Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 19;66(Pt 1):m86–m87. doi: 10.1107/S1600536809053896

catena-Poly[[[triaqua­manganese(II)]-μ-4,4′-bipyridine-κ2 N:N′-[triaqua­manganese(II)]-μ-pyrimidine-4,6-dicarboxyl­ato-κ4 N 1,O 6:N 3,O 4] sulfate trihydrate]

Wenguo Wang a, Elisa Barea a, Fátima Linares a,*
PMCID: PMC2980029  PMID: 21579978

Abstract

The two independent MnII ions in the polymeric title compound, {[Mn2(C6H2N2O4)(C10H8N2)(H2O)6]SO4·3H2O}, exhibit distorted MnN2O4 octa­hedral coordination geometries, with the pyrimidine-4,6-dicarboxyl­ate (pmdc) ligand acting in the bis-chelating μ-(κONO′,κN′) bridging mode and the 4,4′-bipyridine (bpy) ligand in the μ-(κNN′) bridging mode. The remaining coordination sites are occupied by O atoms of water mol­ecules. As a consequence, cationic chains of [Mn2(μ-pmdc)(μ-4,4′-bpy)(H2O)6]2+ are generated, which extend approximately along the a axis. Sulfate counter-anions and three uncoordinated water mol­ecules complete the structure, which is stabilized by multiple O—H⋯O hydrogen-bonding inter­actions between the structural units.

Related literature

For the preparation of the pyrimidine-4,6-dicarboxyl­ato ligand (pmdc) we utilized the commercially available 4,6-dimethyl-pyrimidine, which can easily be oxidized to the corresponding dicarboxylic acid (H2pmdc), originally prepared by Hunt et al. (1959). For pmdc coordination compounds, see: Beobide et al. (2008); Masciocchi et al. (2009).graphic file with name e-66-00m86-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C6H2N2O4)(C10H8N2)(H2O)6]SO4·3H2O

  • M r = 690.36

  • Monoclinic, Inline graphic

  • a = 18.745 (2) Å

  • b = 10.7639 (14) Å

  • c = 14.1585 (18) Å

  • β = 111.044 (2)°

  • V = 2666.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 298 K

  • 0.32 × 0.27 × 0.21 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.693, T max = 0.794

  • 30075 measured reflections

  • 6219 independent reflections

  • 5467 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.115

  • S = 1.09

  • 6219 reflections

  • 403 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053896/wm2288sup1.cif

e-66-00m86-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053896/wm2288Isup2.hkl

e-66-00m86-Isup2.hkl (304.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—O12W 2.174 (2)
Mn1—O11W 2.180 (2)
Mn1—O1W 2.187 (2)
Mn1—O42 2.188 (2)
Mn1—N1Bi 2.219 (2)
Mn1—N3 2.272 (2)
Mn2—O2W 2.154 (2)
Mn2—O21W 2.170 (2)
Mn2—O22W 2.201 (2)
Mn2—O62 2.2055 (19)
Mn2—N1B1 2.214 (2)
Mn2—N1 2.282 (2)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1AW⋯O4W 0.82 (1) 1.85 (1) 2.667 (5) 176 (4)
O1W—H1BW⋯O2Sii 0.82 (1) 2.11 (2) 2.891 (3) 159 (4)
O2W—H2BW⋯O62iii 0.82 (1) 1.96 (1) 2.775 (3) 172 (4)
O2W—H2AW⋯O1Sii 0.82 (1) 1.87 (1) 2.681 (3) 172 (4)
O21W—H21A⋯O3Siv 0.82 (1) 1.86 (1) 2.663 (3) 166 (4)
O21W—H21B⋯O5W 0.82 (1) 1.97 (1) 2.782 (4) 172 (4)
O11W—H11A⋯O42v 0.82 (1) 1.95 (1) 2.760 (3) 167 (4)
O11W—H11B⋯O2Siv 0.82 (1) 1.99 (1) 2.797 (3) 168 (4)
O5W—H5AW⋯O4Sii 0.82 2.12 2.927 (4) 168
O5W—H5BW⋯O61vi 0.82 2.15 2.910 (3) 154
O4W—H4AW⋯O41vii 0.82 (1) 1.89 (1) 2.702 (4) 170 (6)
O4W—H4BW⋯O4Wviii 0.82 (1) 2.48 (6) 2.908 (7) 114 (6)
O3W—H3BW⋯O3Siv 0.82 1.93 2.746 (5) 178
O12W—H12A⋯O3W 0.82 (1) 1.85 (1) 2.656 (4) 167 (4)
O12W—H12B⋯O2Sii 0.82 (1) 2.04 (1) 2.840 (3) 166 (4)
O22W—H22A⋯O4Siv 0.82 (1) 1.95 (1) 2.764 (3) 171 (3)
O22W—H22B⋯O61ix 0.82 (1) 2.03 (1) 2.852 (3) 177 (3)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Acknowledgments

Financial support from Spanish MEC (CTQ2008–00037/PPQ and SB-2005–0115) is gratefully acknowledged. The authors thank Professor Jorge A. R. Navarro and Miguel Quirós (U. Granada), Professor Oscar Castillo (U. Vasque Country) and Professor Norberto Masciocchi (U. Insubria) for helpful discussions.

supplementary crystallographic information

Comment

In the structure of the title compound there are two independent manganese ions. Each metal ion exhibits a distorted octahedral coordination geometry built up of one oxygen atom and one nitrogen atom from the bis-chelating pyrimidine-4,6-dicarboxylato ligand (pmdc), one nitrogen atom from the 4,4'-bipyridine (bpy) ligand and three oxygen atoms belonging to three coordinated water molecules (Fig. 1). The bridging nature of the pmdc and bpy ligands yields 1_D polymeric chains (Fig. 2) extending approximately along the a axis. The pmdc ligands adopt a µ-(κONO'',κN') coordination mode, and their N,O chelation results in the formation of two five-membered chelate rings for each metal ion.

The pmdc ligand combines the N,N'-coordination features of pyrimidine to the donor properties of the carboxylate group. Moreover, possessing two easily removable acidic hydrogen atoms, it can be coupled to the M(II) ions of the transition metal series, in search for homoleptic coordination compounds of [M(pmdc)] formulation. In this communication, we have employed 4,4'-bipyridine ligand in order to have a further connectivity.

The structur is in agreement with previous crystallographic studies carried out in our group revealing that the pmdc ligand typically displays a tetradentate µ-(κONO',κN') coordination mode with the carboxylate groups almost coplanar with the pyrimidine ring.

Experimental

The ligand pyrimidine-4,6-dicarboxylic acid (H2pmdc) was prepared from the oxidation of 4,6-dimethyl-pyrimidine (Hunt et al., 1959). The new metal complex [Mn2(µ-4,4'bpy)(µ-pmdc)(H2O)6]SO43H2O was obtained by reaction of an aqueous solution (30 ml) containing pyrimidine-4,6-dicarboxylato (168.3 mg) and MnSO4(H2O) (169.0 mg) at 353 K during 4 h. The resulting yellow suspension was cooled to room temperature and filtered. Subsequent diffusion of 4,4'_bipyridine (312.4 mg), dissolved in 10 ml of methanol, into this solution yielded pale yellow crystals suitable for X-ray diffraction after two weeks.

Refinement

The water H atoms were located in difference maps and were refined as riding with O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(O). The pyrimidine an bipyridine H atoms were positioned geometrically and treated as riding with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Thermal displacement parameters are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the crystal packing showing the formation of [Mn2(µ-4,4'bpy)(µ-pmdc)(H2O)6] chains interacting through multiple H-bonding with sulfate and uncoordinated water molecules.

Crystal data

[Mn2(C6H2N2O4)(C10H8N2)(H2O)6]SO4·3H2O F(000) = 1416
Mr = 690.36 Dx = 1.720 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5467 reflections
a = 18.745 (2) Å θ = 2.2–28.3°
b = 10.7639 (14) Å µ = 1.11 mm1
c = 14.1585 (18) Å T = 298 K
β = 111.044 (2)° Prismatic, yellow
V = 2666.2 (6) Å3 0.32 × 0.27 × 0.21 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 6219 independent reflections
Radiation source: fine-focus sealed tube 5467 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −24→24
Tmin = 0.693, Tmax = 0.794 k = −14→14
30075 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0452P)2 + 3.6924P] where P = (Fo2 + 2Fc2)/3
6219 reflections (Δ/σ)max = 0.001
403 parameters Δρmax = 0.62 e Å3
14 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.08050 (2) 0.39447 (4) 0.41167 (3) 0.02939 (11)
Mn2 0.44821 (2) 0.39042 (4) 0.63222 (3) 0.02798 (11)
S3 0.73306 (3) −0.23319 (6) 0.71958 (5) 0.03205 (15)
O42 0.06099 (10) 0.59414 (18) 0.41849 (16) 0.0379 (4)
O62 0.46593 (10) 0.59002 (17) 0.61315 (15) 0.0347 (4)
O61 0.41374 (11) 0.77834 (18) 0.57634 (16) 0.0402 (5)
C6 0.33123 (13) 0.6050 (2) 0.55476 (18) 0.0254 (5)
C4 0.19647 (13) 0.6050 (2) 0.48627 (19) 0.0269 (5)
O41 0.11712 (12) 0.7803 (2) 0.4390 (2) 0.0518 (6)
N3 0.19627 (11) 0.48139 (19) 0.49708 (16) 0.0282 (4)
C4B1 0.72311 (13) 0.2647 (2) 0.73258 (18) 0.0275 (5)
O4S 0.68705 (13) −0.1207 (2) 0.6968 (2) 0.0562 (6)
N1B1 0.57019 (12) 0.3380 (2) 0.67793 (17) 0.0317 (5)
C61 0.41011 (13) 0.6651 (2) 0.58391 (18) 0.0283 (5)
N1 0.33086 (11) 0.48247 (19) 0.56945 (15) 0.0266 (4)
O3S 0.71671 (16) −0.3041 (3) 0.7977 (2) 0.0683 (8)
C4B 0.80457 (13) 0.2258 (2) 0.76527 (19) 0.0285 (5)
O2S 0.81545 (12) −0.2037 (2) 0.75528 (17) 0.0502 (6)
C5 0.26391 (13) 0.6720 (2) 0.51419 (19) 0.0292 (5)
H5 0.2640 0.7577 0.5061 0.035*
C41 0.11792 (14) 0.6673 (3) 0.4435 (2) 0.0322 (5)
C3B1 0.70266 (15) 0.3893 (3) 0.7259 (2) 0.0393 (7)
H3B1 0.7398 0.4508 0.7388 0.047*
C6B1 0.66448 (14) 0.1778 (2) 0.7099 (2) 0.0320 (5)
H6B1 0.6755 0.0933 0.7131 0.038*
C5B1 0.58987 (14) 0.2179 (3) 0.6825 (2) 0.0347 (6)
H5B1 0.5513 0.1585 0.6664 0.042*
C5B 0.82614 (16) 0.1080 (3) 0.7465 (2) 0.0399 (7)
H5B 0.7892 0.0508 0.7103 0.048*
C2B1 0.62669 (15) 0.4210 (3) 0.6999 (2) 0.0397 (6)
H2B1 0.6142 0.5049 0.6975 0.048*
C2 0.26343 (13) 0.4251 (2) 0.53933 (19) 0.0288 (5)
H2 0.2633 0.3396 0.5485 0.035*
C3B 0.86230 (16) 0.3063 (3) 0.8178 (3) 0.0486 (8)
H3B 0.8509 0.3867 0.8318 0.058*
O1S 0.71547 (15) −0.3118 (3) 0.6300 (2) 0.0710 (8)
C6B 0.90251 (15) 0.0755 (3) 0.7817 (2) 0.0372 (6)
H6B 0.9157 −0.0042 0.7685 0.045*
C2B 0.93727 (16) 0.2667 (3) 0.8495 (3) 0.0541 (9)
H2B 0.9754 0.3228 0.8842 0.065*
N1B 0.95814 (12) 0.1532 (2) 0.83358 (18) 0.0332 (5)
O1W 0.10573 (14) 0.4228 (2) 0.27392 (19) 0.0519 (6)
H1AW 0.0712 (16) 0.435 (4) 0.2194 (15) 0.062*
H1BW 0.1360 (18) 0.375 (3) 0.264 (3) 0.062*
O2W 0.43373 (12) 0.3359 (3) 0.48008 (17) 0.0513 (6)
H2BW 0.4601 (19) 0.363 (4) 0.449 (3) 0.062*
H2AW 0.3894 (8) 0.326 (4) 0.442 (2) 0.062*
O21W 0.40118 (13) 0.2081 (2) 0.63974 (18) 0.0447 (5)
H21A 0.3698 (16) 0.209 (3) 0.668 (2) 0.054*
H21B 0.386 (2) 0.152 (2) 0.597 (2) 0.054*
O11W 0.07172 (11) 0.3346 (2) 0.55418 (16) 0.0440 (5)
H11A 0.0316 (11) 0.344 (4) 0.564 (3) 0.053*
H11B 0.1089 (13) 0.329 (4) 0.6068 (15) 0.053*
O5W 0.33986 (19) 0.0155 (3) 0.5038 (2) 0.0762 (9)
H5AW 0.3389 0.0424 0.4493 0.091*
H5BW 0.3658 −0.0473 0.5088 0.091*
O4W −0.0045 (3) 0.4496 (4) 0.0930 (3) 0.1043 (14)
H4AW −0.041 (2) 0.401 (5) 0.076 (5) 0.125*
H4BW 0.014 (4) 0.418 (6) 0.054 (4) 0.125*
O3W 0.1920 (3) 0.0473 (4) 0.5488 (3) 0.1201 (15)
H3AW 0.1503 0.0425 0.5549 0.144*
H3BW 0.2201 0.0916 0.5941 0.144*
O12W 0.12484 (14) 0.2100 (2) 0.40278 (19) 0.0480 (5)
H12A 0.1488 (19) 0.169 (3) 0.4530 (18) 0.058*
H12B 0.1474 (19) 0.199 (4) 0.364 (2) 0.058*
O22W 0.45581 (11) 0.4068 (2) 0.79051 (16) 0.0377 (4)
H22A 0.4150 (10) 0.391 (3) 0.797 (3) 0.045*
H22B 0.4929 (13) 0.371 (3) 0.831 (2) 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.01547 (18) 0.0318 (2) 0.0378 (2) −0.00094 (14) 0.00581 (15) 0.00010 (15)
Mn2 0.01635 (18) 0.0299 (2) 0.0356 (2) 0.00222 (13) 0.00679 (15) 0.00286 (15)
S3 0.0237 (3) 0.0358 (3) 0.0379 (3) −0.0039 (2) 0.0126 (3) −0.0078 (3)
O42 0.0181 (8) 0.0374 (10) 0.0546 (12) 0.0046 (7) 0.0087 (8) −0.0006 (9)
O62 0.0174 (8) 0.0339 (10) 0.0491 (11) −0.0013 (7) 0.0074 (8) 0.0057 (8)
O61 0.0278 (9) 0.0305 (10) 0.0569 (12) −0.0052 (8) 0.0086 (9) 0.0014 (9)
C6 0.0193 (11) 0.0280 (12) 0.0280 (11) −0.0011 (9) 0.0074 (9) −0.0009 (9)
C4 0.0190 (11) 0.0285 (12) 0.0318 (12) 0.0028 (9) 0.0075 (9) 0.0002 (9)
O41 0.0319 (11) 0.0336 (11) 0.0861 (17) 0.0099 (9) 0.0164 (11) 0.0090 (11)
N3 0.0187 (9) 0.0279 (10) 0.0363 (11) 0.0012 (8) 0.0077 (8) 0.0009 (8)
C4B1 0.0185 (11) 0.0296 (12) 0.0322 (12) 0.0027 (9) 0.0064 (9) 0.0015 (10)
O4S 0.0382 (12) 0.0447 (13) 0.0896 (18) 0.0063 (10) 0.0277 (12) 0.0078 (12)
N1B1 0.0202 (10) 0.0348 (12) 0.0372 (11) 0.0028 (8) 0.0068 (8) 0.0011 (9)
C61 0.0205 (11) 0.0317 (13) 0.0305 (12) −0.0036 (9) 0.0066 (9) 0.0010 (10)
N1 0.0176 (9) 0.0285 (10) 0.0313 (10) 0.0008 (8) 0.0061 (8) 0.0026 (8)
O3S 0.0730 (18) 0.0612 (16) 0.093 (2) 0.0118 (14) 0.0574 (16) 0.0194 (14)
C4B 0.0187 (11) 0.0292 (12) 0.0349 (12) 0.0019 (9) 0.0064 (9) 0.0027 (10)
O2S 0.0283 (10) 0.0618 (15) 0.0542 (13) −0.0055 (10) 0.0072 (9) −0.0114 (11)
C5 0.0223 (11) 0.0251 (12) 0.0387 (13) 0.0008 (9) 0.0092 (10) 0.0007 (10)
C41 0.0195 (11) 0.0347 (14) 0.0416 (14) 0.0060 (10) 0.0102 (10) 0.0029 (11)
C3B1 0.0199 (12) 0.0286 (13) 0.0628 (19) −0.0016 (10) 0.0068 (12) 0.0024 (12)
C6B1 0.0218 (11) 0.0268 (12) 0.0450 (14) 0.0008 (9) 0.0090 (10) −0.0015 (10)
C5B1 0.0206 (12) 0.0314 (13) 0.0500 (16) −0.0022 (10) 0.0100 (11) −0.0029 (11)
C5B 0.0237 (13) 0.0335 (14) 0.0549 (17) −0.0012 (10) 0.0048 (12) −0.0092 (12)
C2B1 0.0247 (13) 0.0270 (13) 0.0607 (18) 0.0044 (10) 0.0073 (12) 0.0021 (12)
C2 0.0192 (11) 0.0264 (12) 0.0376 (13) 0.0003 (9) 0.0064 (10) 0.0025 (10)
C3B 0.0236 (13) 0.0295 (14) 0.080 (2) 0.0028 (11) 0.0031 (14) −0.0115 (14)
O1S 0.0519 (15) 0.090 (2) 0.0696 (17) −0.0077 (14) 0.0206 (13) −0.0426 (15)
C6B 0.0238 (12) 0.0311 (13) 0.0511 (16) 0.0041 (10) 0.0068 (11) −0.0045 (12)
C2B 0.0222 (13) 0.0356 (16) 0.089 (3) −0.0018 (11) 0.0008 (14) −0.0155 (16)
N1B 0.0175 (10) 0.0322 (11) 0.0450 (13) 0.0025 (8) 0.0055 (9) 0.0002 (9)
O1W 0.0490 (14) 0.0593 (15) 0.0528 (13) 0.0171 (11) 0.0249 (11) 0.0136 (12)
O2W 0.0264 (10) 0.0890 (18) 0.0385 (11) −0.0109 (11) 0.0116 (9) −0.0063 (11)
O21W 0.0458 (12) 0.0376 (11) 0.0572 (14) −0.0097 (9) 0.0263 (11) −0.0072 (9)
O11W 0.0234 (9) 0.0704 (15) 0.0373 (11) 0.0081 (10) 0.0097 (8) 0.0067 (10)
O5W 0.103 (2) 0.0530 (16) 0.0651 (17) 0.0213 (15) 0.0207 (16) −0.0019 (13)
O4W 0.121 (3) 0.105 (3) 0.066 (2) −0.079 (3) 0.0082 (19) 0.0021 (18)
O3W 0.155 (4) 0.093 (3) 0.087 (3) 0.023 (3) 0.013 (2) 0.032 (2)
O12W 0.0500 (13) 0.0449 (13) 0.0583 (14) 0.0126 (10) 0.0305 (11) 0.0090 (10)
O22W 0.0284 (10) 0.0438 (11) 0.0395 (10) 0.0049 (8) 0.0106 (8) 0.0049 (8)

Geometric parameters (Å, °)

Mn1—O12W 2.174 (2) C5—H5 0.9300
Mn1—O11W 2.180 (2) C3B1—C2B1 1.380 (4)
Mn1—O1W 2.187 (2) C3B1—H3B1 0.9300
Mn1—O42 2.188 (2) C6B1—C5B1 1.380 (3)
Mn1—N1Bi 2.219 (2) C6B1—H6B1 0.9300
Mn1—N3 2.272 (2) C5B1—H5B1 0.9300
Mn2—O2W 2.154 (2) C5B—C6B 1.381 (4)
Mn2—O21W 2.170 (2) C5B—H5B 0.9300
Mn2—O22W 2.201 (2) C2B1—H2B1 0.9300
Mn2—O62 2.2055 (19) C2—H2 0.9300
Mn2—N1B1 2.214 (2) C3B—C2B 1.380 (4)
Mn2—N1 2.282 (2) C3B—H3B 0.9300
S3—O4S 1.454 (2) C6B—N1B 1.333 (3)
S3—O1S 1.461 (2) C6B—H6B 0.9300
S3—O3S 1.463 (3) C2B—N1B 1.326 (4)
S3—O2S 1.477 (2) C2B—H2B 0.9300
O42—C41 1.270 (3) N1B—Mn1ii 2.219 (2)
O62—C61 1.268 (3) O1W—H1AW 0.820 (5)
O61—C61 1.228 (3) O1W—H1BW 0.818 (5)
C6—N1 1.336 (3) O2W—H2BW 0.820 (5)
C6—C5 1.386 (3) O2W—H2AW 0.818 (5)
C6—C61 1.528 (3) O21W—H21A 0.820 (5)
C4—N3 1.339 (3) O21W—H21B 0.821 (5)
C4—C5 1.384 (3) O11W—H11A 0.820 (5)
C4—C41 1.531 (3) O11W—H11B 0.819 (5)
O41—C41 1.217 (3) O5W—H5AW 0.8183
N3—C2 1.330 (3) O5W—H5BW 0.8202
C4B1—C3B1 1.389 (4) O4W—H4AW 0.819 (5)
C4B1—C6B1 1.390 (3) O4W—H4BW 0.820 (5)
C4B1—C4B 1.488 (3) O3W—H3AW 0.8192
N1B1—C2B1 1.335 (3) O3W—H3BW 0.8207
N1B1—C5B1 1.340 (3) O12W—H12A 0.820 (5)
N1—C2 1.332 (3) O12W—H12B 0.819 (5)
C4B—C3B 1.377 (4) O22W—H22A 0.821 (5)
C4B—C5B 1.385 (4) O22W—H22B 0.819 (5)
O12W—Mn1—O11W 86.62 (9) C3B—C4B—C4B1 120.7 (2)
O12W—Mn1—O1W 82.31 (9) C5B—C4B—C4B1 122.4 (2)
O11W—Mn1—O1W 168.25 (9) C4—C5—C6 116.7 (2)
O12W—Mn1—O42 166.73 (8) C4—C5—H5 121.6
O11W—Mn1—O42 100.38 (9) C6—C5—H5 121.6
O1W—Mn1—O42 89.74 (9) O41—C41—O42 127.7 (2)
O12W—Mn1—N1Bi 96.20 (9) O41—C41—C4 116.8 (2)
O11W—Mn1—N1Bi 89.12 (8) O42—C41—C4 115.5 (2)
O1W—Mn1—N1Bi 95.96 (9) C2B1—C3B1—C4B1 119.4 (2)
O42—Mn1—N1Bi 95.17 (8) C2B1—C3B1—H3B1 120.3
O12W—Mn1—N3 95.45 (9) C4B1—C3B1—H3B1 120.3
O11W—Mn1—N3 90.24 (8) C5B1—C6B1—C4B1 119.5 (2)
O1W—Mn1—N3 86.91 (9) C5B1—C6B1—H6B1 120.3
O42—Mn1—N3 73.43 (7) C4B1—C6B1—H6B1 120.3
N1Bi—Mn1—N3 168.27 (8) N1B1—C5B1—C6B1 123.3 (2)
O2W—Mn2—O21W 83.99 (10) N1B1—C5B1—H5B1 118.3
O2W—Mn2—O22W 168.25 (9) C6B1—C5B1—H5B1 118.3
O21W—Mn2—O22W 84.33 (8) C6B—C5B—C4B 119.9 (3)
O2W—Mn2—O62 96.50 (9) C6B—C5B—H5B 120.0
O21W—Mn2—O62 165.68 (8) C4B—C5B—H5B 120.0
O22W—Mn2—O62 95.12 (8) N1B1—C2B1—C3B1 123.6 (3)
O2W—Mn2—N1B1 88.22 (8) N1B1—C2B1—H2B1 118.2
O21W—Mn2—N1B1 98.64 (9) C3B1—C2B1—H2B1 118.2
O22W—Mn2—N1B1 92.31 (8) N3—C2—N1 124.7 (2)
O62—Mn2—N1B1 95.68 (8) N3—C2—H2 117.6
O2W—Mn2—N1 88.34 (8) N1—C2—H2 117.6
O21W—Mn2—N1 93.45 (8) C4B—C3B—C2B 119.5 (3)
O22W—Mn2—N1 93.60 (7) C4B—C3B—H3B 120.3
O62—Mn2—N1 72.29 (7) C2B—C3B—H3B 120.3
N1B1—Mn2—N1 167.02 (8) N1B—C6B—C5B 123.0 (3)
O4S—S3—O1S 111.02 (17) N1B—C6B—H6B 118.5
O4S—S3—O3S 109.49 (15) C5B—C6B—H6B 118.5
O1S—S3—O3S 108.10 (19) N1B—C2B—C3B 123.9 (3)
O4S—S3—O2S 111.16 (14) N1B—C2B—H2B 118.1
O1S—S3—O2S 107.70 (14) C3B—C2B—H2B 118.1
O3S—S3—O2S 109.30 (16) C2B—N1B—C6B 116.8 (2)
C41—O42—Mn1 118.98 (16) C2B—N1B—Mn1ii 116.33 (18)
C61—O62—Mn2 121.17 (15) C6B—N1B—Mn1ii 126.39 (18)
N1—C6—C5 121.5 (2) Mn1—O1W—H1AW 121 (3)
N1—C6—C61 115.7 (2) Mn1—O1W—H1BW 117 (3)
C5—C6—C61 122.7 (2) H1AW—O1W—H1BW 107 (4)
N3—C4—C5 121.6 (2) Mn2—O2W—H2BW 124 (3)
N3—C4—C41 116.0 (2) Mn2—O2W—H2AW 115 (3)
C5—C4—C41 122.3 (2) H2BW—O2W—H2AW 111 (4)
C2—N3—C4 117.6 (2) Mn2—O21W—H21A 113 (3)
C2—N3—Mn1 128.39 (17) Mn2—O21W—H21B 131 (3)
C4—N3—Mn1 112.93 (16) H21A—O21W—H21B 104 (4)
C3B1—C4B1—C6B1 117.3 (2) Mn1—O11W—H11A 120 (3)
C3B1—C4B1—C4B 121.4 (2) Mn1—O11W—H11B 123 (3)
C6B1—C4B1—C4B 121.3 (2) H11A—O11W—H11B 113 (4)
C2B1—N1B1—C5B1 117.0 (2) H5AW—O5W—H5BW 100.7
C2B1—N1B1—Mn2 123.17 (18) H4AW—O4W—H4BW 93 (6)
C5B1—N1B1—Mn2 119.85 (17) H3AW—O3W—H3BW 108.8
O61—C61—O62 126.6 (2) Mn1—O12W—H12A 123 (3)
O61—C61—C6 118.3 (2) Mn1—O12W—H12B 118 (3)
O62—C61—C6 115.1 (2) H12A—O12W—H12B 105 (4)
C2—N1—C6 117.7 (2) Mn2—O22W—H22A 112 (3)
C2—N1—Mn2 126.51 (17) Mn2—O22W—H22B 114 (2)
C6—N1—Mn2 115.55 (15) H22A—O22W—H22B 115 (3)
C3B—C4B—C5B 116.9 (2)

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x+1, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1AW···O4W 0.82 (1) 1.85 (1) 2.667 (5) 176 (4)
O1W—H1BW···O2Siii 0.82 (1) 2.11 (2) 2.891 (3) 159 (4)
O2W—H2BW···O62iv 0.82 (1) 1.96 (1) 2.775 (3) 172 (4)
O2W—H2AW···O1Siii 0.82 (1) 1.87 (1) 2.681 (3) 172 (4)
O21W—H21A···O3Sv 0.82 (1) 1.86 (1) 2.663 (3) 166 (4)
O21W—H21B···O5W 0.82 (1) 1.97 (1) 2.782 (4) 172 (4)
O11W—H11A···O42vi 0.82 (1) 1.95 (1) 2.760 (3) 167 (4)
O11W—H11B···O2Sv 0.82 (1) 1.99 (1) 2.797 (3) 168 (4)
O5W—H5AW···O4Siii 0.82 2.12 2.927 (4) 168
O5W—H5BW···O61vii 0.82 2.15 2.910 (3) 154
O4W—H4AW···O41viii 0.82 (1) 1.89 (1) 2.702 (4) 170 (6)
O4W—H4BW···O4Wix 0.82 (1) 2.48 (6) 2.908 (7) 114 (6)
O3W—H3BW···O3Sv 0.82 1.93 2.746 (5) 178
O12W—H12A···O3W 0.82 (1) 1.85 (1) 2.656 (4) 167 (4)
O12W—H12B···O2Siii 0.82 (1) 2.04 (1) 2.840 (3) 166 (4)
O22W—H22A···O4Sv 0.82 (1) 1.95 (1) 2.764 (3) 171 (3)
O22W—H22B···O61x 0.82 (1) 2.03 (1) 2.852 (3) 177 (3)

Symmetry codes: (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1, y+1/2, −z+3/2; (vi) −x, −y+1, −z+1; (vii) x, y−1, z; (viii) −x, y−1/2, −z+1/2; (ix) −x, −y+1, −z; (x) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2288).

References

  1. Beobide, G., Wang, W., Castillo, O., Luque, A., Román, P., Tagliabue, G., Galli, S. & Navarro, J. A. R. (2008). Inorg. Chem. pp. 5267–5277. [DOI] [PubMed]
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hunt, R. R., McOmie, J. F. W. & Sayer, E. R. (1959). J. Chem. Soc. p. 525–530.
  4. Masciocchi, N., Galli, S., Tagliabue, G., Sironi, A., Castillo, O., Luque, A., Beobide, G., Wang, W., Romero, M. A., Barea, E. & Navarro, J. A. R. (2009). Inorg. Chem. pp. 3087–3094. [DOI] [PubMed]
  5. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053896/wm2288sup1.cif

e-66-00m86-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053896/wm2288Isup2.hkl

e-66-00m86-Isup2.hkl (304.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES