Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 30;66(Pt 2):o499. doi: 10.1107/S1600536810003375

2-Chloro-N-[4-chloro-2-(2-chloro­benzo­yl)phen­yl]acetamide

Grzegorz Dutkiewicz a, B P Siddaraju b, H S Yathirajan c, B Narayana d, Maciej Kubicki a,*
PMCID: PMC2979893  PMID: 21579901

Abstract

In the title compound, C15H10Cl3NO2, an intra­molecular N—H⋯O hydrogen bond forms a six-membered ring and enforces an almost coplanar conformation for the acetamido group, the central benzene ring and the bridging carbonyl C—C(=O)—C group: the dihedral angles between the benzene ring and the acetamide and carbonyl C—C(=O)—C planes are 7.06 (11) and 7.17 (12)°, respectively. The dihedral angle between the two benzene rings is 67.43 (9)°. Because a strong hydrogen-bond donor is involved in the intra­molecular inter­action, the crystal packing is determined by weak C—H⋯O and C—H⋯Cl inter­actions.

Related literature

The title compound is isostructural with 2-chloro­acetamido-5-chloro-2′-fluoro­benzophenone (Prasanna & Guru Row, 2000). For the isostructurality index, see: Kálmán et al. (1991); Kubicki & Szafrański (1998). For a related structure, see: Malathy Sony et al. (2005). For the biological activity of benzophenone derivatives, see: Evans et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-66-0o499-scheme1.jpg

Experimental

Crystal data

  • C15H10Cl3NO2

  • M r = 342.59

  • Triclinic, Inline graphic

  • a = 7.5776 (9) Å

  • b = 10.1565 (10) Å

  • c = 10.7862 (12) Å

  • α = 70.069 (8)°

  • β = 77.604 (9)°

  • γ = 70.388 (8)°

  • V = 730.47 (14) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.71 mm−1

  • T = 295 K

  • 0.35 × 0.2 × 0.2 mm

Data collection

  • Oxford Diffraction SuperNova (single source at offset) Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.117, T max = 0.319

  • 5245 measured reflections

  • 2917 independent reflections

  • 2610 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.113

  • S = 1.05

  • 2917 reflections

  • 230 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003375/is2519sup1.cif

e-66-0o499-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003375/is2519Isup2.hkl

e-66-0o499-Isup2.hkl (140.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O1 0.84 (3) 1.95 (3) 2.634 (2) 138 (3)
C6—H6⋯Cl14i 0.94 (3) 2.87 (3) 3.675 (2) 143 (2)
C11—H11B⋯O10ii 0.93 (3) 2.50 (3) 3.320 (3) 147 (2)
C18—H18⋯Cl14iii 0.95 (3) 2.84 (3) 3.745 (3) 161 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

BPS thanks R. L. FineChem, Bangalore, India, for the gift of a sample of the title compound.

supplementary crystallographic information

Comment

Benzophenone and related compounds have been reported to act as e.g., antiallergic, anti-inflammatory, antiasthmatic, antimalarial, anti-microbial and antianaphylactic agents (Evans et al., 1987). Here we report the crystal structure of 2-chloroacetamido-5-chloro-2'-chlorobenzophenone (alternative name: 2-chloro-N-{4-chloro-2-[(2-chlorophenyl)carbonyl]phenyl}acetamide; 1, Scheme 1), which is an intermediate in the synthesis of certain anxiolytic, anticonvulsant and sedative drugs, and is also a starting material for the synthesis of diazepam and other benzodiazepines.

The structure of 1 is isostructural with the previously described 2-chloroacetamido-5-chloro-2'-fluorobenzophenone derivative (Prasanna & Guru Row, 2000). Both compounds crystallize in the triclinic P-1 space group, and the unit cell dimensions are similar. Also the positions of the atoms in the unit cell are similar, after applying the transformation (index 1 refers to Prasanna & Guru Row, 2 - to the present structure): x2=x1+0.5, y2=y1+0.5, z2=z1+1.5. The isostructurality index (Kálmán et al., 1991), which describes the differences between the positions of the atoms in the unit cell has the value of 97.4% (for perfect isostructurality it should be 100%). Kubicki & Szafrański (1998) proposed the modification of this latter parameter which takes into account the point group symmetry and gives more absolute measure of the degree of isostructurality: it should be 1 for ideally isomorphous compounds and 0 for randomly distributed atoms. The value of this modified index is 0.94.

The conformation of 1 (Fig. 1) might be described by dihedral angles between four approximately planar fragments: acetamide [A, planar within 0.0065 (19) Å, with Cl2 atom significantly, by 0.110 (5)Å out of the plane], central phenyl [B, maximum deviation 0.0034 (14) Å], bridging carbonyl group C—C(=O)-C [C, max. deviation 0.015 (2) Å], and terminal phenyl [D, 0.0045 (19) Å]. The first three are close to coplanarity, the dihedral angles are A/B 7.06 (11)° and B/C 7.17 (12)°. Such a coplanar conformation of phenyl and carbonyl plane is quite uncommon for benzophenones, in a majority of the compounds found in the CSD (Allen, 2002) both phenyl rings are almost equally, and significantly, twisted with respect to the central plane. In the case of 1, as in some similar cases (for instance in the isostructural 2'-fluoro derivative but also in two crystal forms of 2-chloroacetamido-5-chlorobenzophenone (monoclinic: Prasanna & Guru Row, 2000, and triclinic: Malathy Sony et al., 2005), the factor responsible for such a coplanar conformation is the intramolecular hydrogen bond N—H···O (cf. Table 1). This hydrogen bond closes the six-membered ring, planar within 0.072 (7) Å. The second phenyl ring, which has no factor that can stabilize coplanar conformation, is typically, by 62.14 (10)°, twisted with respect to the bridge. The Cl atom of chloroacetamide group is anti with respect to the oxygen atom [O10—C9—C11—Cl12 torsion angle of 176.4 (2)°] and syn with respect to the N atom [N8—C9—C11—Cl12 is -4.8 (3)°]

In the crystal structure there are some weak C—H···O and C—H···Cl interactions, which might be of some importance when the strong hydrogen bond donor is involved in intramolecular interaction (Fig. 2)

Experimental

The title compound was obtained as a gift sample from R. L. FineChem, Bangalore, India. The compound was used without further purification. X-ray quality crystals were obtained by slow evaporation from ethyl acetate solution (m.p. 436-438 K).

Refinement

Hydrogen atoms were found in the subsequent difference Fourier maps, and freely refined.

Figures

Fig. 1.

Fig. 1.

Anisotropic ellipsoid representation of the title compound together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, as seen along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H10Cl3NO2 Z = 2
Mr = 342.59 F(000) = 348
Triclinic, P1 Dx = 1.558 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54178 Å
a = 7.5776 (9) Å Cell parameters from 3832 reflections
b = 10.1565 (10) Å θ = 4.4–75.1°
c = 10.7862 (12) Å µ = 5.71 mm1
α = 70.069 (8)° T = 295 K
β = 77.604 (9)° Prism, pink
γ = 70.388 (8)° 0.35 × 0.2 × 0.2 mm
V = 730.47 (14) Å3

Data collection

Oxford Diffraction SuperNova (single source at offset) Atlas diffractometer 2917 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2610 reflections with I > 2σ(I)
mirror Rint = 0.017
Detector resolution: 10.5357 pixels mm-1 θmax = 75.2°, θmin = 4.4°
ω–scan h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −12→12
Tmin = 0.117, Tmax = 0.319 l = −13→13
5245 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.3949P] where P = (Fo2 + 2Fc2)/3
2917 reflections (Δ/σ)max = 0.001
230 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2330 (3) 0.4690 (2) 0.74281 (19) 0.0407 (4)
O1 0.1250 (3) 0.58486 (19) 0.68930 (16) 0.0679 (5)
C2 0.2780 (3) 0.4324 (2) 0.87982 (17) 0.0347 (4)
C3 0.3816 (3) 0.2896 (2) 0.94118 (19) 0.0391 (4)
H3 0.422 (3) 0.219 (2) 0.889 (2) 0.043 (6)*
C4 0.4253 (3) 0.2515 (2) 1.06806 (19) 0.0419 (4)
Cl4 0.55643 (9) 0.07373 (6) 1.14246 (6) 0.05951 (19)
C5 0.3676 (3) 0.3534 (2) 1.1378 (2) 0.0482 (5)
H5 0.393 (4) 0.325 (3) 1.228 (3) 0.074 (9)*
C6 0.2645 (3) 0.4939 (2) 1.0804 (2) 0.0454 (5)
H6 0.230 (4) 0.562 (3) 1.129 (3) 0.059 (7)*
C7 0.2178 (3) 0.5364 (2) 0.95170 (18) 0.0358 (4)
N8 0.1173 (3) 0.67993 (18) 0.88973 (17) 0.0415 (4)
H8 0.094 (4) 0.696 (3) 0.812 (3) 0.067 (8)*
C9 0.0393 (3) 0.7935 (2) 0.9426 (2) 0.0448 (5)
O10 0.0375 (3) 0.78715 (18) 1.05679 (17) 0.0650 (5)
C11 −0.0562 (4) 0.9388 (3) 0.8497 (3) 0.0545 (6)
H11B −0.006 (4) 1.010 (3) 0.851 (3) 0.066 (8)*
H11A −0.189 (5) 0.970 (4) 0.878 (3) 0.083 (10)*
Cl12 −0.03818 (13) 0.94573 (7) 0.68136 (7) 0.0826 (3)
C13 0.3127 (3) 0.3605 (2) 0.66429 (18) 0.0403 (4)
C14 0.5017 (3) 0.3148 (2) 0.61956 (19) 0.0465 (5)
Cl14 0.66554 (9) 0.37077 (10) 0.66357 (7) 0.0759 (2)
C15 0.5645 (5) 0.2289 (3) 0.5339 (2) 0.0701 (9)
H15 0.693 (6) 0.200 (4) 0.509 (4) 0.102 (12)*
C16 0.4381 (7) 0.1877 (3) 0.4935 (3) 0.0855 (12)
H16 0.478 (5) 0.129 (4) 0.433 (4) 0.109 (12)*
C17 0.2507 (8) 0.2312 (4) 0.5360 (3) 0.0885 (12)
H17 0.162 (6) 0.198 (4) 0.511 (4) 0.110 (13)*
C18 0.1858 (5) 0.3185 (3) 0.6211 (3) 0.0646 (7)
H18 0.054 (4) 0.345 (3) 0.647 (3) 0.064 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0457 (11) 0.0416 (10) 0.0345 (9) −0.0059 (8) −0.0076 (8) −0.0154 (8)
O1 0.0874 (13) 0.0584 (10) 0.0450 (9) 0.0187 (9) −0.0284 (8) −0.0254 (8)
C2 0.0395 (9) 0.0372 (9) 0.0292 (8) −0.0102 (8) −0.0037 (7) −0.0129 (7)
C3 0.0472 (11) 0.0362 (9) 0.0353 (9) −0.0107 (8) −0.0050 (8) −0.0129 (8)
C4 0.0495 (11) 0.0382 (10) 0.0356 (9) −0.0121 (8) −0.0076 (8) −0.0065 (8)
Cl4 0.0745 (4) 0.0419 (3) 0.0526 (3) −0.0059 (3) −0.0225 (3) −0.0034 (2)
C5 0.0644 (14) 0.0501 (12) 0.0308 (9) −0.0150 (10) −0.0110 (9) −0.0105 (9)
C6 0.0595 (13) 0.0464 (11) 0.0339 (10) −0.0124 (9) −0.0062 (9) −0.0185 (9)
C7 0.0415 (10) 0.0362 (9) 0.0319 (9) −0.0112 (8) −0.0031 (7) −0.0132 (7)
N8 0.0518 (10) 0.0364 (8) 0.0364 (9) −0.0057 (7) −0.0076 (7) −0.0161 (7)
C9 0.0521 (12) 0.0401 (10) 0.0465 (11) −0.0124 (9) −0.0024 (9) −0.0205 (9)
O10 0.0977 (14) 0.0495 (9) 0.0508 (9) −0.0098 (9) −0.0101 (9) −0.0283 (8)
C11 0.0611 (15) 0.0390 (11) 0.0633 (14) −0.0044 (10) −0.0096 (12) −0.0231 (10)
Cl12 0.1198 (6) 0.0491 (3) 0.0563 (4) 0.0106 (4) −0.0247 (4) −0.0128 (3)
C13 0.0556 (12) 0.0394 (10) 0.0296 (9) −0.0123 (9) −0.0095 (8) −0.0129 (7)
C14 0.0579 (12) 0.0412 (10) 0.0317 (9) 0.0000 (9) −0.0095 (9) −0.0111 (8)
Cl14 0.0489 (3) 0.1181 (6) 0.0624 (4) −0.0212 (4) −0.0057 (3) −0.0312 (4)
C15 0.101 (2) 0.0478 (13) 0.0343 (11) 0.0192 (14) −0.0117 (13) −0.0156 (10)
C16 0.172 (4) 0.0390 (12) 0.0384 (13) −0.0081 (17) −0.0247 (18) −0.0161 (10)
C17 0.171 (4) 0.074 (2) 0.0541 (16) −0.064 (2) −0.033 (2) −0.0190 (15)
C18 0.0825 (19) 0.0759 (17) 0.0535 (14) −0.0381 (15) −0.0126 (13) −0.0231 (13)

Geometric parameters (Å, °)

C1—O1 1.217 (3) C9—O10 1.209 (3)
C1—C2 1.482 (2) C9—C11 1.514 (3)
C1—C13 1.506 (3) C11—Cl12 1.770 (3)
C2—C3 1.401 (3) C11—H11B 0.93 (3)
C2—C7 1.417 (2) C11—H11A 0.96 (3)
C3—C4 1.371 (3) C13—C14 1.381 (3)
C3—H3 0.99 (2) C13—C18 1.388 (3)
C4—C5 1.383 (3) C14—C15 1.387 (3)
C4—Cl4 1.744 (2) C14—Cl14 1.732 (2)
C5—C6 1.374 (3) C15—C16 1.363 (5)
C5—H5 0.96 (3) C15—H15 0.92 (4)
C6—C7 1.392 (3) C16—C17 1.363 (6)
C6—H6 0.94 (3) C16—H16 0.97 (4)
C7—N8 1.401 (3) C17—C18 1.392 (4)
N8—C9 1.361 (3) C17—H17 0.96 (4)
N8—H8 0.84 (3) C18—H18 0.95 (3)
O1—C1—C2 122.49 (17) N8—C9—C11 116.46 (19)
O1—C1—C13 116.25 (17) C9—C11—Cl12 116.35 (15)
C2—C1—C13 121.21 (17) C9—C11—H11B 109.2 (18)
C3—C2—C7 118.78 (17) Cl12—C11—H11B 106.8 (18)
C3—C2—C1 118.91 (16) C9—C11—H11A 111 (2)
C7—C2—C1 122.30 (17) Cl12—C11—H11A 106 (2)
C4—C3—C2 120.57 (18) H11B—C11—H11A 107 (3)
C4—C3—H3 122.2 (13) C14—C13—C18 118.3 (2)
C2—C3—H3 117.3 (13) C14—C13—C1 123.67 (19)
C3—C4—C5 120.60 (19) C18—C13—C1 117.5 (2)
C3—C4—Cl4 120.01 (16) C13—C14—C15 121.3 (3)
C5—C4—Cl4 119.38 (16) C13—C14—Cl14 120.50 (15)
C6—C5—C4 120.02 (19) C15—C14—Cl14 118.2 (2)
C6—C5—H5 119.4 (18) C16—C15—C14 119.6 (3)
C4—C5—H5 120.5 (18) C16—C15—H15 123 (2)
C5—C6—C7 120.93 (19) C14—C15—H15 117 (2)
C5—C6—H6 118.3 (16) C15—C16—C17 120.4 (2)
C7—C6—H6 120.8 (16) C15—C16—H16 121 (2)
C6—C7—N8 121.99 (17) C17—C16—H16 118 (2)
C6—C7—C2 119.09 (18) C16—C17—C18 120.6 (3)
N8—C7—C2 118.90 (16) C16—C17—H17 121 (2)
C9—N8—C7 128.23 (18) C18—C17—H17 119 (3)
C9—N8—H8 116 (2) C13—C18—C17 119.9 (3)
C7—N8—H8 116 (2) C13—C18—H18 123.9 (17)
O10—C9—N8 125.6 (2) C17—C18—H18 116.2 (17)
O10—C9—C11 117.95 (19)
O1—C1—C2—C3 170.9 (2) C7—N8—C9—O10 −3.3 (4)
C13—C1—C2—C3 −6.2 (3) C7—N8—C9—C11 178.0 (2)
O1—C1—C2—C7 −8.3 (3) O10—C9—C11—Cl12 176.4 (2)
C13—C1—C2—C7 174.60 (18) N8—C9—C11—Cl12 −4.8 (3)
C7—C2—C3—C4 −0.6 (3) O1—C1—C13—C14 114.9 (2)
C1—C2—C3—C4 −179.76 (19) C2—C1—C13—C14 −67.8 (3)
C2—C3—C4—C5 0.1 (3) O1—C1—C13—C18 −56.9 (3)
C2—C3—C4—Cl4 −179.37 (15) C2—C1—C13—C18 120.4 (2)
C3—C4—C5—C6 0.4 (4) C18—C13—C14—C15 −0.2 (3)
Cl4—C4—C5—C6 179.89 (18) C1—C13—C14—C15 −171.9 (2)
C4—C5—C6—C7 −0.5 (4) C18—C13—C14—Cl14 176.90 (18)
C5—C6—C7—N8 −178.2 (2) C1—C13—C14—Cl14 5.2 (3)
C5—C6—C7—C2 0.1 (3) C13—C14—C15—C16 −0.4 (3)
C3—C2—C7—C6 0.4 (3) Cl14—C14—C15—C16 −177.56 (19)
C1—C2—C7—C6 179.63 (19) C14—C15—C16—C17 0.5 (4)
C3—C2—C7—N8 178.80 (18) C15—C16—C17—C18 0.1 (5)
C1—C2—C7—N8 −2.0 (3) C14—C13—C18—C17 0.7 (4)
C6—C7—N8—C9 −5.3 (3) C1—C13—C18—C17 172.9 (2)
C2—C7—N8—C9 176.4 (2) C16—C17—C18—C13 −0.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N8—H8···O1 0.84 (3) 1.95 (3) 2.634 (2) 138 (3)
C6—H6···Cl14i 0.94 (3) 2.87 (3) 3.675 (2) 143 (2)
C11—H11B···O10ii 0.93 (3) 2.50 (3) 3.320 (3) 147 (2)
C18—H18···Cl14iii 0.95 (3) 2.84 (3) 3.745 (3) 161 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+2, −z+2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2519).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst 26, 343–350.
  3. Evans, D., Cracknell, M. E., Saunders, J. C., Smith, C. E., Willamson, W. R. N., Dowson, W. & Sweatman, W. J. F. (1987). J. Med. Chem 30, 1321–1327. [DOI] [PubMed]
  4. Kálmán, A., Argay, G., Scharfenberg-Pfeiffer, D., Höhne, E. & Ribár, B. (1991). Acta Cryst. B47, 68–77.
  5. Kubicki, M. & Szafrański, M. (1998). J. Mol. Struct.446, 1–9.
  6. Malathy Sony, S. M., Charles, P., Ponnuswamy, M. N. & Nethaji, M. (2005). Acta Cryst. E61, o632–o634.
  7. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  8. Prasanna, M. D. & Guru Row, T. N. (2000). CrystEngComm, 2, 134–140.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Siemens (1989). Stereochemical Workstation Operation Manual Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810003375/is2519sup1.cif

e-66-0o499-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003375/is2519Isup2.hkl

e-66-0o499-Isup2.hkl (140.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES