Abstract
In the molecule of the title compound, C14H12FNO2, the aromatic rings are oriented at a dihedral angle of 48.17 (1)°. An intramolecular O—H⋯N hydrogen bond results in the formation of a six-membered ring. The title molecule is a phenol–imine tautomer, as evidenced by the C—O [1.351 (3) Å], C—N [1.282 (3) Å], and C—C [1.416 (3)–1.445 (3) Å] bond lengths. In the crystal, molecules are linked by intermolecular C—H⋯π interactions.
Related literature
The present work is part of a structural study of Schiff bases, see: Özek et al. (2007 ▶); Odabaşoğlu et al. (2007 ▶); Albayrak et al. (2005 ▶). For related structures, see: Özek et al. (2007 ▶, 2009 ▶).
Experimental
Crystal data
C14H12FNO2
M r = 245.25
Monoclinic,
a = 13.1806 (7) Å
b = 7.1785 (5) Å
c = 6.4297 (3) Å
β = 97.967 (4)°
V = 602.49 (6) Å3
Z = 2
Mo Kα radiation
μ = 0.10 mm−1
T = 296 K
0.68 × 0.48 × 0.17 mm
Data collection
Stoe IPDS II diffractometer
Absorption correction: integration (X-RED32; Stoe & Cie, 2002 ▶) T min = 0.932, T max = 0.985
6287 measured reflections
1399 independent reflections
1273 reflections with I > 2σ(I)
R int = 0.037
Refinement
R[F 2 > 2σ(F 2)] = 0.035
wR(F 2) = 0.104
S = 1.09
1399 reflections
168 parameters
3 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.20 e Å−3
Δρmin = −0.11 e Å−3
Data collection: X-AREA (Stoe & Cie, 2002 ▶); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000474/bt5163sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000474/bt5163Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 and Cg2 are the centroids of C1—C6 and C9—C14 rings, respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯N1 | 0.82 (2) | 1.87 (2) | 2.615 (3) | 150 (3) |
| C6—H6⋯Cg1i | 0.93 | 2.73 | 3.4363 | 133 |
| C11—H11⋯Cg2ii | 0.93 | 2.93 | 3.6414 | 134 |
| C14—H14⋯Cg2iii | 0.93 | 2.91 | 3.6076 | 133 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).
supplementary crystallographic information
Comment
The present work is part of a structural study of Schiff bases (Özek et al., 2009; Özek et al., 2007) and we report here the structure of (E)-2-(4-Fluorophenylimino)methyl-5-methoxyphenol, (I).
The ortho-hydroxy Schiff Bases that show tautomerism by the intramolecular proton transfer from an oxygen atom to the neighboring nitrogen atom are important compounds. These compounds can exist in three different structures as enol, keto or zwitterionic forms in the solid state. The title compound (I) consists of two aromatic rings (C1 to C6 and C9 to C14), and an imino frame (C9—N1—C8—C1). In (E)-2-(4-Fluorophenylimino)methyl- 5-methoxyphenol which adopts an E configuration about the C=N double bond, dihedral angle between the aromatic rings is 48.17 (1) °. The H atom in title compound (I) is located on atom O1, thus the phenol-imine tautomer is favored over the keto-amine form, as indicated by the C2—O1, C8—N1, C1—C8 and C1—C2 bond lengths (Fig. 1 and Table 2). The O1—C2 bond length of 1.351 (2) Å indicates single-bond character, whereas the N1—C8 bond length of 1.283 (2) Å indicates double-bond character. A similar work was observed for X-ray crystal and computational structural study of (E)-2-[(4-bromophenyl)iminomethyl] -4-methoxyphenol [C—O=1.358 (4) Å, C—N= 1.287 (4) Å, Özek et al., 2007].
It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect photochromic properties in (I) caused by non-planarity of the molecules; the dihedral angle between rings A(C1—C6) and B ring (C9—C14) is 48.17 (1) °. The intramolecular O—H···N hydrogen bond (Table 1) results in the formation of six-membered ring and it generates an S(6) ring motif. The O1···N1 distance of 2.614 (2) Å is comparable to those observed for analogous hydrogen bonds in "Three (E)-2-[(bromophenyl)iminomethyl]-4-methoxyphenols" [2.603 (2) Å, 2.638 (7) Å, 2.577 (4) Å; Özek et al., 2007]. In the crystal structure, C—H···π interactions exist (Table 1) (Fig. 2).
Experimental
The compound (E)-2-(4-Fluorophenylimino)methyl-5-methoxyphenol was prepared by reflux a mixture of a solution containing 4-methoxysalicylaldehyde (0.5 g 3.3 mmol) in 20 ml e thanol and a solution containing 4-fluoroaniline (0.37 g 3.3 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 h under reflux. The crystals of (E)-2-(4-Fluorophenylimino)methyl-5-methoxyphenol suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield % 82; m.p. 368–369 K).
Refinement
All H atoms except the hydroxyl H atom (which was freely refined) were refined using riding model with C—H distances of 0.96 Å for the methyl group and 0.93 Å for other H atoms. The displacement parameters of these H atoms were fixed at 1.2 Ueq of their parent carbon atom or 1.5 Ueq for the methyl group. The absolute structure could not be determined, and 1150 Friedel pairs were averaged before the last refinement.
Figures
Fig. 1.
A view of (I), with the atom-numbering scheme. Dashed line indicates intramolecular hydrogen bond.
Fig. 2.
A partial packing diagram for (I), with C—H···Cg bonds shown as dashed lines. Cg1 and Cg2 are the centroids of C1—C6 and C9—C14 rings, respectively. Symmetry codes: (i) x, -y, z + 1/2; (ii) x, -y + 1, z + 1/2; (iii) x, -y, z - 1/2.
Crystal data
| C14H12FNO2 | F(000) = 256 |
| Mr = 245.25 | Dx = 1.352 Mg m−3 |
| Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P -2yc | Cell parameters from 11108 reflections |
| a = 13.1806 (7) Å | θ = 1.6–28.0° |
| b = 7.1785 (5) Å | µ = 0.10 mm−1 |
| c = 6.4297 (3) Å | T = 296 K |
| β = 97.967 (4)° | Plate, yellow |
| V = 602.49 (6) Å3 | 0.68 × 0.48 × 0.17 mm |
| Z = 2 |
Data collection
| Stoe IPDS II diffractometer | 1399 independent reflections |
| Radiation source: fine-focus sealed tube | 1273 reflections with I > 2σ(I) |
| plane graphite | Rint = 0.037 |
| Detector resolution: 6.67 pixels mm-1 | θmax = 27.6°, θmin = 2.8° |
| ω–scan rotation method | h = −17→17 |
| Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −9→9 |
| Tmin = 0.932, Tmax = 0.985 | l = −8→8 |
| 6287 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0672P)2 + 0.0142P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.09 | (Δ/σ)max < 0.001 |
| 1399 reflections | Δρmax = 0.20 e Å−3 |
| 168 parameters | Δρmin = −0.11 e Å−3 |
| 3 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.022 (7) |
Special details
| Experimental. 237 frames, detector distance = 100 mm |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.67815 (17) | 0.7844 (3) | 0.5679 (3) | 0.0430 (5) | |
| C2 | 0.68722 (16) | 0.7118 (3) | 0.3666 (3) | 0.0452 (5) | |
| C3 | 0.78232 (18) | 0.6912 (3) | 0.3009 (4) | 0.0473 (5) | |
| H3 | 0.7878 | 0.6379 | 0.1711 | 0.057* | |
| C4 | 0.86907 (16) | 0.7504 (3) | 0.4299 (3) | 0.0448 (5) | |
| C5 | 0.86142 (16) | 0.8247 (3) | 0.6292 (3) | 0.0482 (5) | |
| H5 | 0.9199 | 0.8648 | 0.7153 | 0.058* | |
| C6 | 0.76785 (16) | 0.8378 (3) | 0.6958 (3) | 0.0472 (5) | |
| H6 | 0.7637 | 0.8834 | 0.8297 | 0.057* | |
| C7 | 0.9809 (2) | 0.6644 (5) | 0.1854 (5) | 0.0735 (7) | |
| H7A | 0.9579 | 0.5374 | 0.1792 | 0.088* | |
| H7B | 1.0525 | 0.6683 | 0.1720 | 0.088* | |
| H7C | 0.9429 | 0.7339 | 0.0730 | 0.088* | |
| C8 | 0.58033 (17) | 0.7980 (3) | 0.6444 (3) | 0.0465 (5) | |
| H8 | 0.5785 | 0.8356 | 0.7822 | 0.056* | |
| C9 | 0.40316 (17) | 0.7582 (3) | 0.6157 (4) | 0.0456 (5) | |
| C10 | 0.39603 (19) | 0.6839 (3) | 0.8123 (4) | 0.0539 (5) | |
| H10 | 0.4544 | 0.6382 | 0.8942 | 0.065* | |
| C11 | 0.3028 (2) | 0.6775 (4) | 0.8871 (4) | 0.0606 (6) | |
| H11 | 0.2976 | 0.6270 | 1.0184 | 0.073* | |
| C12 | 0.21810 (19) | 0.7470 (4) | 0.7637 (5) | 0.0598 (6) | |
| C13 | 0.22135 (19) | 0.8207 (4) | 0.5678 (4) | 0.0607 (6) | |
| H13 | 0.1625 | 0.8667 | 0.4877 | 0.073* | |
| C14 | 0.31454 (17) | 0.8245 (4) | 0.4932 (4) | 0.0522 (5) | |
| H14 | 0.3185 | 0.8717 | 0.3599 | 0.063* | |
| N1 | 0.49593 (14) | 0.7598 (2) | 0.5277 (3) | 0.0485 (5) | |
| O1 | 0.60343 (14) | 0.6613 (3) | 0.2332 (3) | 0.0631 (5) | |
| O2 | 0.96531 (13) | 0.7433 (3) | 0.3800 (3) | 0.0561 (4) | |
| F1 | 0.12629 (15) | 0.7419 (3) | 0.8381 (4) | 0.0922 (6) | |
| H1 | 0.553 (2) | 0.676 (4) | 0.294 (5) | 0.079 (10)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0418 (10) | 0.0416 (11) | 0.0453 (12) | −0.0015 (8) | 0.0053 (8) | −0.0006 (8) |
| C2 | 0.0420 (11) | 0.0492 (11) | 0.0433 (12) | −0.0009 (8) | 0.0020 (9) | −0.0016 (8) |
| C3 | 0.0479 (11) | 0.0539 (12) | 0.0406 (10) | −0.0011 (9) | 0.0075 (8) | −0.0044 (9) |
| C4 | 0.0433 (11) | 0.0459 (10) | 0.0459 (12) | 0.0014 (8) | 0.0083 (9) | 0.0045 (9) |
| C5 | 0.0439 (11) | 0.0547 (11) | 0.0443 (11) | −0.0041 (8) | −0.0003 (9) | −0.0031 (9) |
| C6 | 0.0493 (12) | 0.0510 (11) | 0.0403 (11) | −0.0007 (8) | 0.0034 (9) | −0.0047 (8) |
| C7 | 0.0540 (14) | 0.109 (2) | 0.0612 (15) | −0.0001 (14) | 0.0216 (11) | −0.0148 (14) |
| C8 | 0.0456 (11) | 0.0472 (11) | 0.0467 (11) | 0.0012 (8) | 0.0068 (9) | −0.0022 (8) |
| C9 | 0.0427 (11) | 0.0453 (11) | 0.0492 (12) | −0.0012 (8) | 0.0073 (9) | −0.0028 (8) |
| C10 | 0.0521 (12) | 0.0561 (12) | 0.0527 (13) | 0.0052 (10) | 0.0051 (10) | 0.0028 (10) |
| C11 | 0.0668 (16) | 0.0630 (13) | 0.0541 (13) | −0.0032 (12) | 0.0158 (12) | 0.0027 (11) |
| C12 | 0.0453 (13) | 0.0678 (14) | 0.0692 (17) | −0.0077 (10) | 0.0184 (12) | −0.0090 (12) |
| C13 | 0.0435 (12) | 0.0705 (15) | 0.0663 (17) | −0.0007 (11) | 0.0008 (11) | −0.0035 (12) |
| C14 | 0.0461 (12) | 0.0593 (12) | 0.0503 (13) | −0.0003 (9) | 0.0041 (9) | 0.0013 (10) |
| N1 | 0.0415 (10) | 0.0532 (10) | 0.0509 (11) | 0.0016 (8) | 0.0063 (8) | −0.0004 (8) |
| O1 | 0.0438 (8) | 0.0922 (12) | 0.0515 (9) | −0.0082 (8) | 0.0007 (7) | −0.0194 (9) |
| O2 | 0.0420 (8) | 0.0746 (12) | 0.0529 (9) | −0.0021 (7) | 0.0108 (7) | −0.0033 (8) |
| F1 | 0.0568 (10) | 0.1257 (16) | 0.1005 (15) | −0.0092 (10) | 0.0334 (9) | −0.0025 (11) |
Geometric parameters (Å, °)
| C1—C6 | 1.397 (3) | C8—N1 | 1.282 (3) |
| C1—C2 | 1.416 (3) | C8—H8 | 0.9300 |
| C1—C8 | 1.445 (3) | C9—C10 | 1.387 (3) |
| C2—O1 | 1.351 (3) | C9—C14 | 1.399 (3) |
| C2—C3 | 1.385 (3) | C9—N1 | 1.417 (3) |
| C3—C4 | 1.383 (3) | C10—C11 | 1.381 (3) |
| C3—H3 | 0.9300 | C10—H10 | 0.9300 |
| C4—O2 | 1.352 (3) | C11—C12 | 1.371 (4) |
| C4—C5 | 1.404 (3) | C11—H11 | 0.9300 |
| C5—C6 | 1.364 (3) | C12—F1 | 1.362 (3) |
| C5—H5 | 0.9300 | C12—C13 | 1.372 (4) |
| C6—H6 | 0.9300 | C13—C14 | 1.379 (3) |
| C7—O2 | 1.414 (3) | C13—H13 | 0.9300 |
| C7—H7A | 0.9600 | C14—H14 | 0.9300 |
| C7—H7B | 0.9600 | O1—H1 | 0.824 (19) |
| C7—H7C | 0.9600 | ||
| C6—C1—C2 | 117.86 (19) | N1—C8—C1 | 121.93 (19) |
| C6—C1—C8 | 120.22 (19) | N1—C8—H8 | 119.0 |
| C2—C1—C8 | 121.89 (18) | C1—C8—H8 | 119.0 |
| O1—C2—C3 | 118.2 (2) | C10—C9—C14 | 119.1 (2) |
| O1—C2—C1 | 120.96 (19) | C10—C9—N1 | 122.6 (2) |
| C3—C2—C1 | 120.86 (18) | C14—C9—N1 | 118.2 (2) |
| C4—C3—C2 | 119.5 (2) | C11—C10—C9 | 120.4 (2) |
| C4—C3—H3 | 120.3 | C11—C10—H10 | 119.8 |
| C2—C3—H3 | 120.3 | C9—C10—H10 | 119.8 |
| O2—C4—C3 | 124.8 (2) | C12—C11—C10 | 118.6 (3) |
| O2—C4—C5 | 114.78 (19) | C12—C11—H11 | 120.7 |
| C3—C4—C5 | 120.4 (2) | C10—C11—H11 | 120.7 |
| C6—C5—C4 | 119.69 (19) | F1—C12—C11 | 118.6 (3) |
| C6—C5—H5 | 120.2 | F1—C12—C13 | 118.4 (3) |
| C4—C5—H5 | 120.2 | C11—C12—C13 | 123.0 (2) |
| C5—C6—C1 | 121.6 (2) | C12—C13—C14 | 118.0 (2) |
| C5—C6—H6 | 119.2 | C12—C13—H13 | 121.0 |
| C1—C6—H6 | 119.2 | C14—C13—H13 | 121.0 |
| O2—C7—H7A | 109.5 | C13—C14—C9 | 120.8 (2) |
| O2—C7—H7B | 109.5 | C13—C14—H14 | 119.6 |
| H7A—C7—H7B | 109.5 | C9—C14—H14 | 119.6 |
| O2—C7—H7C | 109.5 | C8—N1—C9 | 119.66 (17) |
| H7A—C7—H7C | 109.5 | C2—O1—H1 | 108 (3) |
| H7B—C7—H7C | 109.5 | C4—O2—C7 | 118.77 (19) |
| C6—C1—C2—O1 | −178.6 (2) | C14—C9—C10—C11 | −0.7 (3) |
| C8—C1—C2—O1 | 3.5 (3) | N1—C9—C10—C11 | −176.9 (2) |
| C6—C1—C2—C3 | 1.3 (3) | C9—C10—C11—C12 | −0.4 (4) |
| C8—C1—C2—C3 | −176.6 (2) | C10—C11—C12—F1 | −179.5 (2) |
| O1—C2—C3—C4 | 176.8 (2) | C10—C11—C12—C13 | 0.9 (4) |
| C1—C2—C3—C4 | −3.1 (3) | F1—C12—C13—C14 | −179.7 (2) |
| C2—C3—C4—O2 | −177.68 (19) | C11—C12—C13—C14 | −0.1 (4) |
| C2—C3—C4—C5 | 2.3 (3) | C12—C13—C14—C9 | −1.1 (4) |
| O2—C4—C5—C6 | −179.79 (19) | C10—C9—C14—C13 | 1.5 (3) |
| C3—C4—C5—C6 | 0.2 (3) | N1—C9—C14—C13 | 177.9 (2) |
| C4—C5—C6—C1 | −2.1 (3) | C1—C8—N1—C9 | 174.01 (17) |
| C2—C1—C6—C5 | 1.3 (3) | C10—C9—N1—C8 | −40.8 (3) |
| C8—C1—C6—C5 | 179.26 (19) | C14—C9—N1—C8 | 143.0 (2) |
| C6—C1—C8—N1 | 176.2 (2) | C3—C4—O2—C7 | −2.2 (3) |
| C2—C1—C8—N1 | −5.9 (3) | C5—C4—O2—C7 | 177.8 (2) |
Hydrogen-bond geometry (Å, °)
| Cg1 and Cg2 are the centroids of C1—C6 and C9—C14 rings, respectively. |
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···N1 | 0.82 (2) | 1.87 (2) | 2.615 (3) | 150 (3) |
| C6—H6···Cg1i | 0.93 | 2.73 | 3.4363 | 133 |
| C11—H11···Cg2ii | 0.93 | 2.93 | 3.6414 | 134 |
| C14—H14···Cg2iii | 0.93 | 2.91 | 3.6076 | 133 |
Symmetry codes: (i) x, −y, z+1/2; (ii) x, −y+1, z+1/2; (iii) x, −y, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5163).
References
- Albayrak, Ç., Odabąsogˇlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o423–o424.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.
- Özek, A., Albayrak, Ç. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2153. [DOI] [PMC free article] [PubMed]
- Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177–o180. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810000474/bt5163sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000474/bt5163Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


