Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Sep;86(18):7043–7047. doi: 10.1073/pnas.86.18.7043

Cell sorting-out is modulated by both the specificity and amount of different cell adhesion molecules (CAMs) expressed on cell surfaces.

D R Friedlander 1, R M Mège 1, B A Cunningham 1, G M Edelman 1
PMCID: PMC297989  PMID: 2780560

Abstract

Cell adhesion molecules (CAMs) are cell surface glycoproteins that may play a variety of roles in morphogenesis and histogenesis, particularly in defining borders of discrete cell populations. To examine the influence of CAM expression on such cell segregation events in vitro, we have transfected cells with cDNAs coding for two calcium-dependent CAMs of different specificity, the liver CAM (L-CAM) and the structurally related molecule N-cadherin. The cDNAs were introduced separately or together into murine sarcoma S180 cells, which normally do not express these molecules, to produce cell lines denoted S180L, S180cadN, and S180L/cadN, respectively. A number of cell lines of each type were produced that differed in their levels of CAM expression. In adhesion assays, S180L and S180cadN cells aggregated specifically via their respective CAMs, and S180L cells did not appear to adhere to S180cadN cells. Cells expressing high levels of each CAM aggregated more rapidly than cells expressing low levels. Segregation between two cell types occurred when they expressed CAMs of different specificity or different levels of the same CAM. S180L and S180cadN cells both sorted out from untransfected cells, and cells expressing high levels of either L-CAM or N-cadherin segregated from cells expressing low levels of the same CAM; in all cases segregation was inhibited by antibodies specific for the transfected CAM. S180L cells sorted out from S180cadN cells, but this segregation was inhibited only when antibodies to both CAMs were applied together. Doubly transfected S180L/cadN cells also sorted out from S180L cells and from S180cadN cells, and the process was inhibited by antibodies to the unshared CAM (N-cadherin or L-CAM, respectively). Cytochalasin D and nocodazole inhibited sorting-out, consistent with the probable role of microfilaments and microtubules in cell movement and in accord with evidence that the action of these CAMs depends on interactions with cortical cytoplasmic components. Using cDNAs for only two CAMs in these studies, we could distinguish at least eight cell lines by their behavior in sorting-out assays. This suggests that qualitative and quantitative differences in the expression in vivo of a relatively small number of CAMs can lead to a large variety of patterns among cell collectives and their borders during tissue formation.

Full text

PDF
7043

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brackenbury R., Thiery J. P., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J Biol Chem. 1977 Oct 10;252(19):6835–6840. [PubMed] [Google Scholar]
  2. Duband J. L., Volberg T., Sabanay I., Thiery J. P., Geiger B. Spatial and temporal distribution of the adherens-junction-associated adhesion molecule A-CAM during avian embryogenesis. Development. 1988 Jun;103(2):325–344. doi: 10.1242/dev.103.2.325. [DOI] [PubMed] [Google Scholar]
  3. Edelman G. M. Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu Rev Cell Biol. 1986;2:81–116. doi: 10.1146/annurev.cb.02.110186.000501. [DOI] [PubMed] [Google Scholar]
  4. Edelman G. M. Morphoregulatory molecules. Biochemistry. 1988 May 17;27(10):3533–3543. doi: 10.1021/bi00410a001. [DOI] [PubMed] [Google Scholar]
  5. Edelman G. M., Murray B. A., Mege R. M., Cunningham B. A., Gallin W. J. Cellular expression of liver and neural cell adhesion molecules after transfection with their cDNAs results in specific cell-cell binding. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8502–8506. doi: 10.1073/pnas.84.23.8502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edelman G. M. Surface modulation in cell recognition and cell growth. Science. 1976 Apr 16;192(4236):218–226. doi: 10.1126/science.769162. [DOI] [PubMed] [Google Scholar]
  7. Friedlander D. R., Hoffman S., Edelman G. M. Functional mapping of cytotactin: proteolytic fragments active in cell-substrate adhesion. J Cell Biol. 1988 Dec;107(6 Pt 1):2329–2340. doi: 10.1083/jcb.107.6.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gallin W. J., Sorkin B. C., Edelman G. M., Cunningham B. A. Sequence analysis of a cDNA clone encoding the liver cell adhesion molecule, L-CAM. Proc Natl Acad Sci U S A. 1987 May;84(9):2808–2812. doi: 10.1073/pnas.84.9.2808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hatta K., Nose A., Nagafuchi A., Takeichi M. Cloning and expression of cDNA encoding a neural calcium-dependent cell adhesion molecule: its identity in the cadherin gene family. J Cell Biol. 1988 Mar;106(3):873–881. doi: 10.1083/jcb.106.3.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirano S., Nose A., Hatta K., Kawakami A., Takeichi M. Calcium-dependent cell-cell adhesion molecules (cadherins): subclass specificities and possible involvement of actin bundles. J Cell Biol. 1987 Dec;105(6 Pt 1):2501–2510. doi: 10.1083/jcb.105.6.2501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffman S., Edelman G. M. Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5762–5766. doi: 10.1073/pnas.80.18.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffman S., Friedlander D. R., Chuong C. M., Grumet M., Edelman G. M. Differential contributions of Ng-CAM and N-CAM to cell adhesion in different neural regions. J Cell Biol. 1986 Jul;103(1):145–158. doi: 10.1083/jcb.103.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MOSCONA A. Development of heterotypic combinations of dissociated embryonic chick cells. Proc Soc Exp Biol Med. 1956 Jun;92(2):410–416. doi: 10.3181/00379727-92-22495. [DOI] [PubMed] [Google Scholar]
  14. Mege R. M., Matsuzaki F., Gallin W. J., Goldberg J. I., Cunningham B. A., Edelman G. M. Construction of epithelioid sheets by transfection of mouse sarcoma cells with cDNAs for chicken cell adhesion molecules. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7274–7278. doi: 10.1073/pnas.85.19.7274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nagafuchi A., Takeichi M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 1988 Dec 1;7(12):3679–3684. doi: 10.1002/j.1460-2075.1988.tb03249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nose A., Nagafuchi A., Takeichi M. Expressed recombinant cadherins mediate cell sorting in model systems. Cell. 1988 Sep 23;54(7):993–1001. doi: 10.1016/0092-8674(88)90114-6. [DOI] [PubMed] [Google Scholar]
  17. Ozawa M., Baribault H., Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989 Jun;8(6):1711–1717. doi: 10.1002/j.1460-2075.1989.tb03563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. STEINBERG M. S. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science. 1963 Aug 2;141(3579):401–408. doi: 10.1126/science.141.3579.401. [DOI] [PubMed] [Google Scholar]
  19. Steinberg M. S. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J Exp Zool. 1970 Apr;173(4):395–433. doi: 10.1002/jez.1401730406. [DOI] [PubMed] [Google Scholar]
  20. Trinkaus J. P., Groves P. W. DIFFERENTIATION IN CULTURE OF MIXED AGGREGATES OF DISSOCIATED TISSUE CELLS. Proc Natl Acad Sci U S A. 1955 Oct 15;41(10):787–795. doi: 10.1073/pnas.41.10.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Volk T., Geiger B. A-CAM: a 135-kD receptor of intercellular adherens junctions. I. Immunoelectron microscopic localization and biochemical studies. J Cell Biol. 1986 Oct;103(4):1441–1450. doi: 10.1083/jcb.103.4.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Volk T., Geiger B. A-CAM: a 135-kD receptor of intercellular adherens junctions. II. Antibody-mediated modulation of junction formation. J Cell Biol. 1986 Oct;103(4):1451–1464. doi: 10.1083/jcb.103.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES