Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 12;66(Pt 1):o107–o108. doi: 10.1107/S1600536809052568

1-[2-(2,6-Dichloro­benz­yloxy)-2-(2-fur­yl)eth­yl]-1H-1,2,4-triazole

Özden Özel Güven a, Hakan Tahtacı a, Simon J Coles b, Tuncer Hökelek c,*
PMCID: PMC2980028  PMID: 21579997

Abstract

In the mol­ecule of the title compound, C15H13Cl2N3O2, the triazole ring is oriented at dihedral angles of 2.54 (13) and 44.43 (12)°, respectively with respect to the furan and dichloro­benzene rings. The dihedral angle between the dichloro­benzene and furan rings is 46.75 (12)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers and π–π contacts between dichloro­benzene rings [centroid–centroid distance = 3.583 (2) Å] may further stabilize the structure. Inter­molecular C—H⋯π contacts between the triazole and furan rings also occur.

Related literature

For general background to anti­fungal agents, see: Caira et al. (2004); Godefroi et al. (1969); Özel Güven et al. (2007a ,b ); Paulvannan et al. (2001); Peeters et al. (1996); Wahbi et al. (1995). For related structures, see: Freer et al. (1986); Özel Güven et al. (2008a ,b ,c ,d ,e ,f ); Özel Güven et al. (2009); Peeters et al. (1979).graphic file with name e-66-0o107-scheme1.jpg

Experimental

Crystal data

  • C15H13Cl2N3O2

  • M r = 338.18

  • Monoclinic, Inline graphic

  • a = 10.5853 (3) Å

  • b = 12.4960 (2) Å

  • c = 12.5850 (3) Å

  • β = 114.455 (1)°

  • V = 1515.32 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.10 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.837, T max = 0.955

  • 33067 measured reflections

  • 3438 independent reflections

  • 2775 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.180

  • S = 1.04

  • 3438 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052568/xu2704sup1.cif

e-66-0o107-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052568/xu2704Isup2.hkl

e-66-0o107-Isup2.hkl (165.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.44 3.363 (3) 173
C9—H9B⋯Cl2 0.97 2.62 3.109 (3) 112
C1—H1⋯Cg2ii 0.93 2.79 3.488 (4) 133
C7—H7⋯Cg1iii 0.93 2.93 3.570 (4) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 and Cg2 are the centroids of the N1–N3/C1/C2 and O2/C5–C8 rings, respectively.

Acknowledgments

The authors acknowledge Zonguldak Karaelmas University Research Fund (project No. 2008–13–02–06) for financial support.

supplementary crystallographic information

Comment

In recent years, among antifungal agents, azole derivatives still have an important place in the class of systemic antifungal drugs. Some ether structures containing 1H-imidazole ring like micozanole, ecozanole and sulconazole have been synthesized and developed for clinical uses as antifungal agents (Godefroi et al., 1969). The crystal structures of these ether derivatives like miconazole (Peeters et al., 1979), econazole (Freer et al., 1986) have been reported previously. Also, antifungal activity of aromatic ethers possessing 1H-1,2,4-triazole ring have been reported (Wahbi et al., 1995). Itraconazole (Peeters et al., 1996) and fluconazole (Caira et al., 2004) are 1H-1,2,4-triazole ring containing azole derivatives. 1,2,4-Triazoles are biologically interesting molecules and their chemistry is receiving considerable attention due to antihypertensive, antifungal and antibacterial properties (Paulvannan et al., 2001). Ether structures possessing 1H-benzimidazole ring have been reported to show antibacterial activity more than antifungal activity (Özel Güven et al., 2007a,b). The crystal structures of 1H-benzimidazole ring containing ether derivatives (Özel Güven et al., 2008a,b,c,d) and also,1H-1,2,4-triazole ring containing ether derivatives have been reported recently (Özel Güven et al., 2008e,f; Özel Güven et al., 2009). Now, we report herein the crystal structure of 2,6-dichloro- derivative of 1H-1,2,4-triazole and furyl rings containing ether structure.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar triazole ring is oriented with respect to the furan and dichlorobenzene rings at dihedral angles of 2.54 (13)° and 44.43 (12)°, respectively. Atoms C3, C4 and C9 are -0.064 (3), 0.039 (3) and -0.073 (3) Å away from the planes of the triazole, furan and dichlorobenzene, respectively. So, they are nearly coplanar with the adjacent rings. The dichlorobenzene ring is oriented with respect to the furan ring at a dihedral angle of 46.75 (12)°. An intramolecular C—H···Cl hydrogen bond (Table 1) results in the formation of a five-membered ring (Cl2/H9B/C9/C10/C15) adopting envelope conformation with H9B atom displaced by 0.210 (1) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the dichlorobenzene rings, Cg3—Cg3i [symmetry code: (i) -x, -y, 1 - z, where Cg3 is centroid of the ring (C10-C15)] may further stabilize the structure, with centroid-centroid distance of 3.583 (2) Å. Intermolecular C—H···π interactions (Table 1) are also observed between the triazole and furan rings.

Experimental

The title compound was synthesized by the reaction of 1-(furan-2-yl)-2-(1H-1,2,4-triazol-1-yl)ethanol (unpublished results) with NaH and appropriate benzyl halide. To a solution of alcohol (500 mg, 2.791 mmol) in DMF (4 ml) was added NaH (112 mg, 2.791 mmol) in small fractions. The appropriate benzyl halide (669 mg, 2.791 mmol) was added dropwise. The mixture was stirred at room temperature for 3 h, and excess hydride was decomposed with methyl alcohol (5 ml). After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform as eluent. Crystals suitable for X-ray analysis were obtained by the recrystallization of the ether from isopropanol solution (yield; 500 mg, 53%).

Refinement

H atoms were positioned geometrically, with C–H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond.

Fig. 2.

Fig. 2.

A partial packing diagram.

Crystal data

C15H13Cl2N3O2 F(000) = 696
Mr = 338.18 Dx = 1.482 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 23020 reflections
a = 10.5853 (3) Å θ = 2.9–27.5°
b = 12.4960 (2) Å µ = 0.44 mm1
c = 12.5850 (3) Å T = 120 K
β = 114.455 (1)° Plate, colorless
V = 1515.32 (6) Å3 0.40 × 0.40 × 0.10 mm
Z = 4

Data collection

Bruker–Nonius KappaCCD diffractometer 3438 independent reflections
Radiation source: fine-focus sealed tube 2775 reflections with I > 2σ(I)
graphite Rint = 0.058
φ and ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −13→13
Tmin = 0.837, Tmax = 0.955 k = −14→15
33067 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.0984P)2 + 1.9705P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3438 reflections Δρmax = 1.20 e Å3
200 parameters Δρmin = −0.76 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.051 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.32066 (8) 0.66344 (7) 1.08482 (8) 0.0470 (3)
Cl2 0.29005 (8) 0.31220 (7) 0.82358 (9) 0.0497 (3)
O1 0.07950 (17) 0.54757 (14) 0.86960 (15) 0.0231 (4)
O2 −0.1088 (3) 0.5914 (2) 0.5685 (2) 0.0483 (6)
N1 −0.0576 (2) 0.71549 (17) 0.93071 (19) 0.0226 (5)
N2 −0.0121 (2) 0.81516 (18) 0.9183 (2) 0.0284 (5)
N3 0.0458 (2) 0.7770 (2) 1.1089 (2) 0.0298 (5)
C1 0.0483 (3) 0.8475 (2) 1.0282 (3) 0.0300 (6)
H1 0.0898 0.9144 1.0487 0.036*
C2 −0.0207 (3) 0.6947 (2) 1.0435 (2) 0.0255 (5)
H2 −0.0393 0.6309 1.0724 0.031*
C3 −0.1260 (3) 0.6463 (2) 0.8301 (2) 0.0248 (5)
H3A −0.2023 0.6846 0.7706 0.030*
H3B −0.1638 0.5842 0.8530 0.030*
C4 −0.0241 (2) 0.6098 (2) 0.7800 (2) 0.0228 (5)
H4 0.0197 0.6727 0.7628 0.027*
C5 −0.0952 (3) 0.5454 (2) 0.6705 (2) 0.0250 (5)
C6 −0.1805 (4) 0.5198 (4) 0.4817 (3) 0.0582 (11)
H6 −0.2048 0.5311 0.4026 0.070*
C7 −0.2101 (3) 0.4328 (3) 0.5259 (3) 0.0457 (9)
H7 −0.2564 0.3726 0.4847 0.055*
C8 −0.1574 (3) 0.4484 (3) 0.6500 (3) 0.0429 (8)
H8 −0.1646 0.4016 0.7047 0.051*
C9 0.2081 (3) 0.5444 (2) 0.8579 (2) 0.0244 (5)
H9A 0.2416 0.6164 0.8565 0.029*
H9B 0.1961 0.5086 0.7859 0.029*
C10 0.3091 (2) 0.4839 (2) 0.9611 (2) 0.0224 (5)
C11 0.3640 (3) 0.5315 (2) 1.0718 (2) 0.0283 (6)
C12 0.4517 (3) 0.4781 (3) 1.1713 (3) 0.0424 (8)
H12 0.4849 0.5122 1.2435 0.051*
C13 0.4890 (3) 0.3753 (3) 1.1629 (3) 0.0459 (9)
H13 0.5469 0.3388 1.2297 0.055*
C14 0.4416 (3) 0.3250 (2) 1.0558 (4) 0.0427 (9)
H14 0.4695 0.2555 1.0500 0.051*
C15 0.3507 (3) 0.3794 (2) 0.9559 (3) 0.0304 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0272 (4) 0.0521 (5) 0.0535 (5) 0.0023 (3) 0.0085 (3) −0.0273 (4)
Cl2 0.0340 (4) 0.0412 (5) 0.0711 (6) −0.0067 (3) 0.0191 (4) −0.0283 (4)
O1 0.0144 (8) 0.0260 (9) 0.0257 (9) 0.0012 (6) 0.0052 (7) 0.0068 (7)
O2 0.0633 (16) 0.0525 (15) 0.0306 (12) −0.0134 (12) 0.0208 (11) −0.0054 (10)
N1 0.0183 (10) 0.0227 (11) 0.0247 (11) −0.0008 (8) 0.0069 (8) 0.0013 (8)
N2 0.0284 (12) 0.0243 (12) 0.0289 (12) −0.0032 (9) 0.0082 (9) 0.0016 (9)
N3 0.0262 (11) 0.0356 (13) 0.0269 (12) 0.0010 (10) 0.0105 (9) −0.0031 (9)
C1 0.0244 (13) 0.0283 (14) 0.0341 (15) −0.0025 (10) 0.0089 (11) −0.0028 (11)
C2 0.0228 (12) 0.0282 (13) 0.0282 (13) 0.0003 (10) 0.0131 (11) 0.0020 (10)
C3 0.0172 (11) 0.0250 (13) 0.0271 (13) −0.0020 (9) 0.0041 (10) −0.0012 (10)
C4 0.0168 (11) 0.0230 (12) 0.0233 (12) 0.0005 (9) 0.0032 (9) 0.0040 (9)
C5 0.0201 (12) 0.0264 (13) 0.0247 (13) 0.0046 (9) 0.0057 (10) 0.0000 (10)
C6 0.065 (3) 0.077 (3) 0.0307 (17) −0.009 (2) 0.0176 (17) −0.0201 (17)
C7 0.0299 (15) 0.0392 (18) 0.051 (2) 0.0080 (13) −0.0004 (14) −0.0203 (15)
C8 0.0333 (16) 0.0322 (16) 0.0470 (19) −0.0052 (12) 0.0004 (14) 0.0062 (13)
C9 0.0177 (11) 0.0308 (13) 0.0254 (13) 0.0016 (9) 0.0096 (10) 0.0038 (10)
C10 0.0152 (11) 0.0240 (12) 0.0286 (13) 0.0001 (9) 0.0095 (10) 0.0050 (10)
C11 0.0165 (11) 0.0400 (15) 0.0289 (14) 0.0013 (10) 0.0098 (10) 0.0039 (11)
C12 0.0208 (13) 0.080 (3) 0.0261 (15) 0.0038 (14) 0.0098 (12) 0.0119 (15)
C13 0.0222 (14) 0.068 (2) 0.0461 (19) 0.0056 (14) 0.0131 (13) 0.0354 (17)
C14 0.0233 (14) 0.0281 (15) 0.080 (3) 0.0056 (11) 0.0243 (16) 0.0228 (15)
C15 0.0190 (12) 0.0248 (13) 0.0472 (17) −0.0040 (10) 0.0134 (12) −0.0008 (11)

Geometric parameters (Å, °)

N1—N2 1.367 (3) C7—C8 1.438 (5)
C1—N2 1.324 (4) C7—H7 0.9300
C1—N3 1.352 (4) C8—H8 0.9300
C1—H1 0.9300 C9—O1 1.429 (3)
C2—N3 1.323 (4) C9—H9A 0.9700
C2—N1 1.333 (3) C9—H9B 0.9700
C2—H2 0.9300 C10—C9 1.501 (3)
C3—N1 1.455 (3) C10—C11 1.401 (4)
C3—H3A 0.9700 C10—C15 1.389 (4)
C3—H3B 0.9700 C11—Cl1 1.737 (3)
C4—O1 1.434 (3) C11—C12 1.383 (4)
C4—C3 1.527 (4) C12—C13 1.361 (6)
C4—C5 1.501 (4) C12—H12 0.9300
C4—H4 0.9800 C13—C14 1.380 (6)
C5—O2 1.359 (4) C13—H13 0.9300
C5—C8 1.352 (4) C14—C15 1.403 (4)
C6—O2 1.373 (4) C14—H14 0.9300
C6—C7 1.317 (6) C15—Cl2 1.733 (3)
C6—H6 0.9300
C9—O1—C4 112.62 (18) C6—C7—C8 107.1 (3)
C5—O2—C6 106.5 (3) C6—C7—H7 126.5
N2—N1—C3 120.9 (2) C8—C7—H7 126.5
C2—N1—N2 109.7 (2) C5—C8—C7 105.6 (3)
C2—N1—C3 129.2 (2) C5—C8—H8 127.2
C1—N2—N1 101.5 (2) C7—C8—H8 127.2
C2—N3—C1 102.1 (2) O1—C9—C10 107.01 (19)
N2—C1—N3 115.7 (2) O1—C9—H9A 110.3
N2—C1—H1 122.1 O1—C9—H9B 110.3
N3—C1—H1 122.1 C10—C9—H9A 110.3
N1—C2—H2 124.5 C10—C9—H9B 110.3
N3—C2—N1 110.9 (2) H9A—C9—H9B 108.6
N3—C2—H2 124.5 C11—C10—C9 120.1 (2)
N1—C3—C4 110.8 (2) C15—C10—C9 124.0 (2)
N1—C3—H3A 109.5 C15—C10—C11 115.9 (2)
N1—C3—H3B 109.5 C10—C11—Cl1 118.7 (2)
C4—C3—H3A 109.5 C12—C11—C10 122.9 (3)
C4—C3—H3B 109.5 C12—C11—Cl1 118.5 (3)
H3A—C3—H3B 108.1 C11—C12—H12 120.3
O1—C4—C3 106.1 (2) C13—C12—C11 119.5 (3)
O1—C4—C5 111.1 (2) C13—C12—H12 120.3
O1—C4—H4 109.3 C12—C13—C14 120.5 (3)
C3—C4—H4 109.3 C12—C13—H13 119.8
C5—C4—C3 111.5 (2) C14—C13—H13 119.8
C5—C4—H4 109.3 C13—C14—C15 119.5 (3)
O2—C5—C4 117.2 (2) C13—C14—H14 120.3
C8—C5—O2 110.3 (3) C15—C14—H14 120.3
C8—C5—C4 132.5 (3) C10—C15—Cl2 120.2 (2)
O2—C6—H6 124.7 C10—C15—C14 121.8 (3)
C7—C6—O2 110.6 (3) C14—C15—Cl2 118.1 (2)
C7—C6—H6 124.7
C2—N1—N2—C1 −1.0 (3) C7—C6—O2—C5 −0.4 (4)
C3—N1—N2—C1 −176.9 (2) O2—C6—C7—C8 1.3 (4)
N3—C1—N2—N1 0.4 (3) C6—C7—C8—C5 −1.7 (4)
N2—C1—N3—C2 0.3 (3) C10—C9—O1—C4 176.0 (2)
N3—C2—N1—N2 1.3 (3) C11—C10—C9—O1 −73.1 (3)
N3—C2—N1—C3 176.7 (2) C15—C10—C9—O1 104.8 (3)
N1—C2—N3—C1 −1.0 (3) C9—C10—C11—Cl1 −3.8 (3)
C4—C3—N1—C2 −107.0 (3) C9—C10—C11—C12 176.5 (2)
C4—C3—N1—N2 68.0 (3) C15—C10—C11—Cl1 178.21 (19)
C3—C4—O1—C9 −156.0 (2) C15—C10—C11—C12 −1.5 (4)
C5—C4—O1—C9 82.6 (3) C9—C10—C15—Cl2 2.2 (3)
O1—C4—C3—N1 63.3 (3) C9—C10—C15—C14 −177.5 (2)
C5—C4—C3—N1 −175.5 (2) C11—C10—C15—Cl2 −179.85 (19)
O1—C4—C5—O2 −132.0 (2) C11—C10—C15—C14 0.4 (4)
O1—C4—C5—C8 51.7 (4) C10—C11—C12—C13 0.9 (4)
C3—C4—C5—O2 109.7 (3) Cl1—C11—C12—C13 −178.8 (2)
C3—C4—C5—C8 −66.6 (4) C11—C12—C13—C14 0.9 (4)
C4—C5—O2—C6 −177.9 (3) C12—C13—C14—C15 −2.0 (4)
C8—C5—O2—C6 −0.8 (4) C13—C14—C15—Cl2 −178.4 (2)
O2—C5—C8—C7 1.5 (4) C13—C14—C15—C10 1.3 (4)
C4—C5—C8—C7 178.0 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1–N3/C1/C2 and O2/C5–C8 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.93 2.44 3.363 (3) 173
C9—H9B···Cl2 0.97 2.62 3.109 (3) 112
C1—H1···Cg2ii 0.93 2.79 3.488 (4) 133
C7—H7···Cg1iii 0.93 2.93 3.570 (4) 127

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−3/2, −y−1/2, z−3/2; (iii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2704).

References

  1. Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci.93, 601–611. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.
  5. Godefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. J. (1969). J. Med. Chem.12, 784–791. [DOI] [PubMed]
  6. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437. [DOI] [PMC free article] [PubMed]
  9. Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496–o1497. [DOI] [PMC free article] [PubMed]
  10. Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588–o1589. [DOI] [PMC free article] [PubMed]
  11. Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655–o1656. [DOI] [PMC free article] [PubMed]
  12. Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett.17, 2233–2236. [DOI] [PubMed]
  13. Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem.44, 731–734.
  14. Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008e). Acta Cryst. E64, o1914–o1915. [DOI] [PMC free article] [PubMed]
  15. Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2009). Acta Cryst. E65, o2868–o2869. [DOI] [PMC free article] [PubMed]
  16. Özel Güven, Ö., Tahtacı, H., Tahir, M. N. & Hökelek, T. (2008f). Acta Cryst. E64, o2465. [DOI] [PMC free article] [PubMed]
  17. Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682.
  18. Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464.
  19. Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.
  20. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Wahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem.30, 955–962.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052568/xu2704sup1.cif

e-66-0o107-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052568/xu2704Isup2.hkl

e-66-0o107-Isup2.hkl (165.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES