Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 16;66(Pt 2):o392. doi: 10.1107/S1600536809054701

2,2′-(Propane-2,2-di­yl)bis­(1H-pyrrole)

Guillaume Journot a, Reinhard Neier a,*, Helen Stoeckli-Evans b
PMCID: PMC2979882  PMID: 21579813

Abstract

The title compound, C11H14N2, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. The two mol­ecules differ only slightly, with the pyrrole rings being inclined to one another at a dihedral angle of 87.67 (8)° in mol­ecule A and 88.09 (7)° in mol­ecule B. In the crystal, there are no classical hydrogen bonds, but the two pyrrole NH groups of one mol­ecule are involved in N—H⋯π inter­actions with the pyrrole rings of the other mol­ecule. In this manner, a compact box-like arrangement of the two independent mol­ecules is formed.

Related literature

For substituted calix[4]pyrroles, see: Gale et al. (1998); Sessler & Davis (2001); Sessler et al. (2003). For the synthesis and crystal structure of meso-diethyl-bis­(2-pyrrol­yl)methane, see: Sobral et al. (2003). For inter­molecular inter­actions involving aromatic rings in biological systems, see: Meyer et al. (2003). For a spectroscopic analysis of N—H⋯π inter­actions in pyrroles, see: Dauster et al. (2008).graphic file with name e-66-0o392-scheme1.jpg

Experimental

Crystal data

  • C11H14N2

  • M r = 174.24

  • Triclinic, Inline graphic

  • a = 8.4554 (8) Å

  • b = 9.2001 (8) Å

  • c = 13.2274 (11) Å

  • α = 99.802 (7)°

  • β = 95.321 (7)°

  • γ = 97.328 (7)°

  • V = 998.74 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.40 × 0.34 × 0.28 mm

Data collection

  • Stoe IPDS-2 diffractometer

  • 15270 measured reflections

  • 5385 independent reflections

  • 3816 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.106

  • S = 1.02

  • 5385 reflections

  • 255 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809054701/is2506sup1.cif

e-66-0o392-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054701/is2506Isup2.hkl

e-66-0o392-Isup2.hkl (263.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Geometry of N—H⋯π inter­actions (Å, °).

D H Centroid N—H H⋯Cg DCg N—H⋯Cg
N1 H1N Cg4 0.86 (2) 2.534 (17) 3.2190 (12) 137.4 (14)
N2 H2N Cg3 0.86 (2) 2.591 (17) 3.2425 (12) 133.7 (13)
N21 H21N Cg1 0.88 (2) 2.523 (16) 3.1925 (12) 133.9 (12)
N22 H22N Cg2 0.86 (2) 2.610 (17) 3.2440 (12) 131.3 (13)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C4, N2/C5–C8, N21/C21—C24 and N22/C25–C28 rings, respectively.

Acknowledgments

HSE is grateful to the XRD Application LAB, Microsystems Technology Division, Swiss Center for Electronics and Microtechnology, Neuchâtel, for access to the X-ray diffraction equipment.

supplementary crystallographic information

Comment

The title compound was prepared as a building block for the formation of substituted calix[4]pyrroles. The latter have been shown to form extremely interesting host–guest complexes with various anions (Gale et al., 1998; Sessler & Davis, 2001; Sessler et al., 2003).

The structure of the title compound is shown in Fig. 1, and the geometrical parameters are given in the Supplementary Information and the archived CIF. The compound crystallized in the centrosymmetric triclinic space group P1 with two independent molecules (A and B) in the asymmetric unit. The bond lengths and angles are similar to those observed in the diethyl analogue (Sobral et al., 2003), which also crystallized with two independent molecules, but in the non-centrosymetric monoclinic space group C2.

In the title compound the quateranry centers, C9 in A and C29 in B, impose a twist to the molecules with the pyrrole ring mean-planes being almost perpendicular to one another; 87.67 (8) ° in molecule A and 88.09 (7)° in molecule B. This is similar to the situation in the diethyl analogue where the two dihedral angles are 86.5 (2) and 86.7 (2) °.

N—H···π interactions are extremely important in biological systems and this aspect as been reviewed by (Meyer et al., 2003). The spectroscopic aspects of the N—H···π interactions of the pyrrole dimer have also been studied recently by (Dauster et al., 2008). In the crystal of the title compound the two independent molecules are linked by N—H···π interactions involving the pyrrole NH H-atoms of molecule A with the pyrrole rings of molecule B, and visa-versa (Table 1). This leads to the formation of a compact box-like arrangement of the two molecules, as shown in Fig. 2. Again this arrangement is similar to that observed in the crystal of the diethyl analogue.

Experimental

A mixture of acetone (4.21 ml, 57.4 mmol) and pyrrole (31.72 ml, 0.459 mol, 8 equiv.) were stirred for 5 min and then trifluoroactetic acid (TFA: 0.44 ml, 2.53 mmol, 0.1 equiv) was added. The mixture stirred for an additional 5 min and then quenched with aqueous NaOH (0.1 N, 30 ml). It was then extracted with CH2Cl2 (50 ml × 2) and the organic layer dried (Na2SO4). The solvent was removed in vacuo and the remaining oil (82% pure in GC) was purified by flash chromatography on silica (eluent: cyclohexane/ethyl acetate; v:v = 4:1) to give colourless block-like crystals of the title compound (yield 6.8 g, 68%). 1H NMR (CDCl3): δ 7.72 (bs, 2H, N—H), 6.62–6.60 (m, 2H, pyrrolic-H1), 6.15–6.13 (m, 2H, pyrrolic-H2), 6.11–6.09 (m, 2H, pyrrolic-H3), 1.59 (s, 6H, –CH3); 13CNMR (CDCl3): δ 139.24 (C4), 117.19 (C1), 107.91 (C2), 103.87 (C3), 35.52(C5), 29.46 (C6).

Refinement

The NH H-atoms were located in a difference electron-density map and were freely refined: N—H = 0.86 (2)–0.88 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 and 0.99 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH H-atoms, and 1.5 for CH3 H-atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the two independent molecules (A and B) of the title compound, with the displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view, along the a axis, of the crystal packing of the title compound. The N—H···π interactions are shown as dotted black lines for one of the box-like arrangements of the two independent molecules (see Table 1 for details; C-bound H-atoms have been omitted for clarity).

Crystal data

C11H14N2 Z = 4
Mr = 174.24 F(000) = 376
Triclinic, P1 Dx = 1.159 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4554 (8) Å Cell parameters from 10442 reflections
b = 9.2001 (8) Å θ = 1.6–29.5°
c = 13.2274 (11) Å µ = 0.07 mm1
α = 99.802 (7)° T = 173 K
β = 95.321 (7)° Block, colourless
γ = 97.328 (7)° 0.40 × 0.34 × 0.28 mm
V = 998.74 (15) Å3

Data collection

Stoe IPDS-2 diffractometer 3816 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.046
graphite θmax = 29.2°, θmin = 1.6°
φ and ω scans h = −11→11
15270 measured reflections k = −12→12
5385 independent reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.0012P] where P = (Fo2 + 2Fc2)/3
5385 reflections (Δ/σ)max < 0.001
255 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.12135 (12) 0.25140 (11) 0.31284 (8) 0.0249 (3)
N2 0.40689 (12) 0.01811 (11) 0.24234 (8) 0.0252 (3)
C1 0.13663 (14) 0.38021 (14) 0.38492 (10) 0.0312 (4)
C2 0.17507 (15) 0.34619 (16) 0.47962 (10) 0.0348 (4)
C3 0.18351 (15) 0.19174 (16) 0.46471 (9) 0.0311 (4)
C4 0.14934 (13) 0.13454 (13) 0.36055 (9) 0.0234 (3)
C5 0.24635 (14) −0.03734 (12) 0.22005 (9) 0.0226 (3)
C6 0.22365 (16) −0.10944 (14) 0.11865 (9) 0.0305 (4)
C7 0.37369 (18) −0.09563 (15) 0.07953 (10) 0.0358 (4)
C8 0.48462 (16) −0.01599 (14) 0.15732 (10) 0.0314 (4)
C9 0.13255 (15) −0.02364 (14) 0.30167 (9) 0.0277 (3)
C10 −0.04155 (17) −0.07156 (17) 0.24923 (13) 0.0470 (5)
C11 0.1699 (2) −0.12827 (17) 0.37732 (13) 0.0479 (5)
N21 0.51399 (12) 0.37264 (11) 0.36601 (7) 0.0232 (3)
N22 0.32603 (13) 0.28069 (11) 0.11006 (7) 0.0253 (3)
C21 0.59997 (14) 0.28840 (14) 0.42014 (9) 0.0264 (3)
C22 0.73108 (15) 0.26137 (15) 0.37047 (10) 0.0308 (4)
C23 0.72320 (14) 0.33192 (14) 0.28313 (9) 0.0281 (4)
C24 0.58798 (13) 0.40056 (13) 0.28184 (8) 0.0225 (3)
C25 0.35755 (14) 0.42785 (13) 0.15697 (8) 0.0229 (3)
C26 0.21946 (16) 0.48825 (14) 0.13876 (9) 0.0298 (4)
C27 0.10133 (16) 0.37382 (15) 0.07998 (10) 0.0340 (4)
C28 0.17016 (15) 0.24721 (14) 0.06366 (9) 0.0307 (3)
C29 0.52308 (14) 0.49773 (13) 0.21071 (9) 0.0251 (3)
C30 0.51173 (19) 0.65164 (14) 0.27414 (11) 0.0381 (4)
C31 0.63878 (17) 0.51784 (17) 0.12898 (10) 0.0381 (4)
H1N 0.1032 (19) 0.2477 (18) 0.2475 (13) 0.040 (4)*
H2N 0.4531 (19) 0.0726 (18) 0.2990 (12) 0.040 (4)*
H1 0.12280 0.47620 0.37120 0.0370*
H2 0.19290 0.41380 0.54380 0.0420*
H3 0.20840 0.13690 0.51730 0.0370*
H6 0.12470 −0.15960 0.08150 0.0370*
H7 0.39370 −0.13470 0.01140 0.0430*
H8 0.59580 0.01080 0.15310 0.0380*
H10A −0.11590 −0.06340 0.30180 0.0710*
H10B −0.05400 −0.17510 0.21260 0.0710*
H10C −0.06530 −0.00660 0.20000 0.0710*
H11A 0.09550 −0.12180 0.43000 0.0720*
H11B 0.28040 −0.09850 0.41070 0.0720*
H11C 0.15750 −0.23100 0.33940 0.0720*
H21N 0.4231 (19) 0.4002 (16) 0.3827 (11) 0.031 (4)*
H22N 0.3894 (19) 0.2146 (18) 0.1123 (11) 0.039 (4)*
H21 0.57330 0.25470 0.48130 0.0320*
H22 0.81210 0.20590 0.39070 0.0370*
H23 0.79840 0.33180 0.23400 0.0340*
H26 0.20540 0.58890 0.16150 0.0360*
H27 −0.00570 0.38380 0.05650 0.0410*
H28 0.11950 0.15250 0.02670 0.0370*
H30A 0.47170 0.71520 0.22810 0.0570*
H30B 0.61830 0.69770 0.30870 0.0570*
H30C 0.43790 0.64010 0.32610 0.0570*
H31A 0.64370 0.42070 0.08640 0.0570*
H31B 0.74620 0.56090 0.16360 0.0570*
H31C 0.60000 0.58470 0.08510 0.0570*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0216 (5) 0.0271 (5) 0.0262 (5) 0.0050 (4) 0.0023 (4) 0.0045 (4)
N2 0.0249 (5) 0.0242 (5) 0.0266 (5) 0.0033 (4) 0.0039 (4) 0.0051 (4)
C1 0.0204 (6) 0.0265 (6) 0.0442 (7) 0.0037 (5) 0.0068 (5) −0.0019 (5)
C2 0.0263 (6) 0.0400 (7) 0.0321 (6) −0.0005 (5) 0.0080 (5) −0.0090 (5)
C3 0.0269 (6) 0.0430 (8) 0.0231 (6) 0.0032 (5) 0.0050 (4) 0.0058 (5)
C4 0.0187 (5) 0.0285 (6) 0.0244 (5) 0.0045 (4) 0.0055 (4) 0.0068 (4)
C5 0.0244 (5) 0.0184 (5) 0.0258 (5) 0.0029 (4) 0.0035 (4) 0.0059 (4)
C6 0.0395 (7) 0.0234 (6) 0.0267 (6) 0.0030 (5) 0.0002 (5) 0.0024 (5)
C7 0.0553 (9) 0.0276 (7) 0.0283 (6) 0.0115 (6) 0.0169 (6) 0.0051 (5)
C8 0.0332 (7) 0.0269 (6) 0.0402 (7) 0.0104 (5) 0.0174 (5) 0.0116 (5)
C9 0.0270 (6) 0.0264 (6) 0.0312 (6) 0.0027 (5) 0.0094 (5) 0.0071 (5)
C10 0.0282 (7) 0.0395 (8) 0.0639 (10) −0.0074 (6) 0.0111 (6) −0.0107 (7)
C11 0.0672 (11) 0.0390 (8) 0.0518 (9) 0.0195 (7) 0.0325 (8) 0.0256 (7)
N21 0.0186 (5) 0.0288 (5) 0.0227 (5) 0.0038 (4) 0.0016 (4) 0.0060 (4)
N22 0.0289 (5) 0.0225 (5) 0.0239 (5) 0.0058 (4) −0.0029 (4) 0.0043 (4)
C21 0.0248 (6) 0.0302 (6) 0.0236 (5) 0.0013 (5) −0.0040 (4) 0.0087 (5)
C22 0.0238 (6) 0.0332 (7) 0.0360 (7) 0.0079 (5) −0.0029 (5) 0.0085 (5)
C23 0.0211 (6) 0.0336 (7) 0.0292 (6) 0.0037 (5) 0.0037 (4) 0.0047 (5)
C24 0.0211 (5) 0.0237 (6) 0.0209 (5) 0.0000 (4) −0.0003 (4) 0.0034 (4)
C25 0.0283 (6) 0.0221 (6) 0.0186 (5) 0.0039 (4) 0.0003 (4) 0.0055 (4)
C26 0.0349 (7) 0.0250 (6) 0.0308 (6) 0.0094 (5) −0.0012 (5) 0.0074 (5)
C27 0.0289 (6) 0.0382 (7) 0.0347 (7) 0.0056 (5) −0.0074 (5) 0.0115 (6)
C28 0.0317 (6) 0.0303 (6) 0.0267 (6) −0.0010 (5) −0.0080 (5) 0.0063 (5)
C29 0.0275 (6) 0.0242 (6) 0.0223 (5) 0.0002 (4) −0.0014 (4) 0.0057 (4)
C30 0.0508 (8) 0.0234 (6) 0.0354 (7) 0.0030 (6) −0.0115 (6) 0.0029 (5)
C31 0.0351 (7) 0.0476 (8) 0.0315 (6) −0.0054 (6) 0.0023 (5) 0.0163 (6)

Geometric parameters (Å, °)

N1—C1 1.3724 (17) C10—H10C 0.9800
N1—C4 1.3705 (16) C10—H10B 0.9800
N2—C5 1.3739 (16) C10—H10A 0.9800
N2—C8 1.3655 (17) C11—H11B 0.9800
N1—H1N 0.858 (17) C11—H11A 0.9800
N2—H2N 0.856 (16) C11—H11C 0.9800
N21—C21 1.3704 (16) C21—C22 1.3683 (18)
N21—C24 1.3720 (14) C22—C23 1.4186 (18)
N22—C25 1.3712 (15) C23—C24 1.3750 (17)
N22—C28 1.3750 (17) C24—C29 1.5170 (16)
N21—H21N 0.875 (16) C25—C29 1.5192 (17)
N22—H22N 0.863 (16) C25—C26 1.3744 (18)
C1—C2 1.3626 (19) C26—C27 1.4211 (19)
C2—C3 1.413 (2) C27—C28 1.3612 (19)
C3—C4 1.3781 (17) C29—C31 1.5421 (18)
C4—C9 1.5118 (17) C29—C30 1.5373 (18)
C5—C6 1.3757 (17) C21—H21 0.9500
C5—C9 1.5115 (17) C22—H22 0.9500
C6—C7 1.413 (2) C23—H23 0.9500
C7—C8 1.3654 (19) C26—H26 0.9500
C9—C11 1.541 (2) C27—H27 0.9500
C9—C10 1.544 (2) C28—H28 0.9500
C1—H1 0.9500 C30—H30A 0.9800
C2—H2 0.9500 C30—H30B 0.9800
C3—H3 0.9500 C30—H30C 0.9800
C6—H6 0.9500 C31—H31A 0.9800
C7—H7 0.9500 C31—H31B 0.9800
C8—H8 0.9500 C31—H31C 0.9800
C1—N1—C4 109.93 (10) C9—C11—H11C 109.00
C5—N2—C8 110.24 (10) H11A—C11—H11B 109.00
C1—N1—H1N 123.9 (11) H11A—C11—H11C 109.00
C4—N1—H1N 126.1 (11) H11B—C11—H11C 109.00
C5—N2—H2N 126.5 (11) C9—C11—H11B 109.00
C8—N2—H2N 123.1 (11) C9—C11—H11A 109.00
C21—N21—C24 110.16 (10) N21—C21—C22 107.86 (11)
C25—N22—C28 110.04 (10) C21—C22—C23 107.02 (11)
C21—N21—H21N 123.5 (9) C22—C23—C24 108.20 (11)
C24—N21—H21N 126.3 (9) C23—C24—C29 131.63 (10)
C28—N22—H22N 123.0 (11) N21—C24—C23 106.75 (10)
C25—N22—H22N 126.8 (11) N21—C24—C29 121.55 (10)
N1—C1—C2 107.93 (12) N22—C25—C29 121.59 (11)
C1—C2—C3 107.31 (12) C26—C25—C29 131.53 (11)
C2—C3—C4 108.08 (11) N22—C25—C26 106.79 (10)
C3—C4—C9 130.99 (12) C25—C26—C27 108.09 (11)
N1—C4—C9 122.17 (10) C26—C27—C28 107.19 (12)
N1—C4—C3 106.75 (11) N22—C28—C27 107.89 (11)
N2—C5—C6 106.70 (11) C25—C29—C31 109.40 (10)
C6—C5—C9 131.40 (11) C30—C29—C31 108.82 (11)
N2—C5—C9 121.74 (10) C25—C29—C30 109.04 (10)
C5—C6—C7 107.85 (11) C24—C29—C25 110.94 (10)
C6—C7—C8 107.59 (12) C24—C29—C30 109.35 (10)
N2—C8—C7 107.61 (12) C24—C29—C31 109.26 (10)
C4—C9—C5 111.44 (10) N21—C21—H21 126.00
C10—C9—C11 109.12 (12) C22—C21—H21 126.00
C5—C9—C10 109.09 (10) C21—C22—H22 126.00
C5—C9—C11 108.66 (11) C23—C22—H22 127.00
C4—C9—C10 109.10 (11) C22—C23—H23 126.00
C4—C9—C11 109.41 (10) C24—C23—H23 126.00
N1—C1—H1 126.00 C25—C26—H26 126.00
C2—C1—H1 126.00 C27—C26—H26 126.00
C3—C2—H2 126.00 C26—C27—H27 126.00
C1—C2—H2 126.00 C28—C27—H27 126.00
C4—C3—H3 126.00 N22—C28—H28 126.00
C2—C3—H3 126.00 C27—C28—H28 126.00
C7—C6—H6 126.00 C29—C30—H30A 109.00
C5—C6—H6 126.00 C29—C30—H30B 109.00
C6—C7—H7 126.00 C29—C30—H30C 109.00
C8—C7—H7 126.00 H30A—C30—H30B 110.00
N2—C8—H8 126.00 H30A—C30—H30C 109.00
C7—C8—H8 126.00 H30B—C30—H30C 109.00
C9—C10—H10A 109.00 C29—C31—H31A 109.00
C9—C10—H10B 109.00 C29—C31—H31B 109.00
C9—C10—H10C 109.00 C29—C31—H31C 109.00
H10B—C10—H10C 110.00 H31A—C31—H31B 109.00
H10A—C10—H10C 109.00 H31A—C31—H31C 110.00
H10A—C10—H10B 109.00 H31B—C31—H31C 109.00
C4—N1—C1—C2 0.14 (14) N2—C5—C9—C10 170.37 (11)
C1—N1—C4—C3 −0.25 (13) N2—C5—C9—C11 −70.77 (14)
C1—N1—C4—C9 176.69 (11) C6—C5—C9—C10 −14.94 (19)
C8—N2—C5—C6 0.67 (14) C6—C5—C9—C11 103.92 (15)
C8—N2—C5—C9 176.51 (11) C5—C6—C7—C8 0.07 (16)
C5—N2—C8—C7 −0.63 (14) C6—C7—C8—N2 0.34 (15)
C21—N21—C24—C29 −177.09 (10) N21—C21—C22—C23 −0.10 (15)
C24—N21—C21—C22 −0.03 (13) C21—C22—C23—C24 0.19 (15)
C21—N21—C24—C23 0.15 (13) C22—C23—C24—N21 −0.21 (14)
C28—N22—C25—C26 −0.63 (13) C22—C23—C24—C29 176.64 (12)
C28—N22—C25—C29 −177.43 (10) N21—C24—C29—C25 −63.67 (14)
C25—N22—C28—C27 0.54 (14) N21—C24—C29—C30 56.63 (15)
N1—C1—C2—C3 0.02 (14) N21—C24—C29—C31 175.64 (11)
C1—C2—C3—C4 −0.17 (15) C23—C24—C29—C25 119.88 (14)
C2—C3—C4—C9 −176.31 (12) C23—C24—C29—C30 −119.82 (14)
C2—C3—C4—N1 0.25 (14) C23—C24—C29—C31 −0.82 (18)
N1—C4—C9—C5 60.57 (15) N22—C25—C26—C27 0.48 (13)
N1—C4—C9—C11 −179.26 (11) C29—C25—C26—C27 176.83 (12)
C3—C4—C9—C5 −123.33 (14) N22—C25—C29—C24 −47.82 (14)
N1—C4—C9—C10 −59.95 (15) N22—C25—C29—C30 −168.30 (10)
C3—C4—C9—C11 −3.15 (19) N22—C25—C29—C31 72.79 (14)
C3—C4—C9—C10 116.16 (15) C26—C25—C29—C24 136.28 (13)
N2—C5—C9—C4 49.85 (15) C26—C25—C29—C30 15.80 (17)
C9—C5—C6—C7 −175.73 (12) C26—C25—C29—C31 −103.11 (15)
N2—C5—C6—C7 −0.44 (14) C25—C26—C27—C28 −0.16 (14)
C6—C5—C9—C4 −135.46 (13) C26—C27—C28—N22 −0.23 (14)

Table 1 Geometry of N—H···π interactions (Å, °)

D H Centroid N—H H···Cg D···Cg N—H···Cg
N1 H1N Cg4 0.86 (2) 2.534 (17) 3.2190 (12) 137.4 (14)
N2 H2N Cg3 0.86 (2) 2.591 (17) 3.2425 (12) 133.7 (13)
N21 H21N Cg1 0.88 (2) 2.523 (16) 3.1925 (12) 133.9 (12)
N22 H22N Cg2 0.86 (2) 2.610 (17) 3.2440 (12) 131.3 (13)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C4, N2/C5–C8, N21/C21-C24 and N22/C25–C28 rings, respectively.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2506).

References

  1. Dauster, I., Rice, C. A., Zielke, P. & Suhm, M. A. (2008). Phys. Chem. Chem. Phys.10, 2827–2835. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Gale, P. A., Sessler, J. L. & Král, V. (1998). Chem. Commun. pp. 1–8.
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  5. Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed.42, 1210–1250. [DOI] [PubMed]
  6. Sessler, J. L., Camiolo, S. & Gale, P. A. (2003). Coord. Chem. Rev.240, 17–55.
  7. Sessler, J. L. & Davis, J. M. (2001). Acc. Chem. Res.34, 989–997. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sobral, A. J. F. N., Rebanda, N. G. C. L., da Silva, M., Lampreia, S. H., Silva, M. R., Beja, A. M., Paixão, J. A. & Rocha Gonsalves, A. M. d’A. (2003). Tetrahedron Lett.44, 3971–3973.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (2009). X-AREA and X-RED32 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809054701/is2506sup1.cif

e-66-0o392-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054701/is2506Isup2.hkl

e-66-0o392-Isup2.hkl (263.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES