Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 9;66(Pt 2):m123. doi: 10.1107/S1600536809055408

Poly[bis­[μ2-8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8-dihydro­pyrido[2,3-d]pyrimidine-6-carboxyl­ato]nickel(II)]

Zhe An a,*, Ling Zhu a
PMCID: PMC2979888  PMID: 21579609

Abstract

The title compound, [Ni(C14H16N5O3)2]n or [Ni(ppa)2]n, where ppa is 8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8-dihydro­pyrido[2,3-d]pyrimidine-6-carboxyl­ate, was synthesized under hydro­thermal conditions. The NiII atom (site symmetry Inline graphic) exhibits a distorted trans-NiN2O4 octa­hedral geometry defined by two monodentate N-bonded and two bidentate O,O′-bonded ppa monoanions. The extended two-dimensional structure is a square grid. An inter­molecular N—H⋯O hydrogen bond occurs.

Related literature

For manganese, cobalt and zinc complexes of the ppa anion, see: Huang et al. (2008); Xu et al. (2009); Qi et al. (2009), respectively. For background to the medicinal uses of pipemidic acid, see: Mizuki et al. (1996).graphic file with name e-66-0m123-scheme1.jpg

Experimental

Crystal data

  • [Ni(C14H16N5O3)2]

  • M r = 663.35

  • Monoclinic, Inline graphic

  • a = 6.1249 (6) Å

  • b = 21.250 (2) Å

  • c = 12.5511 (12) Å

  • β = 101.846 (2)°

  • V = 1598.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 296 K

  • 0.43 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.764, T max = 0.868

  • 7593 measured reflections

  • 2762 independent reflections

  • 2389 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.199

  • S = 1.00

  • 2762 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters not refined

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055408/hb5292sup1.cif

e-66-0m123-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055408/hb5292Isup2.hkl

e-66-0m123-Isup2.hkl (135.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—O2 2.013 (3)
Ni1—O1 2.051 (3)
Ni1—N5i 2.207 (3)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯O3ii 0.90 (4) 2.29 (4) 3.161 (5) 163 (5)

Symmetry code: (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the program for talent introduction in Guangdong Higher Education Institutions (grant No. 201191) and the scientific research start-up funds for talent introduction in Maoming University (grant No. 208058).

supplementary crystallographic information

Comment

Pipemidic acid (Hppa, C14H16N5O3, 8-Ethyl-5,8-dihydro-5-oxo-2- (1-piperazinyl)-pyrido(2,3-d)-pyrimidine-6-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki et al., 1996). The manganese, cobalt and zinc complexes of the ppa anion have been reported (Huang et al., 2008; Xu et al. 2009; Qi Xu et al.2009). The title nickel(II) complex, (I), is reported here (Fig. 1).

The nickel(II) atom is coordinated by four oxygen atoms and two N atoms from four ppa ligands (two monodentate-N and two O,O-bidentate) to form a square grid propagating in (Fig. 2).

Experimental

A mixture of Ni(CH3COO)2.4H2O (0.063 g, 0.25 mmol), Hppa (0.15 g, 0.5 mmol), sodium hydroxide (0.04 g, 1 mmol) and water (15 ml) was stirred for 30 min in air. The mixture was then transferred to a 25 ml Teflon-lined hydrothermal bomb. The bomb was kept at 443 K for 72 h under autogenous pressure. Upon cooling, green prisms of (I) were obtained from the reaction mixture.

Refinement

The carbon-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) = 1.2Ueq(C). The H on Nitrogen atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.86 (1) /%A and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), expanded to show the metal atom coordination showing 50% displacement ellipsoids.

Fig. 2.

Fig. 2.

A view of part of a two-dimensional polymeric sheet in (I) showing the square-grid connectivity.

Crystal data

[Ni(C14H16N5O3)2] F(000) = 692
Mr = 663.35 Dx = 1.378 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3258 reflections
a = 6.1249 (6) Å θ = 2.5–28.3°
b = 21.250 (2) Å µ = 0.66 mm1
c = 12.5511 (12) Å T = 296 K
β = 101.846 (2)° Prism, green
V = 1598.8 (3) Å3 0.43 × 0.28 × 0.22 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 2762 independent reflections
Radiation source: fine-focus sealed tube 2389 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −7→7
Tmin = 0.764, Tmax = 0.868 k = −25→23
7593 measured reflections l = −14→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199 H-atom parameters not refined
S = 1.00 w = 1/[σ2(Fo2) + (0.122P)2 + 2.8827P] where P = (Fo2 + 2Fc2)/3
2762 reflections (Δ/σ)max = 0.007
209 parameters Δρmax = 0.89 e Å3
1 restraint Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.5000 0.5000 0.0219 (3)
C1 0.7141 (7) 0.47283 (19) 0.3080 (4) 0.0293 (9)
C2 0.5607 (7) 0.41749 (19) 0.2771 (3) 0.0310 (9)
C3 0.3908 (6) 0.39745 (18) 0.3348 (3) 0.0250 (8)
C4 0.2685 (7) 0.34232 (19) 0.2900 (3) 0.0287 (9)
C5 0.0880 (8) 0.3175 (2) 0.3310 (4) 0.0380 (11)
H5 0.0416 0.3397 0.3863 0.046*
C6 0.0596 (7) 0.2340 (2) 0.2186 (4) 0.0310 (9)
C7 0.3168 (7) 0.3083 (2) 0.2024 (4) 0.0333 (10)
C8 0.5934 (9) 0.3829 (2) 0.1908 (4) 0.0448 (12)
H8 0.7017 0.3972 0.1544 0.054*
C9 0.5451 (11) 0.2956 (3) 0.0587 (6) 0.0655 (18)
H9A 0.7027 0.3014 0.0599 0.079*
H9B 0.5179 0.2510 0.0652 0.079*
C10 0.4140 (17) 0.3190 (6) −0.0446 (8) 0.0426 (8)
H10A 0.2601 0.3080 −0.0501 0.168*
H10B 0.4681 0.3005 −0.1039 0.168*
H10C 0.4278 0.3640 −0.0473 0.168*
C11 −0.1716 (9) 0.1431 (2) 0.2519 (4) 0.0462 (13)
H11A −0.2457 0.1731 0.2908 0.055*
H11B −0.0778 0.1164 0.3051 0.055*
C12 −0.3438 (8) 0.1034 (2) 0.1784 (4) 0.0375 (10)
H12A −0.4224 0.0785 0.2233 0.045*
H12B −0.4517 0.1311 0.1343 0.045*
C13 0.0646 (7) 0.1360 (2) 0.1181 (4) 0.0330 (10)
H13A 0.1711 0.1080 0.1622 0.040*
H13B 0.1435 0.1611 0.0735 0.040*
C14 −0.1164 (7) 0.0976 (2) 0.0452 (4) 0.0297 (9)
H14A −0.2129 0.1259 −0.0039 0.036*
H14B −0.0469 0.0694 0.0013 0.036*
H5N −0.163 (7) 0.035 (2) 0.152 (3) 0.044*
N1 0.4839 (7) 0.3299 (2) 0.1527 (3) 0.0454 (11)
N2 0.2161 (6) 0.25401 (17) 0.1666 (3) 0.0354 (9)
N3 −0.0183 (7) 0.26577 (19) 0.2969 (4) 0.0427 (10)
N4 −0.0326 (6) 0.17705 (17) 0.1881 (3) 0.0327 (8)
N5 −0.2530 (5) 0.06053 (15) 0.1053 (3) 0.0262 (7)
O1 0.3477 (5) 0.42282 (13) 0.4188 (2) 0.0288 (7)
O2 0.6982 (5) 0.50474 (11) 0.3906 (2) 0.0270 (7)
O3 0.8546 (7) 0.4840 (2) 0.2525 (3) 0.0579 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0256 (4) 0.0139 (4) 0.0257 (4) −0.0008 (2) 0.0040 (3) −0.0028 (3)
C1 0.032 (2) 0.022 (2) 0.034 (2) −0.0029 (17) 0.0055 (18) −0.0007 (17)
C2 0.041 (2) 0.022 (2) 0.031 (2) −0.0069 (17) 0.0088 (18) −0.0052 (17)
C3 0.0291 (19) 0.0178 (18) 0.026 (2) −0.0008 (15) 0.0020 (16) −0.0002 (16)
C4 0.034 (2) 0.023 (2) 0.030 (2) −0.0027 (17) 0.0072 (17) −0.0047 (17)
C5 0.040 (2) 0.032 (2) 0.046 (3) −0.0112 (19) 0.019 (2) −0.019 (2)
C6 0.032 (2) 0.024 (2) 0.038 (2) −0.0061 (17) 0.0082 (18) −0.0090 (18)
C7 0.041 (2) 0.028 (2) 0.034 (2) −0.0039 (18) 0.0117 (19) −0.0074 (18)
C8 0.059 (3) 0.037 (3) 0.043 (3) −0.017 (2) 0.022 (2) −0.012 (2)
C9 0.077 (4) 0.060 (4) 0.068 (4) −0.025 (3) 0.034 (3) −0.018 (3)
C10 0.0396 (18) 0.047 (2) 0.0409 (17) 0.0122 (15) 0.0083 (14) 0.0059 (15)
C11 0.052 (3) 0.041 (3) 0.053 (3) −0.025 (2) 0.028 (2) −0.021 (2)
C12 0.039 (2) 0.031 (2) 0.045 (3) −0.0097 (19) 0.015 (2) −0.011 (2)
C13 0.029 (2) 0.029 (2) 0.045 (2) −0.0055 (17) 0.0152 (19) −0.0153 (19)
C14 0.032 (2) 0.0219 (19) 0.037 (2) −0.0034 (16) 0.0120 (18) −0.0042 (17)
N1 0.061 (3) 0.040 (2) 0.042 (2) −0.025 (2) 0.026 (2) −0.0145 (18)
N2 0.047 (2) 0.0271 (18) 0.035 (2) −0.0156 (16) 0.0169 (17) −0.0112 (16)
N3 0.044 (2) 0.030 (2) 0.057 (3) −0.0140 (17) 0.0198 (19) −0.0192 (19)
N4 0.0348 (18) 0.0239 (18) 0.042 (2) −0.0081 (15) 0.0143 (16) −0.0121 (16)
N5 0.0275 (17) 0.0193 (16) 0.0303 (18) −0.0026 (13) 0.0020 (14) −0.0004 (14)
O1 0.0317 (15) 0.0215 (14) 0.0351 (16) −0.0043 (11) 0.0111 (12) −0.0069 (12)
O2 0.0329 (16) 0.0184 (14) 0.0298 (16) 0.0003 (11) 0.0066 (12) −0.0026 (11)
O3 0.069 (3) 0.061 (2) 0.055 (2) −0.037 (2) 0.040 (2) −0.026 (2)

Geometric parameters (Å, °)

Ni1—O2i 2.013 (3) C9—C10 1.464 (12)
Ni1—O2 2.013 (3) C9—N1 1.498 (7)
Ni1—O1i 2.051 (3) C9—H9A 0.9700
Ni1—O1 2.051 (3) C9—H9B 0.9700
Ni1—N5ii 2.207 (3) C10—H10A 0.9600
Ni1—N5iii 2.207 (3) C10—H10B 0.9600
C1—O3 1.236 (6) C10—H10C 0.9600
C1—O2 1.260 (5) C11—N4 1.472 (6)
C1—C2 1.505 (6) C11—C12 1.509 (6)
C2—C8 1.358 (6) C11—H11A 0.9700
C2—C3 1.448 (6) C11—H11B 0.9700
C3—O1 1.260 (5) C12—N5 1.480 (6)
C3—C4 1.441 (6) C12—H12A 0.9700
C4—C7 1.398 (6) C12—H12B 0.9700
C4—C5 1.413 (6) C13—N4 1.450 (5)
C5—N3 1.305 (6) C13—C14 1.522 (6)
C5—H5 0.9300 C13—H13A 0.9700
C6—N2 1.334 (6) C13—H13B 0.9700
C6—N4 1.357 (5) C14—N5 1.467 (5)
C6—N3 1.357 (6) C14—H14A 0.9700
C7—N2 1.341 (6) C14—H14B 0.9700
C7—N1 1.382 (6) N5—Ni1iv 2.207 (3)
C8—N1 1.348 (6) N5—H5N 0.90 (4)
C8—H8 0.9300
O2i—Ni1—O2 180.0 C9—C10—H10B 109.5
O2i—Ni1—O1i 88.73 (11) H10A—C10—H10B 109.5
O2—Ni1—O1i 91.27 (11) C9—C10—H10C 109.5
O2i—Ni1—O1 91.27 (11) H10A—C10—H10C 109.5
O2—Ni1—O1 88.73 (11) H10B—C10—H10C 109.5
O1i—Ni1—O1 180.0 N4—C11—C12 110.6 (4)
O2i—Ni1—N5ii 90.14 (12) N4—C11—H11A 109.5
O2—Ni1—N5ii 89.86 (12) C12—C11—H11A 109.5
O1i—Ni1—N5ii 91.00 (11) N4—C11—H11B 109.5
O1—Ni1—N5ii 89.00 (11) C12—C11—H11B 109.5
O2i—Ni1—N5iii 89.86 (12) H11A—C11—H11B 108.1
O2—Ni1—N5iii 90.14 (12) N5—C12—C11 114.8 (4)
O1i—Ni1—N5iii 89.00 (11) N5—C12—H12A 108.6
O1—Ni1—N5iii 91.00 (11) C11—C12—H12A 108.6
N5ii—Ni1—N5iii 180.0 N5—C12—H12B 108.6
O3—C1—O2 122.8 (4) C11—C12—H12B 108.6
O3—C1—C2 118.4 (4) H12A—C12—H12B 107.6
O2—C1—C2 118.9 (4) N4—C13—C14 110.4 (3)
C8—C2—C3 118.6 (4) N4—C13—H13A 109.6
C8—C2—C1 116.2 (4) C14—C13—H13A 109.6
C3—C2—C1 125.1 (4) N4—C13—H13B 109.6
O1—C3—C4 119.5 (4) C14—C13—H13B 109.6
O1—C3—C2 126.1 (4) H13A—C13—H13B 108.1
C4—C3—C2 114.4 (4) N5—C14—C13 113.6 (4)
C7—C4—C5 113.6 (4) N5—C14—H14A 108.8
C7—C4—C3 123.4 (4) C13—C14—H14A 108.8
C5—C4—C3 122.9 (4) N5—C14—H14B 108.8
N3—C5—C4 124.7 (4) C13—C14—H14B 108.8
N3—C5—H5 117.6 H14A—C14—H14B 107.7
C4—C5—H5 117.6 C8—N1—C7 118.6 (4)
N2—C6—N4 116.5 (4) C8—N1—C9 119.9 (4)
N2—C6—N3 126.2 (4) C7—N1—C9 121.5 (4)
N4—C6—N3 117.4 (4) C6—N2—C7 115.9 (4)
N2—C7—N1 117.8 (4) C5—N3—C6 115.5 (4)
N2—C7—C4 123.5 (4) C6—N4—C13 120.5 (4)
N1—C7—C4 118.6 (4) C6—N4—C11 122.5 (4)
N1—C8—C2 126.3 (5) C13—N4—C11 113.0 (3)
N1—C8—H8 116.9 C14—N5—C12 108.4 (3)
C2—C8—H8 116.9 C14—N5—Ni1iv 113.5 (2)
C10—C9—N1 110.6 (7) C12—N5—Ni1iv 115.6 (2)
C10—C9—H9A 109.5 C14—N5—H5N 109 (3)
N1—C9—H9A 109.5 C12—N5—H5N 103 (4)
C10—C9—H9B 109.5 Ni1iv—N5—H5N 107 (3)
N1—C9—H9B 109.5 C3—O1—Ni1 127.3 (3)
H9A—C9—H9B 108.1 C1—O2—Ni1 134.0 (3)
C9—C10—H10A 109.5
O3—C1—C2—C8 1.5 (7) N3—C6—N2—C7 5.9 (7)
O2—C1—C2—C8 −176.7 (4) N1—C7—N2—C6 178.4 (4)
O3—C1—C2—C3 178.7 (4) C4—C7—N2—C6 1.4 (7)
O2—C1—C2—C3 0.6 (6) C4—C5—N3—C6 2.0 (8)
C8—C2—C3—O1 176.7 (4) N2—C6—N3—C5 −7.5 (8)
C1—C2—C3—O1 −0.5 (7) N4—C6—N3—C5 174.0 (4)
C8—C2—C3—C4 −1.8 (6) N2—C6—N4—C13 11.1 (6)
C1—C2—C3—C4 −178.9 (4) N3—C6—N4—C13 −170.2 (4)
O1—C3—C4—C7 −174.8 (4) N2—C6—N4—C11 167.2 (4)
C2—C3—C4—C7 3.8 (6) N3—C6—N4—C11 −14.2 (7)
O1—C3—C4—C5 5.1 (6) C14—C13—N4—C6 −147.5 (4)
C2—C3—C4—C5 −176.4 (4) C14—C13—N4—C11 54.4 (5)
C7—C4—C5—N3 4.1 (7) C12—C11—N4—C6 149.6 (4)
C3—C4—C5—N3 −175.8 (5) C12—C11—N4—C13 −52.7 (6)
C5—C4—C7—N2 −5.8 (7) C13—C14—N5—C12 54.2 (5)
C3—C4—C7—N2 174.0 (4) C13—C14—N5—Ni1iv −176.1 (3)
C5—C4—C7—N1 177.2 (4) C11—C12—N5—C14 −53.0 (5)
C3—C4—C7—N1 −2.9 (7) C11—C12—N5—Ni1iv 178.4 (3)
C3—C2—C8—N1 −1.0 (8) C4—C3—O1—Ni1 178.8 (3)
C1—C2—C8—N1 176.4 (5) C2—C3—O1—Ni1 0.4 (6)
N4—C11—C12—N5 52.7 (6) O2i—Ni1—O1—C3 179.7 (3)
N4—C13—C14—N5 −56.3 (5) O2—Ni1—O1—C3 −0.3 (3)
C2—C8—N1—C7 2.0 (8) N5ii—Ni1—O1—C3 89.6 (3)
C2—C8—N1—C9 −177.7 (6) N5iii—Ni1—O1—C3 −90.4 (3)
N2—C7—N1—C8 −177.2 (5) O3—C1—O2—Ni1 −178.7 (4)
C4—C7—N1—C8 0.0 (7) C2—C1—O2—Ni1 −0.7 (6)
N2—C7—N1—C9 2.6 (8) O1i—Ni1—O2—C1 −179.5 (4)
C4—C7—N1—C9 179.8 (5) O1—Ni1—O2—C1 0.5 (4)
C10—C9—N1—C8 −89.8 (8) N5ii—Ni1—O2—C1 −88.5 (4)
C10—C9—N1—C7 90.4 (7) N5iii—Ni1—O2—C1 91.5 (4)
N4—C6—N2—C7 −175.6 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) x+1, −y+1/2, z+1/2; (iv) −x, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H5N···O3v 0.90 (4) 2.29 (4) 3.161 (5) 163 (5)

Symmetry codes: (v) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5292).

References

  1. Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Huang, J., Hu, W.-P. & An, Z. (2008). Acta Cryst. E64, m547. [DOI] [PMC free article] [PubMed]
  3. Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother.37 (Suppl. A), 41–45. [DOI] [PubMed]
  4. Qi, X., Shao, M. & Li, C.-X. (2009). Acta Cryst. E65, m1334. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Xu, W., Zhu, D.-S., Song, X.-D. & An, Z. (2009). Acta Cryst. E65, m1223. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055408/hb5292sup1.cif

e-66-0m123-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055408/hb5292Isup2.hkl

e-66-0m123-Isup2.hkl (135.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES