Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 23;66(Pt 2):o434. doi: 10.1107/S1600536810002291

N-(3-Methyl­phen­yl)benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, P G Nirmala a, Hartmut Fuess b
PMCID: PMC2979874  PMID: 21579849

Abstract

The asymmetric unit of the title compound, C13H13NO2S, contains two independent mol­ecules. The dihedral angles between the two aromatic rings are 67.9 (1) and 68.6 (1)° in the two mol­ecules. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains.

Related literature

For the preparation of the title compound, see: Gowda et al. (2005). For related structures, see: Gelbrich et al. (2007; Gowda et al. (2008); Nirmala et al. (2009); Perlovich et al. (2006).graphic file with name e-66-0o434-scheme1.jpg

Experimental

Crystal data

  • C13H13NO2S

  • M r = 247.30

  • Orthorhombic, Inline graphic

  • a = 8.787 (1) Å

  • b = 8.884 (1) Å

  • c = 32.406 (3) Å

  • V = 2529.7 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.19 mm−1

  • T = 299 K

  • 0.60 × 0.60 × 0.35 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.353, T max = 0.514

  • 3284 measured reflections

  • 3109 independent reflections

  • 3002 reflections with I > 2σ(I)

  • R int = 0.039

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.096

  • S = 1.01

  • 3109 reflections

  • 316 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983), 507 Friedel pairs

  • Flack parameter: −0.010 (17)

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002291/bt5172sup1.cif

e-66-0o434-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002291/bt5172Isup2.hkl

e-66-0o434-Isup2.hkl (152.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.87 (3) 2.08 (3) 2.919 (3) 162 (3)
N2—H2N⋯O3ii 0.82 (3) 2.17 (3) 2.981 (3) 178 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

In the present work, as a part of studying the effect of substituents on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; Nirmala et al., 2009), the structure of N-(3-methylphenyl)benzenesulfonamide (I) has been determined. The asymmetric unit of (I) contains two independent molecules (Fig. 1). The conformations of the N—H bonds are syn to the meta- methyl groups in the aniline benzene rings, in contrast to the anti conformation observed with respect to the ortho-methyl group in N-(2-methylphenyl)benzenesulfonamide (II), to the meta-chloro group in N-(3-chlorophenyl)benzenesulfonamide(III)(Gowda et al., 2008) and to the meta-methyl group in 4-methyl-N-(3-methylphenyl)benzenesulfonamide (IV) (Nirmala et al., 2009).

The two benzene rings in (I) are tilted relative to each other by 67.9 (1)° in molecule 1 and 68.6 (1)° in molecule 2, compared to the values of 61.5 (1)° in (II), 65.4 (1)° in (III) and 83.9 (1)° in (IV),

The other bond parameters are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing stabilized by intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The solution of benzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with m-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(3-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005).

The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and their positional parameters were refined. The H-atoms bonded to C were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C13H13NO2S F(000) = 1040
Mr = 247.30 Dx = 1.299 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2ab Cell parameters from 25 reflections
a = 8.787 (1) Å θ = 6.5–20.2°
b = 8.884 (1) Å µ = 2.19 mm1
c = 32.406 (3) Å T = 299 K
V = 2529.7 (5) Å3 Prism, colourless
Z = 8 0.60 × 0.60 × 0.35 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 3002 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.039
graphite θmax = 66.9°, θmin = 2.7°
ω/2θ scans h = −10→0
Absorption correction: ψ scan (North et al., 1968) k = −10→1
Tmin = 0.353, Tmax = 0.514 l = −38→4
3284 measured reflections 3 standard reflections every 120 min
3109 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.4153P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.18 e Å3
3109 reflections Δρmin = −0.36 e Å3
316 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0203 (7)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 507 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.010 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.24673 (6) 0.87533 (7) 0.002545 (17) 0.05084 (19)
O1 0.08754 (19) 0.8919 (2) 0.01175 (6) 0.0660 (5)
O2 0.2926 (2) 0.8620 (3) −0.03936 (5) 0.0675 (5)
N1 0.3085 (2) 0.7245 (3) 0.02524 (6) 0.0534 (5)
H1N 0.394 (4) 0.710 (4) 0.0126 (9) 0.064*
C1 0.3398 (3) 1.0308 (3) 0.02455 (8) 0.0548 (6)
C2 0.4797 (4) 1.0708 (4) 0.00878 (10) 0.0740 (8)
H2 0.5241 1.0147 −0.0123 0.089*
C3 0.5529 (6) 1.1951 (5) 0.02461 (13) 0.1007 (13)
H3 0.6475 1.2232 0.0144 0.121*
C4 0.4868 (7) 1.2767 (5) 0.05524 (16) 0.1167 (17)
H4 0.5363 1.3615 0.0653 0.140*
C5 0.3486 (6) 1.2364 (5) 0.07158 (15) 0.1124 (15)
H5 0.3054 1.2924 0.0928 0.135*
C6 0.2731 (4) 1.1093 (4) 0.05579 (10) 0.0816 (9)
H6 0.1795 1.0794 0.0665 0.098*
C7 0.3008 (3) 0.7054 (3) 0.06911 (7) 0.0502 (5)
C8 0.4334 (3) 0.6721 (3) 0.09016 (8) 0.0563 (6)
H8 0.5254 0.6688 0.0760 0.068*
C9 0.4301 (4) 0.6434 (4) 0.13244 (8) 0.0675 (7)
C10 0.2930 (4) 0.6565 (4) 0.15269 (9) 0.0758 (9)
H10 0.2891 0.6403 0.1810 0.091*
C11 0.1614 (4) 0.6932 (4) 0.13180 (10) 0.0793 (9)
H11 0.0706 0.7034 0.1462 0.095*
C12 0.1636 (3) 0.7147 (4) 0.08980 (9) 0.0671 (7)
H12 0.0741 0.7352 0.0755 0.081*
C13 0.5728 (5) 0.6023 (6) 0.15481 (11) 0.0973 (12)
H13A 0.5927 0.4968 0.1513 0.117*
H13B 0.5612 0.6242 0.1836 0.117*
H13C 0.6564 0.6594 0.1439 0.117*
S2 0.11402 (7) 0.27358 (7) 0.246445 (17) 0.05112 (19)
O3 0.1367 (2) 0.4283 (2) 0.23607 (6) 0.0637 (5)
O4 0.0977 (2) 0.2326 (2) 0.28860 (5) 0.0676 (5)
N2 −0.0417 (2) 0.2159 (3) 0.22416 (6) 0.0527 (5)
H2N −0.065 (4) 0.136 (4) 0.2348 (8) 0.063*
C14 0.2668 (3) 0.1716 (3) 0.22523 (7) 0.0532 (6)
C15 0.2926 (3) 0.0270 (4) 0.23940 (9) 0.0674 (7)
H15 0.2299 −0.0157 0.2593 0.081*
C16 0.4143 (5) −0.0526 (4) 0.22311 (12) 0.0902 (10)
H16 0.4344 −0.1497 0.2323 0.108*
C17 0.5046 (4) 0.0106 (5) 0.19371 (14) 0.0998 (13)
H17 0.5863 −0.0438 0.1832 0.120*
C18 0.4775 (5) 0.1509 (6) 0.17945 (14) 0.1068 (14)
H18 0.5396 0.1913 0.1590 0.128*
C19 0.3571 (4) 0.2356 (4) 0.19508 (10) 0.0821 (9)
H19 0.3381 0.3324 0.1855 0.099*
C20 −0.0626 (3) 0.2246 (3) 0.18014 (7) 0.0504 (5)
C21 −0.1049 (3) 0.0949 (3) 0.15949 (8) 0.0539 (6)
H21 −0.1118 0.0046 0.1739 0.065*
C22 −0.1374 (3) 0.0981 (4) 0.11760 (8) 0.0609 (6)
C23 −0.1195 (4) 0.2328 (4) 0.09707 (9) 0.0729 (8)
H23 −0.1369 0.2369 0.0688 0.087*
C24 −0.0769 (5) 0.3601 (4) 0.11743 (10) 0.0847 (10)
H24 −0.0661 0.4496 0.1028 0.102*
C25 −0.0492 (4) 0.3584 (4) 0.15961 (9) 0.0705 (8)
H25 −0.0223 0.4460 0.1735 0.085*
C26 −0.1914 (5) −0.0405 (4) 0.09576 (11) 0.0861 (10)
H26A −0.1587 −0.1280 0.1107 0.103*
H26B −0.1496 −0.0429 0.0684 0.103*
H26C −0.3005 −0.0394 0.0942 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0439 (3) 0.0637 (3) 0.0449 (3) −0.0013 (3) −0.0050 (2) −0.0031 (3)
O1 0.0395 (8) 0.0884 (13) 0.0702 (11) 0.0026 (9) −0.0048 (8) −0.0042 (11)
O2 0.0692 (12) 0.0883 (13) 0.0450 (8) −0.0003 (11) −0.0035 (8) −0.0041 (10)
N1 0.0497 (10) 0.0613 (12) 0.0492 (10) 0.0043 (10) 0.0060 (9) −0.0033 (10)
C1 0.0554 (14) 0.0568 (13) 0.0523 (13) −0.0011 (12) −0.0138 (11) 0.0063 (12)
C2 0.0700 (17) 0.0829 (19) 0.0690 (18) −0.0202 (17) −0.0053 (14) 0.0104 (16)
C3 0.107 (3) 0.095 (3) 0.101 (3) −0.044 (2) −0.021 (2) 0.017 (2)
C4 0.139 (4) 0.073 (2) 0.138 (4) −0.029 (3) −0.054 (3) 0.003 (3)
C5 0.130 (4) 0.090 (3) 0.117 (3) 0.014 (3) −0.031 (3) −0.038 (3)
C6 0.083 (2) 0.082 (2) 0.0793 (18) 0.0032 (19) −0.0102 (17) −0.0229 (18)
C7 0.0525 (12) 0.0477 (12) 0.0503 (11) −0.0035 (11) 0.0060 (10) −0.0011 (11)
C8 0.0538 (14) 0.0587 (14) 0.0564 (13) −0.0038 (12) 0.0040 (11) 0.0002 (12)
C9 0.0789 (18) 0.0656 (17) 0.0580 (14) −0.0086 (16) −0.0088 (14) 0.0048 (14)
C10 0.097 (2) 0.0811 (19) 0.0496 (13) −0.0142 (19) 0.0120 (15) 0.0081 (15)
C11 0.078 (2) 0.091 (2) 0.0682 (17) −0.0070 (19) 0.0266 (16) 0.0095 (17)
C12 0.0560 (14) 0.0802 (18) 0.0651 (15) −0.0021 (15) 0.0115 (13) 0.0086 (15)
C13 0.093 (3) 0.120 (3) 0.079 (2) 0.001 (3) −0.0190 (19) 0.022 (2)
S2 0.0540 (3) 0.0561 (3) 0.0432 (3) 0.0010 (3) 0.0032 (2) −0.0055 (2)
O3 0.0722 (12) 0.0541 (9) 0.0649 (11) −0.0015 (9) 0.0044 (9) −0.0077 (8)
O4 0.0777 (12) 0.0808 (12) 0.0444 (8) 0.0005 (12) 0.0036 (8) −0.0037 (9)
N2 0.0503 (10) 0.0584 (11) 0.0493 (10) −0.0057 (10) 0.0036 (9) 0.0040 (10)
C14 0.0456 (12) 0.0639 (14) 0.0500 (12) 0.0015 (11) −0.0032 (11) −0.0098 (11)
C15 0.0641 (17) 0.0689 (16) 0.0693 (16) 0.0066 (14) 0.0029 (13) −0.0031 (15)
C16 0.086 (2) 0.077 (2) 0.107 (3) 0.025 (2) −0.005 (2) −0.007 (2)
C17 0.068 (2) 0.106 (3) 0.125 (3) 0.024 (2) 0.017 (2) −0.020 (3)
C18 0.082 (2) 0.119 (3) 0.119 (3) 0.020 (3) 0.045 (2) 0.011 (3)
C19 0.0743 (19) 0.085 (2) 0.087 (2) 0.0097 (19) 0.0281 (17) 0.0082 (19)
C20 0.0423 (11) 0.0606 (14) 0.0483 (11) 0.0029 (11) 0.0021 (9) 0.0032 (12)
C21 0.0503 (12) 0.0555 (13) 0.0561 (12) 0.0054 (12) 0.0044 (11) 0.0010 (11)
C22 0.0504 (13) 0.0743 (16) 0.0579 (13) 0.0047 (13) 0.0017 (11) −0.0086 (13)
C23 0.0739 (18) 0.093 (2) 0.0519 (13) −0.009 (2) −0.0078 (13) 0.0054 (15)
C24 0.100 (3) 0.087 (2) 0.0675 (17) −0.018 (2) −0.0173 (18) 0.0265 (17)
C25 0.085 (2) 0.0646 (16) 0.0625 (15) −0.0112 (16) −0.0115 (15) 0.0075 (14)
C26 0.097 (2) 0.082 (2) 0.0790 (19) 0.002 (2) −0.0076 (19) −0.0239 (18)

Geometric parameters (Å, °)

S1—O2 1.4214 (18) S2—O4 1.4212 (18)
S1—O1 1.4378 (18) S2—O3 1.429 (2)
S1—N1 1.622 (2) S2—N2 1.630 (2)
S1—C1 1.756 (3) S2—C14 1.760 (3)
N1—C7 1.433 (3) N2—C20 1.440 (3)
N1—H1N 0.87 (3) N2—H2N 0.82 (3)
C1—C6 1.362 (4) C14—C19 1.381 (4)
C1—C2 1.379 (4) C14—C15 1.383 (4)
C2—C3 1.377 (5) C15—C16 1.386 (5)
C2—H2 0.9300 C15—H15 0.9300
C3—C4 1.359 (6) C16—C17 1.361 (6)
C3—H3 0.9300 C16—H16 0.9300
C4—C5 1.373 (7) C17—C18 1.350 (6)
C4—H4 0.9300 C17—H17 0.9300
C5—C6 1.406 (6) C18—C19 1.393 (5)
C5—H5 0.9300 C18—H18 0.9300
C6—H6 0.9300 C19—H19 0.9300
C7—C12 1.382 (4) C20—C25 1.367 (4)
C7—C8 1.382 (4) C20—C21 1.383 (4)
C8—C9 1.394 (3) C21—C22 1.387 (3)
C8—H8 0.9300 C21—H21 0.9300
C9—C10 1.377 (5) C22—C23 1.378 (4)
C9—C13 1.494 (5) C22—C26 1.497 (4)
C10—C11 1.379 (5) C23—C24 1.362 (5)
C10—H10 0.9300 C23—H23 0.9300
C11—C12 1.375 (4) C24—C25 1.388 (4)
C11—H11 0.9300 C24—H24 0.9300
C12—H12 0.9300 C25—H25 0.9300
C13—H13A 0.9600 C26—H26A 0.9600
C13—H13B 0.9600 C26—H26B 0.9600
C13—H13C 0.9600 C26—H26C 0.9600
O2—S1—O1 118.86 (11) O4—S2—O3 119.12 (12)
O2—S1—N1 105.62 (12) O4—S2—N2 105.12 (12)
O1—S1—N1 108.43 (12) O3—S2—N2 108.38 (12)
O2—S1—C1 108.75 (13) O4—S2—C14 108.70 (12)
O1—S1—C1 106.75 (13) O3—S2—C14 107.27 (12)
N1—S1—C1 108.04 (11) N2—S2—C14 107.80 (12)
C7—N1—S1 122.14 (18) C20—N2—S2 121.91 (17)
C7—N1—H1N 119.3 (19) C20—N2—H2N 116 (2)
S1—N1—H1N 102 (2) S2—N2—H2N 107 (2)
C6—C1—C2 121.8 (3) C19—C14—C15 121.6 (3)
C6—C1—S1 120.3 (2) C19—C14—S2 120.2 (2)
C2—C1—S1 117.9 (2) C15—C14—S2 118.3 (2)
C3—C2—C1 119.0 (4) C14—C15—C16 118.3 (3)
C3—C2—H2 120.5 C14—C15—H15 120.9
C1—C2—H2 120.5 C16—C15—H15 120.9
C4—C3—C2 120.0 (4) C17—C16—C15 120.4 (4)
C4—C3—H3 120.0 C17—C16—H16 119.8
C2—C3—H3 120.0 C15—C16—H16 119.8
C3—C4—C5 121.4 (4) C18—C17—C16 121.1 (4)
C3—C4—H4 119.3 C18—C17—H17 119.4
C5—C4—H4 119.3 C16—C17—H17 119.4
C4—C5—C6 119.1 (4) C17—C18—C19 120.5 (4)
C4—C5—H5 120.4 C17—C18—H18 119.7
C6—C5—H5 120.4 C19—C18—H18 119.7
C1—C6—C5 118.6 (4) C14—C19—C18 118.1 (4)
C1—C6—H6 120.7 C14—C19—H19 121.0
C5—C6—H6 120.7 C18—C19—H19 121.0
C12—C7—C8 120.6 (2) C25—C20—C21 120.8 (2)
C12—C7—N1 121.0 (2) C25—C20—N2 121.2 (3)
C8—C7—N1 118.4 (2) C21—C20—N2 117.9 (2)
C7—C8—C9 120.5 (3) C20—C21—C22 120.8 (2)
C7—C8—H8 119.8 C20—C21—H21 119.6
C9—C8—H8 119.8 C22—C21—H21 119.6
C10—C9—C8 118.1 (3) C23—C22—C21 117.8 (3)
C10—C9—C13 121.6 (3) C23—C22—C26 121.5 (3)
C8—C9—C13 120.3 (3) C21—C22—C26 120.7 (3)
C9—C10—C11 121.3 (2) C24—C23—C22 121.2 (3)
C9—C10—H10 119.4 C24—C23—H23 119.4
C11—C10—H10 119.4 C22—C23—H23 119.4
C12—C11—C10 120.5 (3) C23—C24—C25 121.1 (3)
C12—C11—H11 119.7 C23—C24—H24 119.5
C10—C11—H11 119.7 C25—C24—H24 119.5
C11—C12—C7 118.9 (3) C20—C25—C24 118.3 (3)
C11—C12—H12 120.5 C20—C25—H25 120.9
C7—C12—H12 120.5 C24—C25—H25 120.9
C9—C13—H13A 109.5 C22—C26—H26A 109.5
C9—C13—H13B 109.5 C22—C26—H26B 109.5
H13A—C13—H13B 109.5 H26A—C26—H26B 109.5
C9—C13—H13C 109.5 C22—C26—H26C 109.5
H13A—C13—H13C 109.5 H26A—C26—H26C 109.5
H13B—C13—H13C 109.5 H26B—C26—H26C 109.5
O2—S1—N1—C7 172.1 (2) O4—S2—N2—C20 −174.2 (2)
O1—S1—N1—C7 −59.5 (2) O3—S2—N2—C20 57.4 (2)
C1—S1—N1—C7 55.8 (2) C14—S2—N2—C20 −58.4 (3)
O2—S1—C1—C6 150.7 (2) O4—S2—C14—C19 −146.4 (3)
O1—S1—C1—C6 21.3 (3) O3—S2—C14—C19 −16.4 (3)
N1—S1—C1—C6 −95.2 (3) N2—S2—C14—C19 100.1 (3)
O2—S1—C1—C2 −28.4 (3) O4—S2—C14—C15 33.9 (2)
O1—S1—C1—C2 −157.8 (2) O3—S2—C14—C15 163.9 (2)
N1—S1—C1—C2 85.8 (2) N2—S2—C14—C15 −79.6 (2)
C6—C1—C2—C3 −1.1 (5) C19—C14—C15—C16 1.2 (4)
S1—C1—C2—C3 178.0 (3) S2—C14—C15—C16 −179.1 (3)
C1—C2—C3—C4 −0.3 (5) C14—C15—C16—C17 −0.5 (5)
C2—C3—C4—C5 1.3 (7) C15—C16—C17—C18 −0.6 (7)
C3—C4—C5—C6 −1.0 (7) C16—C17—C18—C19 1.0 (8)
C2—C1—C6—C5 1.4 (5) C15—C14—C19—C18 −0.8 (5)
S1—C1—C6—C5 −177.7 (3) S2—C14—C19—C18 179.5 (3)
C4—C5—C6—C1 −0.3 (6) C17—C18—C19—C14 −0.3 (7)
S1—N1—C7—C12 57.0 (3) S2—N2—C20—C25 −56.3 (3)
S1—N1—C7—C8 −125.3 (2) S2—N2—C20—C21 127.3 (2)
C12—C7—C8—C9 1.7 (4) C25—C20—C21—C22 −1.1 (4)
N1—C7—C8—C9 −176.1 (3) N2—C20—C21—C22 175.4 (2)
C7—C8—C9—C10 −3.1 (5) C20—C21—C22—C23 2.8 (4)
C7—C8—C9—C13 177.9 (3) C20—C21—C22—C26 −176.7 (3)
C8—C9—C10—C11 1.6 (5) C21—C22—C23—C24 −2.4 (5)
C13—C9—C10—C11 −179.4 (4) C26—C22—C23—C24 177.1 (3)
C9—C10—C11—C12 1.3 (6) C22—C23—C24—C25 0.3 (6)
C10—C11—C12—C7 −2.8 (5) C21—C20—C25—C24 −1.0 (5)
C8—C7—C12—C11 1.2 (5) N2—C20—C25—C24 −177.4 (3)
N1—C7—C12—C11 178.9 (3) C23—C24—C25—C20 1.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.87 (3) 2.08 (3) 2.919 (3) 162 (3)
N2—H2N···O3ii 0.82 (3) 2.17 (3) 2.981 (3) 178 (3)

Symmetry codes: (i) x+1/2, −y+3/2, −z; (ii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5172).

References

  1. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  4. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  6. Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3208. [DOI] [PMC free article] [PubMed]
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002291/bt5172sup1.cif

e-66-0o434-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002291/bt5172Isup2.hkl

e-66-0o434-Isup2.hkl (152.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES