Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 30;66(Pt 2):o468. doi: 10.1107/S1600536810002862

1-(3,4-Dichloro­benz­yl)-3-methyl­quinolin-1-ium 7,7,8,8-tetra­cyano­quinodimethanide

Guang-Xiang Liu a,*, Chun-You Zhang a
PMCID: PMC2979894  PMID: 21579879

Abstract

In the title salt, C17H14Cl2N+·C12H4N4 , cations and anions stack along the a axis into segregated columns by π–π stacking inter­actions, with alternating centroid–centroid separations of 3.5957 (7) and 3.7525 (7) Å for the cation column and 3.4252 (6) and 4.1578 (7) Å for the anion column. In the cation, the dihedral angle between the benzene ring and the quinoline ring system is 76.35 (4)°. The crystal packing is stabilized by inter­columnar C—H⋯N hydrogen bonds.

Related literature

For general background to the planar organic mol­ecule 7,7,8,8-tetra­cyano­quinodimethane, see: Alonso et al. (2005); Madalan et al. (2002); Liu et al. (2008). For the role played by the size and shape of the counter-cations in determining the ground-state properties of the resulting materials, see: Ren, Meng et al. (2002); Ren et al. (2003); Ren, Chen et al. (2002). For related structures, see: Liu et al. (2005).graphic file with name e-66-0o468-scheme1.jpg

Experimental

Crystal data

  • C17H14Cl2N+·C12H4N4

  • M r = 507.38

  • Monoclinic, Inline graphic

  • a = 7.0795 (14) Å

  • b = 18.704 (4) Å

  • c = 18.608 (4) Å

  • β = 95.286 (2)°

  • V = 2453.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.26 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.928, T max = 0.966

  • 18184 measured reflections

  • 4580 independent reflections

  • 3680 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.101

  • S = 1.03

  • 4580 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002862/rz2411sup1.cif

e-66-0o468-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002862/rz2411Isup2.hkl

e-66-0o468-Isup2.hkl (224.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯N3i 0.93 2.53 3.387 (3) 154
C19—H19B⋯N3i 0.97 2.51 3.432 (2) 158
C14—H14⋯N3ii 0.93 2.50 3.390 (3) 161
C15—H15⋯N1iii 0.93 2.45 3.348 (2) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20971004), the Natural Science Foundation for Outstanding Scholars of Anhui Province, China (No. 044-J-04011) and the Outstanding Youth Foundation of the Education Commission of Anhui Province, China (No. 2010SQRL108ZD).

supplementary crystallographic information

Comment

The search for new compounds with promising electronic, and magnetic properties has prompted chemists to combine different spin carriers within the same molecular or supramolecular entity (Madalan et al., 2002). One of the most extensively used radicals in these studies has been the planar organic molecule 7,7,8,8-tetracyanoquinodimethane, [C8H4(CN)4], TCNQ, since it shows a low reduction potential which makes it a suitable acceptor in charge-transfer processes. Another significant feature of this acceptor is its tendency to overlap its π-delocalized system with those of neighbouring molecules to form stacks with different degrees of electron delocalization (Alonso et al., 2005). Previous work has shown that molecular stacks of charge-transfer salts exhibit low-dimensional properties in some cases, which have intriguing anisotropic magnetic, electronic and structural characteristics (Ren, Meng et al., 2002; Ren et al., 2003; Liu et al., 2005). Furthermore, the size and shape of the counter-cations play an important role in determining the ground-state properties of the resulting materials (Ren, Chen et al., 2002; Liu et al., 2008). As a result, charge-transfer salts consisting of the TCNQ anion and benzylpyridinium cations could offer the possibility of systematically studying the fundamental relationship between the stack structure and the size and steric properties of substituent groups. In this communication, we report the crystal structure of the title complex.

The asymmetric unit of the title compound contains one (C17H14Cl2N)+ cation and one [C8H4(CN)4]- anion (Fig. 1). Anions and cations stack into completely segregated columns along the a axis, as illustrated in Fig. 2. Within an anion column, the strongly bound unit [(TCNQ)2]2- is formed by π–π stacking interactions with a centroid-to-centroid distance of 3.4252 (6) Å, and adjacent units are displaced relative to each other along the direction of the shorter molecular axis of TCNQ with centroid-to-centroid separations of 4.1578 (7) Å (Fig. 3). Stacking within the cation column is also governed by π–π stacking interactions with alternating centroid-to-centroid distances 3.5957 (7) and 3.7525 (7) Å. The (C17H14Cl2N)+ cation assumes a Λ-shaped conformation, with a dihedral angle between the benzene ring and the quinoline ring system of 76.35 (4)°. The crystal packing is stabilized by C—H···N intercolumar linkages (Table 1).

Experimental

1-(3,4-Dichlorobenzyl)-3-methylquinolin-1-ium iodide was prepared by the direct combination of 1:1 molar equivalents of 1-(3,4-dichlorobenzyl)-3-methylquinolin-1-ium chloride and NaI in a warm solution in acetone at 313 K. A white precipitate was formed (NaCl), which was filtered off, and a white microcrystalline product was obtained by evaporating the filtrate. 1:1 Molar equivalents of 1-(3,4-dichlorobenzyl)-3-methylquinolin-1-ium iodide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) were mixed directly in methanol, and the mixture was refluxed for 12 h. The black microcrystalline product which formed was filtered off, washed with MeOH and dried in vacuo. Single crystals of the title compound suitable for X-ray structure analysis were obtained by diffusing diethyl ether into a MeCN solution.

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

A side-view of the one-dimensional anion column in the title compound. Centroid-to-centroid distances (dashed lines) are in Å. Hydrogen atoms are omitted for clarity.

Crystal data

C17H14Cl2N+·C12H4N4 F(000) = 1044
Mr = 507.38 Dx = 1.374 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7732 reflections
a = 7.0795 (14) Å θ = 2.4–27.6°
b = 18.704 (4) Å µ = 0.29 mm1
c = 18.608 (4) Å T = 293 K
β = 95.286 (2)° Block, black
V = 2453.4 (9) Å3 0.26 × 0.16 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 4580 independent reflections
Radiation source: sealed tube 3680 reflections with I > 2σ(I)
graphite Rint = 0.027
phi and ω scans θmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −8→8
Tmin = 0.928, Tmax = 0.966 k = −22→22
18184 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.9033P] where P = (Fo2 + 2Fc2)/3
4580 reflections (Δ/σ)max = 0.001
326 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N5 0.29919 (19) 0.47148 (7) 0.39305 (7) 0.0366 (3)
N1 −0.0533 (2) 0.39215 (9) 0.75827 (9) 0.0550 (4)
N3 0.4950 (3) 0.53355 (8) 1.21413 (9) 0.0536 (4)
N4 0.3739 (3) 0.70369 (9) 1.04907 (11) 0.0700 (5)
N2 0.0918 (3) 0.22596 (9) 0.91236 (10) 0.0730 (6)
Cl1 −0.08219 (9) 0.19603 (3) 0.25897 (3) 0.06871 (18)
Cl2 −0.40722 (9) 0.30060 (3) 0.19589 (4) 0.0817 (2)
C4 0.1467 (2) 0.41286 (9) 0.93789 (9) 0.0392 (4)
C5 0.1399 (2) 0.48648 (9) 0.92029 (9) 0.0402 (4)
H5 0.0852 0.5004 0.8751 0.048*
C7 0.2918 (2) 0.51917 (9) 1.03746 (9) 0.0368 (4)
C28 0.2600 (2) 0.45003 (9) 0.46162 (9) 0.0366 (4)
C17 0.1152 (3) 0.31440 (9) 0.29677 (9) 0.0433 (4)
H17 0.2095 0.2834 0.3158 0.052*
C12 0.4384 (3) 0.55209 (9) 1.15743 (10) 0.0407 (4)
C20 0.3127 (2) 0.54043 (9) 0.37601 (9) 0.0398 (4)
H20 0.3386 0.5524 0.3294 0.048*
C23 0.2461 (2) 0.50382 (10) 0.51399 (9) 0.0405 (4)
C8 0.2976 (2) 0.44532 (9) 1.05546 (9) 0.0408 (4)
H8 0.3498 0.4315 1.1010 0.049*
C21 0.2898 (2) 0.59540 (9) 0.42521 (10) 0.0432 (4)
C1 0.0043 (3) 0.37834 (9) 0.81630 (10) 0.0427 (4)
C10 0.3650 (2) 0.57206 (9) 1.08701 (9) 0.0386 (4)
C6 0.2107 (2) 0.53737 (9) 0.96747 (9) 0.0386 (4)
H6 0.2059 0.5851 0.9535 0.046*
C16 0.1436 (2) 0.38756 (9) 0.30184 (9) 0.0378 (4)
C27 0.2366 (2) 0.37768 (9) 0.47945 (10) 0.0435 (4)
H27 0.2430 0.3423 0.4446 0.052*
C19 0.3282 (2) 0.41725 (9) 0.33621 (9) 0.0407 (4)
H19A 0.4048 0.3784 0.3575 0.049*
H19B 0.3972 0.4391 0.2992 0.049*
C18 −0.0524 (3) 0.28720 (9) 0.26362 (10) 0.0451 (4)
C14 −0.1659 (3) 0.40587 (10) 0.24047 (10) 0.0497 (5)
H14 −0.2606 0.4368 0.2216 0.060*
C22 0.2612 (2) 0.57597 (10) 0.49425 (10) 0.0453 (4)
H22 0.2514 0.6113 0.5289 0.054*
C11 0.3706 (3) 0.64519 (10) 1.06735 (10) 0.0454 (4)
C9 0.2293 (3) 0.39456 (9) 1.00816 (9) 0.0430 (4)
H9 0.2365 0.3467 1.0218 0.052*
C13 −0.1939 (3) 0.33322 (10) 0.23607 (10) 0.0480 (5)
C2 0.0867 (3) 0.28632 (10) 0.90231 (10) 0.0506 (5)
C3 0.0775 (3) 0.36059 (9) 0.88739 (9) 0.0434 (4)
C24 0.2156 (3) 0.48249 (12) 0.58499 (10) 0.0517 (5)
H24 0.2092 0.5169 0.6207 0.062*
C15 0.0019 (3) 0.43294 (9) 0.27275 (9) 0.0450 (4)
H15 0.0202 0.4821 0.2751 0.054*
C25 0.1956 (3) 0.41215 (12) 0.60159 (10) 0.0554 (5)
H25 0.1759 0.3988 0.6485 0.066*
C26 0.2045 (3) 0.35999 (11) 0.54832 (10) 0.0523 (5)
H26 0.1882 0.3122 0.5601 0.063*
C29 0.2965 (3) 0.67200 (10) 0.40124 (12) 0.0608 (6)
H29A 0.2461 0.7022 0.4366 0.091*
H29B 0.2222 0.6775 0.3558 0.091*
H29C 0.4256 0.6853 0.3961 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N5 0.0368 (8) 0.0358 (8) 0.0364 (7) −0.0013 (6) −0.0005 (6) −0.0012 (6)
N1 0.0675 (11) 0.0504 (10) 0.0451 (10) 0.0036 (8) −0.0050 (8) −0.0007 (7)
N3 0.0688 (11) 0.0444 (9) 0.0465 (9) 0.0067 (8) 0.0004 (8) 0.0009 (7)
N4 0.0915 (15) 0.0396 (10) 0.0773 (13) 0.0033 (9) −0.0012 (11) 0.0034 (9)
N2 0.1053 (16) 0.0408 (10) 0.0680 (12) −0.0153 (10) −0.0177 (11) 0.0083 (9)
Cl1 0.0850 (4) 0.0364 (3) 0.0817 (4) −0.0103 (2) −0.0086 (3) −0.0031 (2)
Cl2 0.0627 (4) 0.0787 (4) 0.0976 (5) −0.0133 (3) −0.0252 (3) −0.0025 (3)
C4 0.0411 (9) 0.0382 (9) 0.0382 (9) −0.0040 (7) 0.0033 (7) 0.0021 (7)
C5 0.0450 (10) 0.0390 (9) 0.0363 (9) 0.0000 (8) 0.0018 (7) 0.0061 (7)
C7 0.0342 (9) 0.0363 (9) 0.0404 (9) 0.0004 (7) 0.0054 (7) 0.0012 (7)
C28 0.0310 (9) 0.0427 (9) 0.0353 (9) −0.0002 (7) −0.0012 (7) 0.0009 (7)
C17 0.0523 (11) 0.0343 (9) 0.0423 (10) 0.0044 (8) −0.0010 (8) 0.0025 (7)
C12 0.0442 (10) 0.0334 (9) 0.0447 (10) 0.0002 (7) 0.0054 (8) −0.0046 (8)
C20 0.0396 (9) 0.0380 (9) 0.0404 (9) −0.0035 (7) −0.0044 (7) 0.0026 (7)
C23 0.0328 (9) 0.0492 (10) 0.0384 (9) −0.0004 (7) −0.0030 (7) −0.0046 (8)
C8 0.0460 (10) 0.0397 (9) 0.0359 (9) −0.0007 (8) −0.0010 (7) 0.0052 (7)
C21 0.0403 (10) 0.0379 (9) 0.0489 (10) −0.0017 (7) −0.0092 (8) −0.0015 (8)
C1 0.0473 (10) 0.0361 (9) 0.0441 (11) −0.0029 (8) 0.0015 (8) −0.0026 (8)
C10 0.0391 (9) 0.0361 (9) 0.0407 (9) 0.0011 (7) 0.0034 (7) −0.0001 (7)
C6 0.0416 (9) 0.0333 (9) 0.0410 (9) 0.0004 (7) 0.0046 (7) 0.0058 (7)
C16 0.0459 (10) 0.0363 (9) 0.0314 (8) 0.0009 (7) 0.0037 (7) −0.0006 (7)
C27 0.0433 (10) 0.0419 (10) 0.0446 (10) −0.0002 (8) 0.0008 (8) 0.0021 (8)
C19 0.0451 (10) 0.0389 (9) 0.0385 (9) 0.0009 (8) 0.0059 (8) −0.0023 (7)
C18 0.0584 (11) 0.0331 (9) 0.0430 (10) −0.0028 (8) 0.0006 (8) −0.0006 (7)
C14 0.0530 (11) 0.0450 (11) 0.0497 (11) 0.0096 (9) −0.0031 (9) 0.0058 (8)
C22 0.0395 (10) 0.0472 (11) 0.0476 (11) 0.0007 (8) −0.0056 (8) −0.0137 (8)
C11 0.0501 (11) 0.0392 (10) 0.0461 (10) 0.0029 (8) −0.0004 (8) −0.0043 (8)
C9 0.0545 (11) 0.0326 (9) 0.0411 (10) −0.0022 (8) 0.0004 (8) 0.0063 (7)
C13 0.0489 (11) 0.0495 (11) 0.0440 (10) −0.0041 (9) −0.0034 (8) −0.0010 (8)
C2 0.0652 (13) 0.0429 (11) 0.0415 (10) −0.0122 (9) −0.0072 (9) 0.0021 (8)
C3 0.0531 (11) 0.0378 (9) 0.0385 (9) −0.0062 (8) 0.0004 (8) 0.0039 (7)
C24 0.0445 (11) 0.0706 (14) 0.0395 (10) 0.0008 (9) 0.0004 (8) −0.0085 (9)
C15 0.0563 (11) 0.0333 (9) 0.0448 (10) 0.0022 (8) 0.0005 (8) 0.0018 (8)
C25 0.0482 (11) 0.0777 (15) 0.0402 (10) 0.0005 (10) 0.0042 (8) 0.0125 (10)
C26 0.0477 (11) 0.0560 (12) 0.0530 (12) 0.0001 (9) 0.0040 (9) 0.0145 (9)
C29 0.0718 (14) 0.0380 (10) 0.0697 (14) −0.0017 (10) −0.0090 (11) −0.0013 (10)

Geometric parameters (Å, °)

N5—C20 1.334 (2) C8—H8 0.9300
N5—C28 1.390 (2) C21—C22 1.368 (3)
N5—C19 1.493 (2) C21—C29 1.502 (3)
N1—C1 1.148 (2) C1—C3 1.415 (2)
N3—C12 1.147 (2) C10—C11 1.417 (2)
N4—C11 1.147 (2) C6—H6 0.9300
N2—C2 1.144 (2) C16—C15 1.386 (2)
Cl1—C18 1.7195 (18) C16—C19 1.507 (2)
Cl2—C13 1.7334 (19) C27—C26 1.363 (3)
C4—C3 1.412 (2) C27—H27 0.9300
C4—C5 1.415 (2) C19—H19A 0.9700
C4—C9 1.424 (2) C19—H19B 0.9700
C5—C6 1.359 (2) C18—C13 1.383 (3)
C5—H5 0.9300 C14—C13 1.374 (3)
C7—C6 1.416 (2) C14—C15 1.377 (3)
C7—C10 1.418 (2) C14—H14 0.9300
C7—C8 1.421 (2) C22—H22 0.9300
C28—C27 1.407 (2) C9—H9 0.9300
C28—C23 1.410 (2) C2—C3 1.417 (3)
C17—C16 1.385 (2) C24—C25 1.362 (3)
C17—C18 1.382 (3) C24—H24 0.9300
C17—H17 0.9300 C15—H15 0.9300
C12—C10 1.415 (2) C25—C26 1.396 (3)
C20—C21 1.396 (2) C25—H25 0.9300
C20—H20 0.9300 C26—H26 0.9300
C23—C22 1.405 (3) C29—H29A 0.9600
C23—C24 1.416 (3) C29—H29B 0.9600
C8—C9 1.353 (2) C29—H29C 0.9600
C20—N5—C28 121.49 (14) N5—C19—C16 112.36 (14)
C20—N5—C19 118.10 (14) N5—C19—H19A 109.1
C28—N5—C19 120.42 (14) C16—C19—H19A 109.1
C3—C4—C5 121.14 (15) N5—C19—H19B 109.1
C3—C4—C9 122.19 (15) C16—C19—H19B 109.1
C5—C4—C9 116.67 (15) H19A—C19—H19B 107.9
C6—C5—C4 121.95 (16) C13—C18—C17 119.92 (17)
C6—C5—H5 119.0 C13—C18—Cl1 121.14 (15)
C4—C5—H5 119.0 C17—C18—Cl1 118.93 (14)
C6—C7—C10 121.57 (15) C13—C14—C15 120.20 (17)
C6—C7—C8 116.82 (15) C13—C14—H14 119.9
C10—C7—C8 121.61 (15) C15—C14—H14 119.9
N5—C28—C27 122.15 (15) C21—C22—C23 121.46 (16)
N5—C28—C23 117.45 (15) C21—C22—H22 119.3
C27—C28—C23 120.40 (16) C23—C22—H22 119.3
C16—C17—C18 120.48 (16) N4—C11—C10 177.7 (2)
C16—C17—H17 119.8 C8—C9—C4 121.36 (16)
C18—C17—H17 119.8 C8—C9—H9 119.3
N3—C12—C10 177.57 (19) C4—C9—H9 119.3
N5—C20—C21 122.75 (17) C14—C13—C18 119.85 (17)
N5—C20—H20 118.6 C14—C13—Cl2 119.25 (15)
C21—C20—H20 118.6 C18—C13—Cl2 120.89 (15)
C22—C23—C28 119.52 (16) N2—C2—C3 178.0 (2)
C22—C23—C24 122.44 (17) C4—C3—C1 122.31 (16)
C28—C23—C24 118.04 (17) C4—C3—C2 122.77 (16)
C9—C8—C7 121.86 (16) C1—C3—C2 114.80 (15)
C9—C8—H8 119.1 C25—C24—C23 120.81 (18)
C7—C8—H8 119.1 C25—C24—H24 119.6
C22—C21—C20 117.16 (16) C23—C24—H24 119.6
C22—C21—C29 122.93 (17) C14—C15—C16 120.64 (17)
C20—C21—C29 119.91 (17) C14—C15—H15 119.7
N1—C1—C3 179.1 (2) C16—C15—H15 119.7
C12—C10—C7 119.95 (15) C24—C25—C26 120.09 (18)
C12—C10—C11 118.51 (15) C24—C25—H25 120.0
C7—C10—C11 121.52 (15) C26—C25—H25 120.0
C5—C6—C7 121.33 (15) C27—C26—C25 121.35 (19)
C5—C6—H6 119.3 C27—C26—H26 119.3
C7—C6—H6 119.3 C25—C26—H26 119.3
C17—C16—C15 118.89 (16) C21—C29—H29A 109.5
C17—C16—C19 120.51 (15) C21—C29—H29B 109.5
C15—C16—C19 120.56 (15) H29A—C29—H29B 109.5
C26—C27—C28 119.26 (18) C21—C29—H29C 109.5
C26—C27—H27 120.4 H29A—C29—H29C 109.5
C28—C27—H27 120.4 H29B—C29—H29C 109.5
C3—C4—C5—C6 −178.09 (17) C17—C16—C19—N5 −128.65 (17)
C9—C4—C5—C6 0.9 (3) C15—C16—C19—N5 53.4 (2)
C20—N5—C28—C27 177.01 (15) C16—C17—C18—C13 −0.8 (3)
C19—N5—C28—C27 −3.2 (2) C16—C17—C18—Cl1 −179.64 (14)
C20—N5—C28—C23 −3.7 (2) C20—C21—C22—C23 −3.1 (3)
C19—N5—C28—C23 176.08 (14) C29—C21—C22—C23 176.76 (17)
C28—N5—C20—C21 0.3 (2) C28—C23—C22—C21 −0.2 (3)
C19—N5—C20—C21 −179.46 (15) C24—C23—C22—C21 −179.69 (16)
N5—C28—C23—C22 3.6 (2) C7—C8—C9—C4 −0.4 (3)
C27—C28—C23—C22 −177.06 (16) C3—C4—C9—C8 178.97 (18)
N5—C28—C23—C24 −176.92 (15) C5—C4—C9—C8 0.0 (3)
C27—C28—C23—C24 2.4 (2) C15—C14—C13—C18 −0.5 (3)
C6—C7—C8—C9 0.1 (3) C15—C14—C13—Cl2 179.42 (15)
C10—C7—C8—C9 −179.46 (17) C17—C18—C13—C14 1.3 (3)
N5—C20—C21—C22 3.1 (3) Cl1—C18—C13—C14 −179.92 (15)
N5—C20—C21—C29 −176.72 (16) C17—C18—C13—Cl2 −178.67 (15)
C6—C7—C10—C12 177.58 (16) Cl1—C18—C13—Cl2 0.1 (2)
C8—C7—C10—C12 −2.9 (3) C5—C4—C3—C1 2.3 (3)
C6—C7—C10—C11 −3.8 (3) C9—C4—C3—C1 −176.66 (18)
C8—C7—C10—C11 175.72 (17) C5—C4—C3—C2 178.20 (18)
C4—C5—C6—C7 −1.3 (3) C9—C4—C3—C2 −0.7 (3)
C10—C7—C6—C5 −179.66 (16) C22—C23—C24—C25 177.83 (18)
C8—C7—C6—C5 0.8 (3) C28—C23—C24—C25 −1.6 (3)
C18—C17—C16—C15 −0.4 (3) C13—C14—C15—C16 −0.7 (3)
C18—C17—C16—C19 −178.37 (16) C17—C16—C15—C14 1.1 (3)
N5—C28—C27—C26 177.88 (16) C19—C16—C15—C14 179.13 (17)
C23—C28—C27—C26 −1.4 (3) C23—C24—C25—C26 −0.1 (3)
C20—N5—C19—C16 −100.94 (17) C28—C27—C26—C25 −0.4 (3)
C28—N5—C19—C16 79.31 (18) C24—C25—C26—C27 1.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C20—H20···N3i 0.93 2.53 3.387 (3) 154
C19—H19B···N3i 0.97 2.51 3.432 (2) 158
C14—H14···N3ii 0.93 2.50 3.390 (3) 161
C15—H15···N1iii 0.93 2.45 3.348 (2) 163

Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z−1; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2411).

References

  1. Alonso, C., Ballester, L., Gutiérrez, A., Perpiñán, M. F., Sánchez, A. E. & Azcondo, M. T. (2005). Eur. J. Inorg. Chem. pp. 486–495.
  2. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Liu, G. X., Ren, X. M., Kremer, P. K. & Meng, Q. J. (2005). J. Mol. Struct.743, 125–133.
  4. Liu, G. X., Xu, H., Ren, X. M. & Sun, W. Y. (2008). CrystEngComm, 10, 1574–1582.
  5. Madalan, A. M., Roesky, H. W., Andruh, M., Noltemeyerb, M. & Stanicac, N. (2002). Chem. Commun. pp. 1638–1639. [DOI] [PubMed]
  6. Ren, X. M., Chen, Y. C., He, C. & Gao, S. (2002). J. Chem. Soc. Dalton Trans. pp. 3915–3918.
  7. Ren, X. M., Ma, J., Lu, C. S., Yang, S. Z., Meng, Q. J. & &Wu, P. H. (2003). Dalton Trans. pp. 1345–1351.
  8. Ren, X. M., Meng, Q. J., Song, Y., Lu, C. S., Hu, C. J. & Chen, X. Y. (2002). Inorg. Chem.41, 5686–5692. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810002862/rz2411sup1.cif

e-66-0o468-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810002862/rz2411Isup2.hkl

e-66-0o468-Isup2.hkl (224.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES