Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 4;66(Pt 1):m7. doi: 10.1107/S160053680905168X

Dibromido(1,10-phenanthroline-κ2 N,N′)palladium(II)

Kwang Ha a,*
PMCID: PMC2980023  PMID: 21579964

Abstract

In the title complex, [PdBr2(C12H8N2)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 1,10-phenanthroline ligand and two bromide ions. The complex displays numerous inter­molecular π–π inter­actions between adjacent six-membered rings, the shortest centroid–centroid distance being 3.680 (4) Å. The nearly planar [maximum deviation 0.143 (2) Å] mol­ecules stack in columns parallel to (101) with a Pd⋯Pd distance of 4.8466 (9) Å.

Related literature

For the syntheses of [PdX 2(phen)] complexes (phen = 1,10-phenanthroline; X = Cl, Br, I or SCN), see: Cheng et al. (1977). For the crystal structure of yellow [PtCl2(phen)] which is isotypic to the title complex, see: Grzesiak & Matzger (2007). For the crystal structures of related Pd-bipy complexes, [PdX 2(bipy)] (bipy = 2,2′-bipyridine; X = Cl, Br or I), see: Maekawa et al. (1991); Smeets et al. (1997); Ha (2009).graphic file with name e-66-000m7-scheme1.jpg

Experimental

Crystal data

  • [PdBr2(C12H8N2)]

  • M r = 446.42

  • Monoclinic, Inline graphic

  • a = 9.9099 (6) Å

  • b = 17.4897 (10) Å

  • c = 7.2598 (4) Å

  • β = 109.106 (1)°

  • V = 1188.96 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.26 mm−1

  • T = 200 K

  • 0.22 × 0.06 × 0.04 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.420, T max = 0.719

  • 8695 measured reflections

  • 2933 independent reflections

  • 1729 reflections with I > 2σ(I)

  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.091

  • S = 1.00

  • 2933 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.54 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905168X/xu2703sup1.cif

e-66-000m7-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905168X/xu2703Isup2.hkl

e-66-000m7-Isup2.hkl (144KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pd1—N1 2.059 (6)
Pd1—N2 2.048 (6)
Pd1—Br1 2.4095 (9)
Pd1—Br2 2.4016 (10)

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

supplementary crystallographic information

Comment

The title complex, [PdBr2(phen)] (where phen is 1,10-phenanthroline, C12H8N2), is isomorphous with the yellow form of [PtCl2(phen)], whereas the orange form of [PtCl2(phen)] crystallized in the orthorhombic space group Pca21 (Grzesiak & Matzger, 2007).

In the title complex, the Pd2+ ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 1,10-phenanthroline ligand and two bromide ions (Fig. 1). The main contribution to the distortion is the tight N1—Pd1—N2 chelate angle [81.5 (2)°], which results in non-linear trans arrangement [<N1—Pd1—Br1 = 175.29 (19)° and <N2—Pd1—Br2 = 175.30 (15)°]. The Pd1—N and Pd1—Br bond lengths are almost equal, respectively [Pd1—N: 2.059 (6) and 2.048 (6) Å; Pd1—Br 2.4095 (9) and 2.4016 (10) Å]. The complex displays numerous intermolecular π-π interactions between adjacent six-membered rings, with a shortest centroid-centroid distance of 3.680 (4) Å and the dihedral angle between the ring planes is 5.0 (4)°. The nearly planar [PdBr2(phen)] molecules stack columnarly parallel to the (101) plane with a Pd···Pd distance of 4.8466 (9) Å (Fig. 2).

Experimental

To a solution of K2PdBr4 (0.2033 g, 0.403 mmol) in H2O (20 ml) was added 1,10-phenanthroline (0.0727 g, 0.403 mmol) and refluxed for 3 h. The precipitate obtained was separated by filtration, washed with water and acetone, and dried at 70 °C, to give a yellow powder (0.1420 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an ethanol solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Fig. 2.

Fig. 2.

Crystal packing of the title complex.

Crystal data

[PdBr2(C12H8N2)] F(000) = 840
Mr = 446.42 Dx = 2.494 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1837 reflections
a = 9.9099 (6) Å θ = 2.3–28.2°
b = 17.4897 (10) Å µ = 8.26 mm1
c = 7.2598 (4) Å T = 200 K
β = 109.106 (1)° Needle, yellow
V = 1188.96 (12) Å3 0.22 × 0.06 × 0.04 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 2933 independent reflections
Radiation source: fine-focus sealed tube 1729 reflections with I > 2σ(I)
graphite Rint = 0.082
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −13→12
Tmin = 0.420, Tmax = 0.719 k = −23→23
8695 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0152P)2] where P = (Fo2 + 2Fc2)/3
2933 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 1.37 e Å3
0 restraints Δρmin = −1.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.70926 (6) 0.34181 (3) −0.10593 (9) 0.02059 (16)
Br1 0.74510 (9) 0.47817 (4) −0.08022 (13) 0.0299 (2)
Br2 0.46176 (9) 0.36087 (5) −0.29008 (13) 0.0352 (2)
N1 0.6966 (7) 0.2243 (3) −0.1180 (9) 0.0251 (15)
N2 0.9155 (6) 0.3173 (3) 0.0591 (8) 0.0172 (13)
C1 0.5885 (8) 0.1797 (4) −0.2101 (11) 0.0285 (19)
H1 0.5012 0.2027 −0.2859 0.034*
C2 0.5963 (10) 0.1002 (4) −0.2012 (12) 0.036 (2)
H2 0.5169 0.0698 −0.2723 0.043*
C3 0.7203 (9) 0.0668 (4) −0.0885 (12) 0.033 (2)
H3 0.7257 0.0127 −0.0787 0.040*
C4 0.8411 (9) 0.1110 (4) 0.0142 (12) 0.0251 (19)
C5 0.9779 (9) 0.0822 (4) 0.1358 (12) 0.032 (2)
H5 0.9912 0.0286 0.1554 0.039*
C6 1.0848 (9) 0.1291 (4) 0.2199 (11) 0.0277 (19)
H6 1.1740 0.1079 0.2954 0.033*
C7 1.0718 (8) 0.2103 (4) 0.2022 (11) 0.0217 (17)
C8 1.1806 (8) 0.2624 (4) 0.2872 (11) 0.0249 (18)
H8 1.2718 0.2449 0.3664 0.030*
C9 1.1558 (8) 0.3383 (4) 0.2568 (12) 0.0297 (19)
H9 1.2298 0.3739 0.3152 0.036*
C10 1.0228 (8) 0.3643 (4) 0.1406 (11) 0.0226 (18)
H10 1.0085 0.4177 0.1190 0.027*
C11 0.9395 (7) 0.2402 (4) 0.0878 (10) 0.0167 (16)
C12 0.8238 (8) 0.1901 (4) −0.0051 (10) 0.0188 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.0183 (3) 0.0196 (3) 0.0226 (3) −0.0008 (3) 0.0051 (2) 0.0000 (3)
Br1 0.0289 (5) 0.0197 (4) 0.0388 (5) 0.0016 (4) 0.0078 (4) 0.0009 (4)
Br2 0.0193 (4) 0.0391 (5) 0.0408 (6) 0.0006 (4) 0.0013 (4) 0.0039 (4)
N1 0.026 (4) 0.026 (3) 0.026 (4) −0.005 (3) 0.012 (3) 0.001 (3)
N2 0.014 (3) 0.016 (3) 0.018 (3) −0.003 (3) −0.001 (3) 0.001 (3)
C1 0.015 (4) 0.039 (5) 0.027 (5) −0.007 (4) 0.001 (3) −0.005 (4)
C2 0.046 (6) 0.032 (5) 0.029 (5) −0.014 (5) 0.011 (4) −0.008 (4)
C3 0.053 (6) 0.021 (4) 0.034 (5) −0.010 (4) 0.024 (5) −0.008 (4)
C4 0.038 (5) 0.014 (4) 0.030 (5) −0.009 (4) 0.020 (4) −0.003 (3)
C5 0.047 (6) 0.015 (4) 0.042 (6) 0.013 (4) 0.025 (5) 0.011 (4)
C6 0.032 (5) 0.028 (4) 0.026 (5) 0.007 (4) 0.012 (4) 0.011 (4)
C7 0.023 (4) 0.025 (4) 0.022 (4) 0.008 (4) 0.014 (4) 0.004 (4)
C8 0.014 (4) 0.033 (5) 0.024 (5) 0.005 (4) 0.001 (3) 0.004 (4)
C9 0.025 (5) 0.025 (4) 0.036 (5) 0.000 (4) 0.006 (4) 0.002 (4)
C10 0.024 (5) 0.019 (4) 0.026 (5) −0.005 (3) 0.009 (4) 0.004 (3)
C11 0.012 (4) 0.025 (4) 0.016 (4) −0.004 (3) 0.009 (3) 0.000 (3)
C12 0.020 (4) 0.018 (4) 0.018 (4) 0.000 (3) 0.007 (3) 0.001 (3)

Geometric parameters (Å, °)

Pd1—N1 2.059 (6) C4—C12 1.395 (9)
Pd1—N2 2.048 (6) C4—C5 1.445 (11)
Pd1—Br1 2.4095 (9) C5—C6 1.321 (10)
Pd1—Br2 2.4016 (10) C5—H5 0.9500
N1—C1 1.317 (9) C6—C7 1.428 (9)
N1—C12 1.394 (9) C6—H6 0.9500
N2—C10 1.321 (8) C7—C8 1.392 (10)
N2—C11 1.373 (8) C7—C11 1.404 (10)
C1—C2 1.392 (10) C8—C9 1.355 (9)
C1—H1 0.9500 C8—H8 0.9500
C2—C3 1.365 (11) C9—C10 1.388 (10)
C2—H2 0.9500 C9—H9 0.9500
C3—C4 1.414 (11) C10—H10 0.9500
C3—H3 0.9500 C11—C12 1.426 (9)
N2—Pd1—N1 81.5 (2) C6—C5—C4 121.0 (7)
N2—Pd1—Br2 175.30 (15) C6—C5—H5 119.5
N1—Pd1—Br2 94.47 (19) C4—C5—H5 119.5
N2—Pd1—Br1 93.91 (15) C5—C6—C7 122.8 (8)
N1—Pd1—Br1 175.29 (19) C5—C6—H6 118.6
Br2—Pd1—Br1 90.20 (3) C7—C6—H6 118.6
C1—N1—C12 118.2 (6) C8—C7—C11 117.1 (6)
C1—N1—Pd1 129.9 (6) C8—C7—C6 125.3 (7)
C12—N1—Pd1 111.9 (5) C11—C7—C6 117.6 (8)
C10—N2—C11 118.0 (6) C9—C8—C7 119.8 (7)
C10—N2—Pd1 129.4 (5) C9—C8—H8 120.1
C11—N2—Pd1 112.6 (4) C7—C8—H8 120.1
N1—C1—C2 123.0 (8) C8—C9—C10 120.4 (8)
N1—C1—H1 118.5 C8—C9—H9 119.8
C2—C1—H1 118.5 C10—C9—H9 119.8
C3—C2—C1 118.7 (8) N2—C10—C9 122.2 (7)
C3—C2—H2 120.6 N2—C10—H10 118.9
C1—C2—H2 120.6 C9—C10—H10 118.9
C2—C3—C4 121.5 (7) N2—C11—C7 122.5 (7)
C2—C3—H3 119.3 N2—C11—C12 117.3 (6)
C4—C3—H3 119.3 C7—C11—C12 120.1 (7)
C12—C4—C3 115.7 (8) N1—C12—C4 122.8 (7)
C12—C4—C5 117.9 (7) N1—C12—C11 116.6 (6)
C3—C4—C5 126.4 (7) C4—C12—C11 120.6 (7)
N2—Pd1—N1—C1 −178.2 (7) Pd1—N2—C10—C9 176.9 (5)
Br2—Pd1—N1—C1 4.2 (6) C8—C9—C10—N2 1.3 (11)
N2—Pd1—N1—C12 3.5 (5) C10—N2—C11—C7 1.2 (9)
Br2—Pd1—N1—C12 −174.1 (4) Pd1—N2—C11—C7 −177.7 (5)
N1—Pd1—N2—C10 177.9 (6) C10—N2—C11—C12 −178.5 (6)
Br1—Pd1—N2—C10 −1.2 (6) Pd1—N2—C11—C12 2.6 (7)
N1—Pd1—N2—C11 −3.4 (5) C8—C7—C11—N2 −0.2 (10)
Br1—Pd1—N2—C11 177.5 (4) C6—C7—C11—N2 −179.3 (6)
C12—N1—C1—C2 −0.7 (11) C8—C7—C11—C12 179.5 (6)
Pd1—N1—C1—C2 −178.9 (5) C6—C7—C11—C12 0.3 (10)
N1—C1—C2—C3 1.6 (12) C1—N1—C12—C4 0.0 (10)
C1—C2—C3—C4 −1.7 (12) Pd1—N1—C12—C4 178.5 (5)
C2—C3—C4—C12 1.0 (11) C1—N1—C12—C11 178.3 (6)
C2—C3—C4—C5 −179.3 (7) Pd1—N1—C12—C11 −3.2 (7)
C12—C4—C5—C6 −2.5 (11) C3—C4—C12—N1 −0.1 (10)
C3—C4—C5—C6 177.8 (7) C5—C4—C12—N1 −179.8 (6)
C4—C5—C6—C7 2.0 (11) C3—C4—C12—C11 −178.3 (6)
C5—C6—C7—C8 −179.9 (7) C5—C4—C12—C11 2.0 (10)
C5—C6—C7—C11 −0.9 (11) N2—C11—C12—N1 0.4 (9)
C11—C7—C8—C9 −0.3 (10) C7—C11—C12—N1 −179.2 (6)
C6—C7—C8—C9 178.8 (7) N2—C11—C12—C4 178.7 (6)
C7—C8—C9—C10 −0.3 (11) C7—C11—C12—C4 −0.9 (10)
C11—N2—C10—C9 −1.8 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2703).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheng, C. P., Plankey, B., Rund, J. V. & Brown, T. L. (1977). J. Am. Chem. Soc.99, 8413–8417.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Grzesiak, A. L. & Matzger, A. J. (2007). Inorg. Chem.46, 453–457. [DOI] [PubMed]
  5. Ha, K. (2009). Acta Cryst. E65, m1588. [DOI] [PMC free article] [PubMed]
  6. Maekawa, M., Munakata, M., Kitagawa, S. & Nakamura, M. (1991). Anal. Sci.7, 521–522.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Smeets, W. J. J., Spek, A. L., Hoare, J. L., Canty, A. J., Hovestad, N. & van Koten, G. (1997). Acta Cryst. C53, 1045–1047.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905168X/xu2703sup1.cif

e-66-000m7-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905168X/xu2703Isup2.hkl

e-66-000m7-Isup2.hkl (144KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES