2)
C5—N2—H2 110 (2) C25—N24—C23 115.0 (2)
C2—N2—H2 109 (2) N24—C25—C26 124.4 (2)
N1—C1—C2 110.9 (2) N24—C25—H25A 117.8
N1—C1—H1A 109.5 C26—C25—H25A 117.8
C2—C1—H1A 109.5 C25—C26—C27 116.1 (2)
N1—C1—H1B 109.5 C25—C26—H26A 121.9
C2—C1—H1B 109.5 C27—C26—H26A 121.9
H1A—C1—H1B 108.0 N28—C27—C26 121.4 (2)
N2—C2—C1 112.1 (2) N28—C27—C29 116.0 (2)
N2—C2—H2A 109.2 C26—C27—C29 122.6 (2)
C1—C2—H2A 109.2 C23—N28—C27 117.3 (2)
N2—C2—H2B 109.2 C30—C29—C34 117.4 (2)
C1—C2—H2B 109.2 C30—C29—C27 121.1 (2)
H2A—C2—H2B 107.9 C34—C29—C27 121.5 (2)
N2—C3—C4 111.5 (2) N31—C30—C29 123.9 (2)
N2—C3—H3A 109.3 N31—C30—H30A 118.0
C4—C3—H3A 109.3 C29—C30—H30A 118.0
N2—C3—H3B 109.3 C30—N31—C32 117.1 (2)
C4—C3—H3B 109.3 N31—C32—C33 123.3 (3)
H3A—C3—H3B 108.0 N31—C32—H32A 118.4
N1—C4—C3 111.2 (2) C33—C32—H32A 118.4
N1—C4—H4A 109.4 C34—C33—C32 119.0 (2)
C3—C4—H4A 109.4 C34—C33—H33A 120.5
N1—C4—H4B 109.4 C32—C33—H33A 120.5
C3—C4—H4B 109.4 C33—C34—C29 119.2 (2)
H4A—C4—H4B 108.0 C33—C34—H34A 120.4
N2—C5—H5A 109.5 C29—C34—H34A 120.4
N2—C5—H5B 109.5 O21A—N2A—O22A 123.7 (2)
H5A—C5—H5B 109.5 O21A—N2A—C2A 118.4 (2)
N2—C5—H5C 109.5 O22A—N2A—C2A 117.9 (2)
H5A—C5—H5C 109.5 O42A—N4A—O41A 123.1 (2)
H5B—C5—H5C 109.5 O42A—N4A—C4A 118.6 (2)
C7—C6—N1 112.6 (2) O41A—N4A—C4A 118.2 (2)
C7—C6—H6A 109.1 O61A—N6A—O62A 122.0 (2)
N1—C6—H6A 109.1 O61A—N6A—C6A 118.4 (2)
C7—C6—H6B 109.1 O62A—N6A—C6A 119.6 (2)
N1—C6—H6B 109.1 O1A—C1A—C2A 121.3 (2)
H6A—C6—H6B 107.8 O1A—C1A—C6A 126.9 (2)
C12—C7—C8 118.6 (3) C2A—C1A—C6A 111.7 (2)
C12—C7—C6 119.2 (2) C3A—C2A—C1A 124.6 (2)
C8—C7—C6 122.2 (2) C3A—C2A—N2A 117.3 (2)
C9—C8—C7 120.4 (2) C1A—C2A—N2A 118.0 (2)
C9—C8—H8A 119.8 C2A—C3A—C4A 118.7 (2)
C7—C8—H8A 119.8 C2A—C3A—H3AA 120.6
C8—C9—C10 120.9 (2) C4A—C3A—H3AA 120.6
C8—C9—H9A 119.5 C5A—C4A—C3A 121.5 (2)
C10—C9—H9A 119.5 C5A—C4A—N4A 119.4 (2)
C9—C10—C11 118.4 (3) C3A—C4A—N4A 119.1 (2)
C9—C10—C13 119.6 (2) C4A—C5A—C6A 118.8 (2)
C11—C10—C13 122.1 (2) C4A—C5A—H5AA 120.6
C12—C11—C10 121.2 (2) C6A—C5A—H5AA 120.6
C12—C11—H11A 119.4 C5A—C6A—C1A 124.0 (2)
C10—C11—H11A 119.4 C5A—C6A—N6A 116.2 (2)
C11—C12—C7 120.4 (2) C1A—C6A—N6A 119.7 (2)
C11—C12—H12A 119.8 O21B—N2B—O22B 123.7 (2)
C7—C12—H12A 119.8 O21B—N2B—C2B 118.5 (2)
O1—C13—N14 123.9 (3) O22B—N2B—C2B 117.8 (2)
O1—C13—C10 121.8 (2) O42B—N4B—O41B 123.7 (2)
N14—C13—C10 114.3 (2) O42B—N4B—C4B 117.7 (2)
C13—N14—C15 129.0 (2) O41B—N4B—C4B 118.7 (2)
C13—N14—H14 117 (2) O61B—N6B—O62B 122.5 (2)
C15—N14—H14 113 (2) O61B—N6B—C6B 118.1 (2)
C21—C15—C16 120.2 (2) O62B—N6B—C6B 119.4 (2)
C21—C15—N14 116.1 (2) O1B—C1B—C6B 126.3 (2)
C16—C15—N14 123.6 (2) O1B—C1B—C2B 121.7 (2)
C17—C16—C15 117.5 (2) C6B—C1B—C2B 112.0 (2)
C17—C16—H16A 121.2 C3B—C2B—C1B 125.1 (2)
C15—C16—H16A 121.2 C3B—C2B—N2B 117.4 (2)
C18—C17—C16 123.6 (2) C1B—C2B—N2B 117.6 (2)
C18—C17—H17A 118.2 C2B—C3B—C4B 117.9 (2)
C16—C17—H17A 118.2 C2B—C3B—H3BA 121.1
C17—C18—C20 117.6 (3) C4B—C3B—H3BA 121.1
C17—C18—C19 120.0 (3) C5B—C4B—C3B 122.3 (2)
C20—C18—C19 122.2 (3) C5B—C4B—N4B 118.5 (2)
C18—C19—H19A 109.5 C3B—C4B—N4B 119.3 (2)
C18—C19—H19B 109.5 C4B—C5B—C6B 118.6 (2)
H19A—C19—H19B 109.5 C4B—C5B—H5BA 120.7
C18—C19—H19C 109.5 C6B—C5B—H5BA 120.7
H19A—C19—H19C 109.5 C5B—C6B—C1B 124.1 (2)
H19B—C19—H19C 109.5 C5B—C6B—N6B 115.8 (2)
C21—C20—C18 119.8 (2) C1B—C6B—N6B 120.1 (2)
C21—C20—N22 121.6 (2)
C4—N1—C1—C2 58.2 (2) C27—C29—C30—N31 −179.5 (2)
C6—N1—C1—C2 −178.6 (2) C29—C30—N31—C32 −2.2 (4)
C3—N2—C2—C1 53.6 (3) C30—N31—C32—C33 −0.4 (4)
C5—N2—C2—C1 176.8 (2) N31—C32—C33—C34 2.2 (4)
N1—C1—C2—N2 −56.6 (3) C32—C33—C34—C29 −1.4 (4)
C5—N2—C3—C4 −177.2 (2) C30—C29—C34—C33 −1.0 (4)
C2—N2—C3—C4 −54.0 (3) C27—C29—C34—C33 −178.6 (2)
C1—N1—C4—C3 −59.2 (3) O1A—C1A—C2A—C3A −170.2 (2)
C6—N1—C4—C3 177.9 (2) C6A—C1A—C2A—C3A 8.4 (4)
N2—C3—C4—N1 58.1 (3) O1A—C1A—C2A—N2A 7.6 (4)
C1—N1—C6—C7 −179.7 (2) C6A—C1A—C2A—N2A −173.8 (2)
C4—N1—C6—C7 −58.3 (3) O21A—N2A—C2A—C3A −140.1 (2)
N1—C6—C7—C12 107.2 (3) O22A—N2A—C2A—C3A 37.9 (3)
N1—C6—C7—C8 −71.7 (3) O21A—N2A—C2A—C1A 41.9 (3)
C12—C7—C8—C9 −0.3 (4) O22A—N2A—C2A—C1A −140.1 (2)
C6—C7—C8—C9 178.6 (2) C1A—C2A—C3A—C4A −4.9 (4)
C7—C8—C9—C10 1.5 (4) N2A—C2A—C3A—C4A 177.2 (2)
C8—C9—C10—C11 −1.3 (4) C2A—C3A—C4A—C5A −1.6 (4)
C8—C9—C10—C13 −179.5 (2) C2A—C3A—C4A—N4A 178.2 (2)
C9—C10—C11—C12 0.0 (4) O42A—N4A—C4A—C5A 1.1 (4)
C13—C10—C11—C12 178.1 (2) O41A—N4A—C4A—C5A 179.9 (2)
C10—C11—C12—C7 1.2 (4) O42A—N4A—C4A—C3A −178.7 (3)
C8—C7—C12—C11 −1.0 (4) O41A—N4A—C4A—C3A 0.1 (4)
C6—C7—C12—C11 −180.0 (2) C3A—C4A—C5A—C6A 3.7 (4)
C9—C10—C13—O1 23.7 (4) N4A—C4A—C5A—C6A −176.1 (2)
C11—C10—C13—O1 −154.5 (3) C4A—C5A—C6A—C1A 0.5 (4)
C9—C10—C13—N14 −156.9 (2) C4A—C5A—C6A—N6A 178.8 (2)
C11—C10—C13—N14 25.0 (4) O1A—C1A—C6A—C5A 172.4 (2)
O1—C13—N14—C15 8.6 (4) C2A—C1A—C6A—C5A −6.1 (3)
C10—C13—N14—C15 −170.8 (2) O1A—C1A—C6A—N6A −5.8 (4)
C13—N14—C15—C21 −160.7 (3) C2A—C1A—C6A—N6A 175.8 (2)
C13—N14—C15—C16 23.3 (4) O61A—N6A—C6A—C5A 15.5 (4)
C21—C15—C16—C17 −2.5 (4) O62A—N6A—C6A—C5A −164.3 (2)
N14—C15—C16—C17 173.3 (3) O61A—N6A—C6A—C1A −166.2 (3)
C15—C16—C17—C18 −0.2 (4) O62A—N6A—C6A—C1A 14.0 (4)
C16—C17—C18—C20 2.9 (4) O1B—C1B—C2B—C3B 176.0 (3)
C16—C17—C18—C19 −173.3 (3) C6B—C1B—C2B—C3B −4.2 (4)
C17—C18—C20—C21 −3.0 (4) O1B—C1B—C2B—N2B −2.9 (4)
C19—C18—C20—C21 173.1 (3) C6B—C1B—C2B—N2B 176.9 (2)
C17—C18—C20—N22 −178.2 (2) O21B—N2B—C2B—C3B 132.4 (3)
C19—C18—C20—N22 −2.1 (4) O22B—N2B—C2B—C3B −46.8 (4)
C16—C15—C21—C20 2.4 (4) O21B—N2B—C2B—C1B −48.7 (3)
N14—C15—C21—C20 −173.7 (2) O22B—N2B—C2B—C1B 132.2 (3)
C18—C20—C21—C15 0.4 (4) C1B—C2B—C3B—C4B 2.8 (4)
N22—C20—C21—C15 175.5 (2) N2B—C2B—C3B—C4B −178.3 (2)
C21—C20—N22—C23 17.2 (4) C2B—C3B—C4B—C5B 0.2 (4)
C18—C20—N22—C23 −167.7 (3) C2B—C3B—C4B—N4B −180.0 (2)
C20—N22—C23—N28 18.2 (4) O42B—N4B—C4B—C5B −3.4 (4)
C20—N22—C23—N24 −162.5 (2) O41B—N4B—C4B—C5B 176.1 (2)
N28—C23—N24—C25 −0.6 (4) O42B—N4B—C4B—C3B 176.7 (2)
N22—C23—N24—C25 −179.8 (2) O41B—N4B—C4B—C3B −3.7 (4)
C23—N24—C25—C26 −1.0 (4) C3B—C4B—C5B—C6B −1.3 (4)
N24—C25—C26—C27 1.0 (4) N4B—C4B—C5B—C6B 178.9 (2)
C25—C26—C27—N28 0.6 (4) C4B—C5B—C6B—C1B −0.5 (4)
C25—C26—C27—C29 −178.6 (2) C4B—C5B—C6B—N6B 178.3 (2)
N24—C23—N28—C27 2.1 (4) O1B—C1B—C6B—C5B −177.2 (3)
N22—C23—N28—C27 −178.7 (2) C2B—C1B—C6B—C5B 3.0 (4)
C26—C27—N28—C23 −2.0 (4) O1B—C1B—C6B—N6B 4.1 (4)
C29—C27—N28—C23 177.2 (2) C2B—C1B—C6B—N6B −175.7 (2)
N28—C27—C29—C30 −166.7 (2) O61B—N6B—C6B—C5B −25.5 (3)
C26—C27—C29—C30 12.6 (4) O62B—N6B—C6B—C5B 153.6 (2)
N28—C27—C29—C34 10.8 (4) O61B—N6B—C6B—C1B 153.3 (2)
C26—C27—C29—C34 −170.0 (3) O62B—N6B—C6B—C1B −27.6 (4)
C34—C29—C30—N31 3.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1B 0.85 (3) 1.85 (3) 2.658 (3) 157 (3)
N1—H1···O62B 0.85 (3) 2.35 (3) 2.890 (3) 122 (2)
N2—H2···O1A 0.89 (4) 1.85 (4) 2.678 (3) 154 (3)
N2—H2···O62A 0.89 (4) 2.41 (4) 3.009 (3) 125 (3)
N14—H14···N31i 0.85 (3) 2.23 (3) 3.069 (3) 171 (3)
C5—H5B···O41Aii 0.98 2.48 3.258 (4) 136
C4—H4B···O42Biii 0.99 2.33 3.199 (3) 146
C3—H3A···O61Biv 0.99 2.57 3.199 (3) 121
C3—H3B···O1B 0.99 2.34 3.072 (3) 130
C12—H12A···O42Biii 0.95 2.63 3.423 (3) 142
C19—H19A···O61Bv 0.98 2.50 3.435 (4) 159
C19—H19A···N6Bv 0.98 2.65 3.541 (4) 152

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z; (iii) x−1, y−1, z; (iv) x−1, y, z; (v) −x+1, −y+1, −z+1.

Table 2 π-Ring hydrogen-bond geometry (Å, °) for (I).

Cg5 is the centroid of the C15–C21 ring.

D—H···A D—H H···A D···A D—H···A
C33—H33A···Cg5vi 0.95 2.90 3.545 (8) 127

Symmetry code: (vi) x+1, y, z.

Table 3 π–π stacking geometry (Å, °) for (I).

Cg2···Cg7v 3.740 (4)
Cg3···Cg3v 3.496 (7)
Cg6···Cg6vii 3.396 (0)

Symmetry codes: (v) -x+1, -y+1, -z+1; (vii) -x+2, -y+2, -z. Notes: Cg2, Cg3, Cg6 and Cg7 are the centroids of the C25/C26/C27/N28/C23/N4, C32/C33/C34/C29//C30/N31, C1A–C6A and C1B–C6B rings, respectively.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5129).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546–o548. [DOI] [PubMed]
  3. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug Discov.1, 493–502. [DOI] [PubMed]
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.
  6. Harrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3871.
  7. Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009a). Acta Cryst. E65, o1738–o1739. [DOI] [PMC free article] [PubMed]
  8. Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009b). Acta Cryst. E65, o2201–o2202. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  10. Moen, M. D., Mckeage, K., Plosker, G. L. & Siddiqui, M. A. A. (2007). Drugs, 67, 299–320. [DOI] [PubMed]
  11. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.
  15. Szumma, A., Jurczak, J. & Urbańczyk-Lipkowska, Z. (2000). J. Mol. Struct.526, 165–175.
  16. Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007a). Acta Cryst. E63, o1691–o1692.
  17. Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007b). Acta Cryst. E63, o1693–o1695.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000577/bt5129sup1.cif

e-66-0o411-sup1.cif (35.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000577/bt5129Isup2.hkl

e-66-0o411-Isup2.hkl (395.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES