Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 4;66(Pt 1):o22. doi: 10.1107/S1600536809050806

Phenyl N-cyclo­hexyl­carbamate

Durre Shahwar a, M Nawaz Tahir b,*, Naeem Ahmad a, Sami Ullah a, Muhammad Akmal Khan a
PMCID: PMC2980024  PMID: 21580104

Abstract

In the title compound, C13H17NO2, the dihedral angle between the benzene ring and the basal plane of the cyclo­hexyl ring is 49.55 (8)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains propagating in [010].

Related literature

For related structures, see: Shahwar et al. (2009a ,b , 2010).graphic file with name e-66-00o22-scheme1.jpg

Experimental

Crystal data

  • C13H17NO2

  • M r = 219.28

  • Monoclinic, Inline graphic

  • a = 11.4724 (11) Å

  • b = 9.3554 (8) Å

  • c = 11.5212 (10) Å

  • β = 92.380 (5)°

  • V = 1235.49 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.28 × 0.11 × 0.09 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.987, T max = 0.993

  • 10855 measured reflections

  • 2265 independent reflections

  • 1207 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.127

  • S = 0.99

  • 2265 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050806/hb5247sup1.cif

e-66-00o22-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050806/hb5247Isup2.hkl

e-66-00o22-Isup2.hkl (109.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.849 (19) 2.018 (19) 2.865 (2) 175 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

DS is grateful to Dr I. U. Khan and M. N. Arshad for their assistance with the data collection.

supplementary crystallographic information

Comment

The crystal structures of (II) phenyl piperidine-1-carboxylate (Shahwar et al., 2010), (III) phenyl N-(2-methylphenyl)carbamate (Shahwar et al., 2009a) and (IV) phenyl N-phenylcarbamate (Shahwar et al., 2009b) have been reported by us. In continuation to synthesize various carbamates for the study of biological activities, the title compound (I, Fig. 1) is being reported.

In (I), the benzene ring A (C1—C6) is of course planar. The central carbamate group B (O1/O2/C7/N1) and the basal plane C (C9/C10/C12/C13) of cyclohexyl are also planar with maximum r. m. s. deviations of 0.002 and 0.005 Å respectively, from the respective mean square planes. The dihedral angles between A/B, B/C and A/C are 76.26 (8)°, 70.99 (9)° and 52.17 (7)° respectively. The cyclohexyl ring is in the chair conformation with the apical atoms C8 and C11 are at a distance of 0.652 (3) and -0.668 (4) Å respectively, from the basal plane (C9/C10/C12/C13). The molecules are stabilized in the form of polymeric chains (Table 1, Fig. 2).

Experimental

Cyclohexylamine (0.01 M, 1.15 ml) and triethylamine (0.012 M, 1.66 ml) were added to 20 ml dichloromethane in a 50 ml round bottom flask equipped with magnetic stirrer. Phenyl chloroformate (0.01 M, 1.26 ml) was added drop wise with continuous stirring of the contents of the flask. After complete addition the stirring was continued for 30 minutes. Extra dichloromethane was evaporated and then resulting solid was washed with 1M HCl and filtered to get pure product. Recrystallization of the crude product with ethyl acetate affoarded colourless needles of (I).

Refinement

The coordinates of H1N were located in a difference map and refined. The other H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(Carrier).

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The partial packing of (I), which shows that molecules form infinite chains.

Crystal data

C13H17NO2 F(000) = 472
Mr = 219.28 Dx = 1.179 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2265 reflections
a = 11.4724 (11) Å θ = 2.8–25.4°
b = 9.3554 (8) Å µ = 0.08 mm1
c = 11.5212 (10) Å T = 296 K
β = 92.380 (5)° Needle, colourless
V = 1235.49 (19) Å3 0.28 × 0.11 × 0.09 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2265 independent reflections
Radiation source: fine-focus sealed tube 1207 reflections with I > 2σ(I)
graphite Rint = 0.043
Detector resolution: 7.90 pixels mm-1 θmax = 25.4°, θmin = 2.8°
ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −11→11
Tmin = 0.987, Tmax = 0.993 l = −13→13
10855 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.1974P] where P = (Fo2 + 2Fc2)/3
2265 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.09944 (15) 0.52058 (14) 0.31355 (14) 0.0774 (7)
O2 −0.03969 (14) 0.74215 (15) 0.26826 (13) 0.0704 (6)
N1 0.06141 (17) 0.54662 (18) 0.21748 (16) 0.0592 (7)
C1 −0.1882 (2) 0.5766 (2) 0.3782 (2) 0.0562 (9)
C2 −0.16451 (18) 0.62858 (16) 0.48728 (15) 0.0657 (10)
C3 −0.25438 (18) 0.67436 (16) 0.55214 (15) 0.0756 (10)
C4 −0.3657 (3) 0.6653 (3) 0.5093 (3) 0.0874 (12)
C5 −0.3892 (3) 0.6127 (3) 0.4005 (3) 0.0941 (12)
C6 −0.2992 (3) 0.5681 (3) 0.3342 (2) 0.0769 (11)
C7 −0.0243 (2) 0.6158 (2) 0.26526 (17) 0.0513 (8)
C8 0.15329 (19) 0.6175 (2) 0.15547 (17) 0.0503 (8)
C9 0.1297 (2) 0.6138 (2) 0.02537 (18) 0.0640 (9)
C10 0.2269 (2) 0.6843 (3) −0.03874 (19) 0.0759 (10)
C11 0.3421 (2) 0.6149 (3) −0.0078 (2) 0.0790 (11)
C12 0.3672 (2) 0.6198 (3) 0.1221 (2) 0.0861 (11)
C13 0.2694 (2) 0.5510 (3) 0.18732 (19) 0.0687 (10)
H1N 0.0588 (19) 0.456 (2) 0.2198 (17) 0.0710*
H2 −0.08804 0.63285 0.51718 0.0788*
H3 −0.23893 0.71187 0.62593 0.0905*
H4 −0.42659 0.69512 0.55435 0.1045*
H5 −0.46588 0.60696 0.37127 0.1126*
H6 −0.31450 0.53240 0.25975 0.0923*
H8 0.15598 0.71776 0.17996 0.0604*
H9A 0.05675 0.66261 0.00635 0.0768*
H9B 0.12155 0.51529 0.00004 0.0768*
H10A 0.21067 0.67673 −0.12180 0.0910*
H10B 0.23069 0.78500 −0.01876 0.0910*
H11A 0.40367 0.66398 −0.04704 0.0947*
H11B 0.34065 0.51622 −0.03374 0.0947*
H12A 0.37630 0.71850 0.14666 0.1033*
H12B 0.43979 0.57023 0.14083 0.1033*
H13A 0.26646 0.44966 0.16960 0.0825*
H13B 0.28555 0.56132 0.27021 0.0825*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0806 (13) 0.0403 (9) 0.1156 (13) −0.0035 (8) 0.0577 (11) −0.0012 (8)
O2 0.0816 (13) 0.0329 (8) 0.0991 (12) 0.0038 (8) 0.0325 (9) 0.0029 (8)
N1 0.0672 (14) 0.0331 (9) 0.0796 (14) −0.0014 (10) 0.0321 (11) 0.0008 (9)
C1 0.0607 (18) 0.0409 (12) 0.0687 (16) 0.0029 (11) 0.0232 (14) 0.0050 (11)
C2 0.0613 (18) 0.0572 (14) 0.0786 (18) −0.0003 (12) 0.0025 (14) 0.0031 (13)
C3 0.094 (2) 0.0744 (17) 0.0594 (16) 0.0046 (16) 0.0156 (16) 0.0005 (12)
C4 0.077 (2) 0.102 (2) 0.086 (2) 0.0202 (17) 0.0361 (18) 0.0012 (16)
C5 0.056 (2) 0.127 (2) 0.099 (2) 0.0117 (16) 0.0010 (17) −0.0054 (19)
C6 0.078 (2) 0.0915 (19) 0.0615 (17) 0.0040 (15) 0.0065 (16) −0.0072 (13)
C7 0.0600 (16) 0.0359 (12) 0.0593 (13) −0.0039 (11) 0.0165 (11) 0.0001 (10)
C8 0.0569 (16) 0.0398 (11) 0.0553 (14) −0.0073 (10) 0.0152 (11) −0.0018 (9)
C9 0.0624 (18) 0.0666 (15) 0.0628 (15) −0.0008 (12) 0.0012 (13) 0.0054 (11)
C10 0.093 (2) 0.0819 (17) 0.0537 (15) −0.0121 (16) 0.0139 (15) 0.0079 (12)
C11 0.072 (2) 0.097 (2) 0.0701 (18) −0.0193 (15) 0.0284 (15) −0.0077 (14)
C12 0.0556 (19) 0.124 (2) 0.0791 (19) −0.0113 (16) 0.0093 (14) 0.0037 (16)
C13 0.0644 (19) 0.0845 (17) 0.0572 (15) 0.0016 (13) 0.0025 (13) 0.0076 (12)

Geometric parameters (Å, °)

O1—C1 1.389 (3) C12—C13 1.519 (3)
O1—C7 1.373 (3) C2—H2 0.9300
O2—C7 1.196 (2) C3—H3 0.9300
N1—C7 1.317 (3) C4—H4 0.9300
N1—C8 1.457 (3) C5—H5 0.9300
N1—H1N 0.849 (19) C6—H6 0.9300
C1—C2 1.364 (3) C8—H8 0.9800
C1—C6 1.353 (4) C9—H9A 0.9700
C2—C3 1.367 (3) C9—H9B 0.9700
C3—C4 1.353 (4) C10—H10A 0.9700
C4—C5 1.363 (5) C10—H10B 0.9700
C5—C6 1.375 (5) C11—H11A 0.9700
C8—C13 1.502 (3) C11—H11B 0.9700
C8—C9 1.512 (3) C12—H12A 0.9700
C9—C10 1.514 (3) C12—H12B 0.9700
C10—C11 1.502 (3) C13—H13A 0.9700
C11—C12 1.513 (3) C13—H13B 0.9700
C1—O1—C7 117.32 (15) C1—C6—H6 120.00
C7—N1—C8 123.31 (17) C5—C6—H6 120.00
C7—N1—H1N 116.7 (15) N1—C8—H8 108.00
C8—N1—H1N 119.8 (14) C9—C8—H8 108.00
O1—C1—C2 120.4 (2) C13—C8—H8 108.00
O1—C1—C6 118.5 (2) C8—C9—H9A 109.00
C2—C1—C6 121.0 (2) C8—C9—H9B 109.00
C1—C2—C3 119.29 (19) C10—C9—H9A 109.00
C2—C3—C4 120.2 (2) C10—C9—H9B 109.00
C3—C4—C5 120.4 (3) H9A—C9—H9B 108.00
C4—C5—C6 119.8 (3) C9—C10—H10A 110.00
C1—C6—C5 119.4 (2) C9—C10—H10B 110.00
O1—C7—O2 122.3 (2) C11—C10—H10A 109.00
O1—C7—N1 110.04 (16) C11—C10—H10B 109.00
O2—C7—N1 127.7 (2) H10A—C10—H10B 108.00
N1—C8—C9 111.85 (17) C10—C11—H11A 110.00
C9—C8—C13 110.68 (17) C10—C11—H11B 110.00
N1—C8—C13 110.12 (17) C12—C11—H11A 110.00
C8—C9—C10 111.62 (18) C12—C11—H11B 109.00
C9—C10—C11 110.8 (2) H11A—C11—H11B 108.00
C10—C11—C12 110.56 (19) C11—C12—H12A 109.00
C11—C12—C13 111.24 (19) C11—C12—H12B 109.00
C8—C13—C12 111.7 (2) C13—C12—H12A 109.00
C1—C2—H2 120.00 C13—C12—H12B 109.00
C3—C2—H2 120.00 H12A—C12—H12B 108.00
C2—C3—H3 120.00 C8—C13—H13A 109.00
C4—C3—H3 120.00 C8—C13—H13B 109.00
C3—C4—H4 120.00 C12—C13—H13A 109.00
C5—C4—H4 120.00 C12—C13—H13B 109.00
C4—C5—H5 120.00 H13A—C13—H13B 108.00
C6—C5—H5 120.00
C7—O1—C1—C2 −75.3 (2) C1—C2—C3—C4 1.4 (3)
C7—O1—C1—C6 109.8 (2) C2—C3—C4—C5 −1.1 (4)
C1—O1—C7—O2 −7.1 (3) C3—C4—C5—C6 0.3 (4)
C1—O1—C7—N1 173.43 (18) C4—C5—C6—C1 0.2 (4)
C8—N1—C7—O1 177.79 (18) N1—C8—C9—C10 −178.57 (18)
C8—N1—C7—O2 −1.7 (4) C13—C8—C9—C10 −55.4 (2)
C7—N1—C8—C9 −98.5 (2) N1—C8—C13—C12 178.63 (18)
C7—N1—C8—C13 138.0 (2) C9—C8—C13—C12 54.5 (2)
O1—C1—C2—C3 −175.67 (16) C8—C9—C10—C11 56.9 (2)
C6—C1—C2—C3 −0.9 (3) C9—C10—C11—C12 −56.8 (3)
O1—C1—C6—C5 175.0 (2) C10—C11—C12—C13 56.1 (3)
C2—C1—C6—C5 0.1 (4) C11—C12—C13—C8 −55.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.849 (19) 2.018 (19) 2.865 (2) 175 (2)

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5247).

References

  1. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Shahwar, D., Tahir, M. N., Ahmad, N., Ullah, S. & Khan, M. A. (2010). Acta Cryst. E66, o21. [DOI] [PMC free article] [PubMed]
  6. Shahwar, D., Tahir, M. N., Ahmad, N., Yasmeen, A. & Ullah, S. (2009a). Acta Cryst. E65, o1629. [DOI] [PMC free article] [PubMed]
  7. Shahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009b). Acta Cryst. E65, o1363. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809050806/hb5247sup1.cif

e-66-00o22-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050806/hb5247Isup2.hkl

e-66-00o22-Isup2.hkl (109.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES