Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jan 30;66(Pt 2):o491–o492. doi: 10.1107/S1600536810003144

tert-Butyl 2-methyl-2-(4-methyl­benzo­yl)propanoate

Graham B Gould a, Brock G Jackman a, Marshall W Logue a, Rudy L Luck a,*, Louis R Pignotti a, Adrian R Smith a, Nicholas M White a
PMCID: PMC2979969  PMID: 21579897

Abstract

The title compound, C16H22O3, is bent with a dihedral angle of 75.3 (1)° between the mean planes of the benzene ring and a group encompassing the ester functionality (O=C—O—C). In the crystal, the mol­ecules are linked into infinite chains held together by weak C—H⋯O hydrogen-bonded inter­actions between an H atom on the benzene ring of one mol­ecule and an O atom on the ketone functionality of an adjacent mol­ecule. The chains are arranged with neighbouring tert-butyl and dimethyl groups on adjacent chains exhibiting hydro­phobic stacking, with short C—H⋯H—C contacts (2.37 Å) between adjacent chains

Related literature

For the synthesis, spectroscopic characterization and reactivity of the title compound, see: Logue (1974); Logue et al. (1975). For related structures, see: Crosse et al. (2010a ,b ; Logue et al. (2010). For the syntheses and characterization of structurally similar indanone-derived β-keto ester derivatives, see: Mouri et al. (2009); Noritake et al. (2008); Rigby & Dixon (2008). For weak hydrogen-bonded inter­actions, see: Karle et al. (2009). For H⋯H inter­actions, see: Alkorta et al. (2008). graphic file with name e-66-0o491-scheme1.jpg

Experimental

Crystal data

  • C16H22O3

  • M r = 262.34

  • Orthorhombic, Inline graphic

  • a = 8.605 (3) Å

  • b = 11.659 (3) Å

  • c = 31.347 (9) Å

  • V = 3144.9 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 K

  • 0.50 × 0.30 × 0.10 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.969, T max = 0.988

  • 4411 measured reflections

  • 2758 independent reflections

  • 1334 reflections with I > 2σ(I)

  • R int = 0.027

  • 3 standard reflections every 166 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.134

  • S = 1.01

  • 2758 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003144/zl2266sup1.cif

e-66-0o491-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003144/zl2266Isup2.hkl

e-66-0o491-Isup2.hkl (132.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O9i 0.93 2.71 3.407 (3) 133

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial assistance from the Chemistry Department of Michigan Technological University is acknowledged.

supplementary crystallographic information

Comment

Treatment of 2,2-disubstituted t-butyl beta-keto esters with trifluoroacetic acid at room temperature quantitatively generates the corresponding 2,2-disubstituted β-keto acids, which were used to probe the nature of the transition state for the thermal decarboxylation of β-keto acids (Logue et al., 1975). Structurally similar indanone-derived β-keto ester derivatives have been prepared recently (Mouri et al., 2009; Noritake et al., 2008; Rigby & Dixon, 2008). The directing nature of weak C—H···O H-bonds has been noted to be of importance to afford the three dimensional structure observed in these kinds of molecules (Karle et al., 2009).

In this contribution we present the solid state structure of one such 2,2-disubstituted β-keto acid, i.e. the title compound being the tolyl derivative. This is the second paper in a series of four dealing with substituted derivatives (H–, CH3– (this paper), Cl- and NO2– on the para-position of the phenyl ring) of the title compound. A more detailed comparison of all four substitution compounds will be given in the fourth paper of this series (Crosse et al., 2010a).

The molecule, Fig. 1, displays a bent geometry with a dihedral angle between the phenyl ring and a plane composed of the ester functionality of 75.3 (1)°. Molecules are linked by C—H···O weak hydrogen bonds generating infinite chains parallel to the b axis as shown in Fig. 2. The aromatic rings are not involved in intercalation of stacking interactions either within or between the chains. The chains are arranged with neighbouring t-butyl and dimethyl groups on adjacent chains exhibiting hydrophobic stacking with short C—H···H—C contacts between adjacent chains, Fig. 2 (Alkorta et al., 2008).

Experimental

Crystals of the material were synthesized as reported earlier and were grown by evaporation of a solution in hexane (Logue, 1974). IR (neat, cm-1): 3003 (w, C—H), 2974, 1734 (v.s., ester C=O), 1671 (v.s., ketone C=O) 1608 (m, C—C), 1455 (m), 1386 (m), 1366 (s), 1273 (s, alkyl methyl C—H), 1247 (s), 1130 (v.s., ester C—O), 986 (s), 921 (m), 836 (s, C—H bend), 740 (s). 1H NMR (CDCl3) δ; 1.28 (s, 9H), 1.47 (s, 6H), 2.37 (s, 3H), 7.19 (d, 2H, J=8.0 Hz), 7.76 (d, 2H, J=8.8 Hz). 13C NMR (CDCl3) δ; 21.7, 24.1, 27.8, 54.1, 81.8, 129.2, 132.9, 143.5, 174.4, 198.9.

Refinement

All H atoms were placed at calculated positions, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and refined using a riding model with Uiso(H) constrained to be 1.5 Ueq(C) for methyl groups and 1.2 Ueq(C) for all other C atoms. The quality of the data as reflected by only 48% of the reflections observed, large ADP's and inaccurate C—C bond lengths is low. The data had been collected on a 30 year old single point detector instrument not equipped with a low temperature device as part of a class project with undergraduate students. Due to the time constraints imposed by the class schedule a maximum exposure time of 60 s had to be alloted for measuring each reflection.

There are close contacts (i.e., <2.4 Å, (Alkorta et al., 2008)) between an H atom on C11 and one on the C18 atom of an adjacent molecule, Fig. 2. These contacts remain present irrespective of if all the H atoms are refined freely (which generates reasonable parameters) or if they are refined generated either with the AFIX 33 or AFIX 137 constraints (used here) as implemented in the Shelxtl software (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A Mercury (Macrae et al., 2008) illustration of the title compound depicting the H-bonded linkages and the C—H···H—C interactions between the chains displayed along the horizontal middle of the diagram both using dashed blue lines.

Crystal data

C16H22O3 F(000) = 1136
Mr = 262.34 Dx = 1.108 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 25 reflections
a = 8.605 (3) Å θ = 10–15°
b = 11.659 (3) Å µ = 0.08 mm1
c = 31.347 (9) Å T = 291 K
V = 3144.9 (16) Å3 Prism, colourless
Z = 8 0.50 × 0.30 × 0.10 mm

Data collection

Enraf–Nonius TurboCAD-4 diffractometer 1334 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590 Rint = 0.027
graphite θmax = 25.0°, θmin = 1.3°
non–profiled ω scans h = 0→10
Absorption correction: ψ scan (North et al., 1968) k = 0→13
Tmin = 0.969, Tmax = 0.988 l = −33→37
4411 measured reflections 3 standard reflections every 166 min
2758 independent reflections intensity decay: 2%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.2581P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2758 reflections Δρmax = 0.14 e Å3
178 parameters Δρmin = −0.13 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0033 (5)

Special details

Experimental. Number of psi-scan sets used was 6. Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6338 (3) 0.2128 (2) 0.65195 (7) 0.0474 (6)
C2 0.7278 (3) 0.3098 (2) 0.65125 (7) 0.0558 (7)
H2 0.7806 0.3292 0.6264 0.067*
C3 0.7434 (3) 0.3773 (2) 0.68702 (8) 0.0647 (8)
H3 0.8068 0.4417 0.6857 0.078*
C4 0.6681 (4) 0.3524 (3) 0.72464 (9) 0.0701 (8)
C5 0.5731 (4) 0.2569 (3) 0.72513 (9) 0.0789 (9)
H5 0.5193 0.2385 0.7499 0.095*
C6 0.5566 (3) 0.1886 (2) 0.68967 (8) 0.0655 (8)
H6 0.4922 0.1247 0.691 0.079*
C7 0.6872 (5) 0.4275 (3) 0.76352 (9) 0.1102 (13)
H7A 0.5982 0.419 0.7817 0.165*
H7B 0.6963 0.5062 0.7548 0.165*
H7C 0.7791 0.4052 0.7787 0.165*
C8 0.6120 (3) 0.1326 (2) 0.61524 (8) 0.0517 (7)
O9 0.5392 (2) 0.04387 (16) 0.62062 (6) 0.0725 (6)
C10 0.6724 (3) 0.1633 (2) 0.57086 (8) 0.0527 (7)
C11 0.5841 (3) 0.2689 (2) 0.55401 (8) 0.0724 (9)
H111 0.5999 0.3323 0.573 0.109*
H112 0.4752 0.2516 0.5524 0.109*
H113 0.6221 0.2884 0.5262 0.109*
O12 0.9115 (2) 0.25100 (18) 0.54691 (6) 0.0790 (6)
O13 0.91700 (19) 0.11790 (14) 0.59947 (5) 0.0560 (5)
C14 0.6468 (4) 0.0623 (3) 0.54016 (8) 0.0826 (9)
H14A 0.6857 0.082 0.5124 0.124*
H14B 0.5378 0.0456 0.5383 0.124*
H14C 0.701 −0.004 0.5506 0.124*
C15 0.8467 (3) 0.1858 (2) 0.57099 (8) 0.0557 (7)
C16 1.0892 (3) 0.1174 (2) 0.60458 (8) 0.0608 (7)
C17 1.1112 (4) 0.0345 (3) 0.64115 (10) 0.1023 (12)
H17A 1.0663 −0.0383 0.6338 0.153*
H17B 1.0611 0.0641 0.6662 0.153*
H17C 1.2202 0.0249 0.6467 0.153*
C18 1.1633 (4) 0.0715 (3) 0.56456 (10) 0.0879 (10)
H181 1.2716 0.0574 0.5697 0.132*
H182 1.1522 0.1266 0.542 0.132*
H183 1.1132 0.0011 0.5565 0.132*
C19 1.1454 (4) 0.2360 (3) 0.61636 (11) 0.0997 (11)
H19A 1.0827 0.2658 0.6392 0.15*
H19B 1.1372 0.2856 0.592 0.15*
H19C 1.2518 0.2321 0.6254 0.15*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0430 (15) 0.0492 (15) 0.0498 (14) 0.0041 (13) 0.0019 (12) 0.0026 (12)
C2 0.0596 (18) 0.0602 (16) 0.0476 (14) −0.0026 (15) 0.0060 (14) 0.0001 (13)
C3 0.0670 (19) 0.0641 (17) 0.0630 (16) −0.0065 (16) −0.0012 (17) −0.0118 (14)
C4 0.076 (2) 0.077 (2) 0.0570 (18) 0.0119 (18) −0.0004 (16) −0.0141 (16)
C5 0.093 (2) 0.091 (2) 0.0528 (16) 0.003 (2) 0.0254 (17) −0.0023 (17)
C6 0.0686 (19) 0.0664 (18) 0.0615 (17) −0.0029 (16) 0.0132 (15) 0.0052 (15)
C7 0.130 (3) 0.124 (3) 0.077 (2) 0.007 (3) 0.006 (2) −0.043 (2)
C8 0.0408 (17) 0.0548 (16) 0.0596 (16) 0.0055 (14) −0.0066 (12) 0.0018 (14)
O9 0.0761 (15) 0.0639 (12) 0.0774 (12) −0.0182 (11) −0.0017 (11) −0.0012 (10)
C10 0.0520 (17) 0.0610 (17) 0.0451 (14) 0.0039 (14) −0.0048 (13) −0.0042 (13)
C11 0.069 (2) 0.088 (2) 0.0601 (17) 0.0141 (17) −0.0107 (15) 0.0107 (15)
O12 0.0748 (14) 0.0883 (14) 0.0741 (12) 0.0026 (12) 0.0128 (11) 0.0238 (12)
O13 0.0419 (11) 0.0711 (12) 0.0551 (10) 0.0015 (9) −0.0019 (9) 0.0054 (9)
C14 0.077 (2) 0.096 (2) 0.074 (2) −0.0039 (19) −0.0078 (16) −0.0319 (17)
C15 0.0585 (19) 0.0615 (17) 0.0471 (15) 0.0036 (16) 0.0019 (15) −0.0046 (15)
C16 0.0424 (17) 0.0749 (19) 0.0651 (17) −0.0023 (15) −0.0056 (13) 0.0028 (15)
C17 0.067 (2) 0.139 (3) 0.101 (2) 0.002 (2) −0.0184 (19) 0.042 (2)
C18 0.062 (2) 0.113 (3) 0.089 (2) 0.013 (2) 0.0140 (17) −0.005 (2)
C19 0.068 (2) 0.103 (3) 0.128 (3) −0.013 (2) −0.017 (2) −0.022 (2)

Geometric parameters (Å, °)

C1—C6 1.385 (3) C11—H112 0.96
C1—C2 1.390 (3) C11—H113 0.96
C1—C8 1.495 (3) O12—C15 1.207 (3)
C2—C3 1.376 (3) O13—C15 1.338 (3)
C2—H2 0.93 O13—C16 1.491 (3)
C3—C4 1.376 (4) C14—H14A 0.96
C3—H3 0.93 C14—H14B 0.96
C4—C5 1.382 (4) C14—H14C 0.96
C4—C7 1.509 (4) C16—C18 1.505 (4)
C5—C6 1.375 (4) C16—C19 1.511 (4)
C5—H5 0.93 C16—C17 1.511 (4)
C6—H6 0.93 C17—H17A 0.96
C7—H7A 0.96 C17—H17B 0.96
C7—H7B 0.96 C17—H17C 0.96
C7—H7C 0.96 C18—H181 0.96
C8—O9 1.221 (3) C18—H182 0.96
C8—C10 1.528 (3) C18—H183 0.96
C10—C15 1.523 (4) C19—H19A 0.96
C10—C14 1.537 (3) C19—H19B 0.96
C10—C11 1.540 (3) C19—H19C 0.96
C11—H111 0.96
C6—C1—C2 117.3 (2) H111—C11—H113 109.5
C6—C1—C8 118.0 (2) H112—C11—H113 109.5
C2—C1—C8 124.7 (2) C15—O13—C16 121.6 (2)
C3—C2—C1 120.6 (2) C10—C14—H14A 109.5
C3—C2—H2 119.7 C10—C14—H14B 109.5
C1—C2—H2 119.7 H14A—C14—H14B 109.5
C4—C3—C2 122.2 (3) C10—C14—H14C 109.5
C4—C3—H3 118.9 H14A—C14—H14C 109.5
C2—C3—H3 118.9 H14B—C14—H14C 109.5
C3—C4—C5 117.2 (3) O12—C15—O13 125.5 (3)
C3—C4—C7 121.2 (3) O12—C15—C10 124.2 (3)
C5—C4—C7 121.5 (3) O13—C15—C10 110.2 (2)
C6—C5—C4 121.3 (3) O13—C16—C18 109.4 (2)
C6—C5—H5 119.4 O13—C16—C19 109.9 (2)
C4—C5—H5 119.4 C18—C16—C19 113.2 (3)
C5—C6—C1 121.5 (3) O13—C16—C17 102.0 (2)
C5—C6—H6 119.3 C18—C16—C17 110.6 (3)
C1—C6—H6 119.3 C19—C16—C17 111.1 (3)
C4—C7—H7A 109.5 C16—C17—H17A 109.5
C4—C7—H7B 109.5 C16—C17—H17B 109.5
H7A—C7—H7B 109.5 H17A—C17—H17B 109.5
C4—C7—H7C 109.5 C16—C17—H17C 109.5
H7A—C7—H7C 109.5 H17A—C17—H17C 109.5
H7B—C7—H7C 109.5 H17B—C17—H17C 109.5
O9—C8—C1 119.2 (2) C16—C18—H181 109.5
O9—C8—C10 119.9 (2) C16—C18—H182 109.5
C1—C8—C10 120.8 (2) H181—C18—H182 109.5
C15—C10—C8 111.9 (2) C16—C18—H183 109.5
C15—C10—C14 106.0 (2) H181—C18—H183 109.5
C8—C10—C14 110.0 (2) H182—C18—H183 109.5
C15—C10—C11 110.4 (2) C16—C19—H19A 109.5
C8—C10—C11 109.4 (2) C16—C19—H19B 109.5
C14—C10—C11 109.1 (2) H19A—C19—H19B 109.5
C10—C11—H111 109.5 C16—C19—H19C 109.5
C10—C11—H112 109.5 H19A—C19—H19C 109.5
H111—C11—H112 109.5 H19B—C19—H19C 109.5
C10—C11—H113 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O9i 0.93 2.71 3.407 (3) 133

Symmetry codes: (i) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2266).

References

  1. Alkorta, I., Elguero, J. & Grabowski, S. J. (2008). J. Phys. Chem.112, 2721–2727. [DOI] [PubMed]
  2. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  3. Crosse, C. M., Kelly, E. C., Logue, M. W., Luck, R. L., Maass, J. S., Mehne, K. C. & Pignotti, L. R. (2010b). Acta Cryst. E66, o493–o494. [DOI] [PMC free article] [PubMed]
  4. Crosse, C. M., Logue, M. W., Luck, R. L., Pignotti, L. R. & Waineo, M. F. (2010a). Acta Cryst. E66, o495–o496. [DOI] [PMC free article] [PubMed]
  5. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  9. Karle, I. L., Huang, L., Venkateshwarlu, P., Sarma, A. V. S. & Ranganathan, S. (2009). Heterocycles, 79, 471–486. [DOI] [PMC free article] [PubMed]
  10. Logue, M. W. (1974). J. Org. Chem.39, 3455–3456.
  11. Logue, M. W., Luck, R. L., Maynard, N. S., Orlowski, S. S., Pignotti, L. R., Putman, A. L. & Whelan, K. M. (2010). Acta Cryst. E66, o489–o490. [DOI] [PMC free article] [PubMed]
  12. Logue, M. W., Pollack, R. M. & Vitullo, V. P. (1975). J. Am. Chem. Soc.97, 6868–6869.
  13. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  14. Mouri, S., Chen, Z., Matsunage, S. & Shibasaki, M. (2009). Chem. Commun. pp. 5138–5140. [DOI] [PubMed]
  15. Noritake, S., Shibata, N., Nakamura, S., Toru, T. & Shiro, M. (2008). Eur. J. Org. Chem. pp. 3465–3468.
  16. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  17. Rigby, C. L. & Dixon, D. J. (2008). Chem. Commun. pp. 3798–3800. [DOI] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Westrip, S. P. (2010). publCIF. In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003144/zl2266sup1.cif

e-66-0o491-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003144/zl2266Isup2.hkl

e-66-0o491-Isup2.hkl (132.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES