Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 16;66(Pt 1):o161–o162. doi: 10.1107/S1600536809053434

11-[3-(Dimethyl­amino)prop­yl]-6,11-dihydro­dibenzo[b,e]thiepin-11-ol

Jerry P Jasinski a,*, Ray J Butcher b, Q N M Hakim Al-arique c, H S Yathirajan c, AR Ramesha d
PMCID: PMC2980032  PMID: 21580050

Abstract

There are two independent mol­ecules (A and B) in the asymmetric unit of the title compound, C19H23NOS. In each mol­ecule, the seven-membered thiepine ring is bent into a slightly twisted V-shape. The dihedral angles between the mean planes of the two benzene rings fused to the thiepine ring are 75.7 (5) in mol­ecule A and 73.8 (4)° in mol­ecule B. In both mol­ecules, an intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, weak inter­molecular C—H⋯O and C—H⋯π-ring inter­actions are observed.

Related literature

For related structures, see: Bandoli & Nicolini, (1982); Blaton et al. (1995); Ieawsuwan et al. (2006); Linden et al. (2004); Portalone et al. (2007); Roszak et al. (1996); Rudorf et al. (1999); Yoshinari & Konno, (2009); Zhang et al. (2008,2008a ). For related background, see: Rudorf et al. (1999). For antidepressant and anti-inflammatory properties, see: Rajsner et al. (1969, 1971); Rooks et al. (1980); Tomascovic et al. (2000); Truce et al. (1956). For pharmacological synthesis and studies, see: Ikuo et al. (1978); Uchida et al. (1979); Wyatt et al. (2006). For NMR, Ir and X-ray studies, see: Kolehmainen et al. (2007). For density functional theory (DFT), see: Becke (1988, 1993); Frisch et al. (2004); Hehre et al. (1986); Lee et al. (1988); Schmidt & Polik (2007).graphic file with name e-66-0o161-scheme1.jpg

Experimental

Crystal data

  • C19H23NOS

  • M r = 313.44

  • Monoclinic, Inline graphic

  • a = 7.7215 (4) Å

  • b = 15.3729 (10) Å

  • c = 27.9274 (16) Å

  • β = 95.401 (6)°

  • V = 3300.3 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.74 mm−1

  • T = 110 K

  • 0.51 × 0.42 × 0.14 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.432, T max = 1.000

  • 14666 measured reflections

  • 6565 independent reflections

  • 5490 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.153

  • S = 1.05

  • 6565 reflections

  • 403 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053434/lh2968sup1.cif

e-66-0o161-sup1.cif (30.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053434/lh2968Isup2.hkl

e-66-0o161-Isup2.hkl (321.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N1A 0.84 1.86 2.693 (2) 170
O1B—H1B⋯N1B 0.84 1.84 2.679 (2) 174
C4A—H4AA⋯O1B 0.95 2.51 3.253 (2) 135
C3A—H3AACg7i 0.95 2.74 3.526 (6) 140
C17A—H17ACg1ii 0.99 2.67 3.537 (7) 147
C17A—H17BCg2ii 0.99 2.75 3.720 (3) 167
C17B—H17CCg8iii 0.99 2.68 3.663 (6) 170
C17B—17D⋯Cg7iii 0.99 2.64 3.538 (1) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1, Cg2, Cg7 and Cg8 are the centroids of the C1A—C6A, C8A—C13A, C1B–C6B and C8B—C13B rings, respectively.

Acknowledgments

QNMHA thanks the University of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (Grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

The title compound, (I), C19H23NOS, is a derivative of 6,11-dihydrodibenzo[b,e]thiepin-11-one, which is used as an intermediate for the synthesis of dosulepin, an antidepressant of the tricyclic family. The dibenzo[c,e]thiepine derivatives (Truce et al., 1956) exhibit remarkable chiroptical properties (Tomascovic et al., 2000). The anti-inflammatory and analgesic profile of 6,11-dihydrodibenzo[b,e]thiepin-11-one-3-acetic acid (Tiopinac) is reported (Rooks II et al., 1980). Dibenzo[b,e]thiepin-5,5-dioxide derivatives are known to possess antihistaminic and antiallergenic activities (Rajsner et al., 1971). In addition, by aminoalkylation of 6,11-dihydrodibenzo[b,e]thiepin-5,5-dioxide and the corresponding 11-ketone, compounds with neurotropic and psychotropic activities have been reported (Rajsner et al., 1969). Also, the comparative NMR and IR spectral, X-ray structural and theoretical studies of eight 6-arylidenedibenzo[b,e]thiepin-11-one-5,5-dioxides have been reported (Kolehmainen et al., 2007). A pharmacological study of [2-chloro-11-(2-dimethylaminoethoxy)dibenzo(b,f)thiepine] (zotepine), and a new neuroleptic drug are also reported (Uchida et al., 1979). In addition, the synthesis and chemistry of enantiomerically pure 10,11-dihydrobenzo[b,f]thiepines (Wyatt et al., 2006) and the synthesis and pharmacological properties of 8-chloro-10-(2-dimethylaminoethoxy) dibenzo[b,f]thiepine and related compounds have been reported (Ikuo et al., 1978). In view of the importance of thiepines, this paper reports the crystal structure of the title compound, C19H23NOS, (I).

The title compound, C19H23NOS, (I), crystallizes with two independent molecules (A, Fig. 1 & B, Fig. 2) in the asymmetric unit. The seven-membered thiepine ring is bent into a slightly twisted V-shaped arrangement with sp3 hybridized atoms at C7(A & B), C14(A & B)and S1(A & B). The dihedral angles between the mean planes of the two benzene rings fused to the thiepine ring are 75.7 (5)° (A) and 73.8 (4)° (B), respectively. An intramolecular O—H···N hydrogen bond exists between the hydroxy group and the N atom from the (dimethylamino)propyl group both bonded to the C14 atom of the thiepine ring (O1A—H1A···N1A & O1B—H1B···N1; Table 1). While no classical intermolecular hydrogen bonds are present, weak C–H···O and C–H···π-ring intermolecular interactions are observed which contribute to the stability of crystal packing (Fig.3, Table 1,2).

Following a geometry optimization density functional theory calculation (Schmidt & Polik 2007) at the B3LYP 6–31-G(d) level (Becke, 1988, 1993; Lee et al. 1988; Hehre et al. 1986) with the Gaussian03 program package (Frisch at al. 2004) the angle between the mean planes of the two benzene rings changes to 73.4 (4)°, a difference of -2.32° (A) and + 0.40° (B), respectively. These results support the collective effects of the intra and intermolecular hydrogen bonding described above slightly influencing crystal packing.

Experimental

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore, India. The compound was used without further purification. X-ray quality crystals (m.p. 433–435 K) of the title compound, (I), were obtained by slow evaporation from acetone solution.

Refinement

The hydroxy H atoms, H1A and H1B, were found in a difference map and refined freely. All of the C-bonded H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 to 0.99 Å, and with Uiso(H) = 1.18–1.50 Ueq(C). Methyl groups were allowed to rotate about their N—C bonds.

Figures

Fig. 1.

Fig. 1.

Molecular structure of molecule A in (I) showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular structure of molecule B in (I) showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 3.

Fig. 3.

Packing diagram of (I), viewed along the c axis. Dashed lines indicate O—H···N intramolecular interactions in molecules A & B.

Crystal data

C19H23NOS F(000) = 1344
Mr = 313.44 Dx = 1.262 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 6805 reflections
a = 7.7215 (4) Å θ = 4.3–74.0°
b = 15.3729 (10) Å µ = 1.74 mm1
c = 27.9274 (16) Å T = 110 K
β = 95.401 (6)° Plate, colorless
V = 3300.3 (3) Å3 0.51 × 0.42 × 0.14 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector 6565 independent reflections
Radiation source: Enhance (Cu) X-ray Source 5490 reflections with I > 2σ(I)
graphite Rint = 0.029
Detector resolution: 10.5081 pixels mm-1 θmax = 74.2°, θmin = 4.3°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −13→19
Tmin = 0.432, Tmax = 1.000 l = −17→34
14666 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1079P)2 + 0.6589P] where P = (Fo2 + 2Fc2)/3
6565 reflections (Δ/σ)max = 0.001
403 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.69626 (7) 0.25999 (3) 0.288172 (19) 0.02978 (15)
O1A 0.91923 (17) 0.54941 (9) 0.28401 (5) 0.0240 (3)
H1A 1.0075 0.5603 0.2696 0.029*
N1A 1.2061 (2) 0.56334 (11) 0.23664 (6) 0.0242 (4)
C1A 0.7385 (2) 0.44069 (13) 0.31337 (6) 0.0189 (4)
C2A 0.6889 (2) 0.50798 (13) 0.34289 (6) 0.0230 (4)
H2AA 0.7418 0.5635 0.3408 0.028*
C3A 0.5643 (3) 0.49613 (15) 0.37524 (7) 0.0276 (4)
H3AA 0.5350 0.5429 0.3952 0.033*
C4A 0.4833 (3) 0.41658 (15) 0.37828 (7) 0.0284 (4)
H4AA 0.3984 0.4079 0.4003 0.034*
C5A 0.5275 (3) 0.34982 (14) 0.34876 (7) 0.0264 (4)
H5AA 0.4697 0.2955 0.3502 0.032*
C6A 0.6554 (2) 0.35985 (13) 0.31669 (6) 0.0202 (4)
C7A 0.7862 (3) 0.28132 (13) 0.23129 (7) 0.0238 (4)
H7AA 0.9147 0.2814 0.2370 0.029*
H7AB 0.7527 0.2330 0.2089 0.029*
C8A 0.7295 (2) 0.36527 (13) 0.20746 (6) 0.0202 (4)
C9A 0.6275 (3) 0.36079 (15) 0.16343 (7) 0.0280 (4)
H9AA 0.5927 0.3055 0.1508 0.034*
C10A 0.5764 (3) 0.43455 (17) 0.13802 (7) 0.0331 (5)
H10A 0.5075 0.4301 0.1081 0.040*
C11A 0.6263 (3) 0.51514 (16) 0.15646 (7) 0.0306 (5)
H11A 0.5926 0.5665 0.1391 0.037*
C12A 0.7258 (2) 0.52091 (13) 0.20050 (7) 0.0232 (4)
H12A 0.7588 0.5766 0.2129 0.028*
C13A 0.7782 (2) 0.44720 (12) 0.22683 (6) 0.0170 (4)
C14A 0.8737 (2) 0.46053 (12) 0.27754 (6) 0.0181 (4)
C15A 1.0403 (2) 0.40533 (13) 0.28923 (6) 0.0207 (4)
H15A 1.1021 0.4278 0.3194 0.025*
H15B 1.0046 0.3448 0.2955 0.025*
C16A 1.1698 (2) 0.40312 (13) 0.25052 (7) 0.0218 (4)
H16A 1.2402 0.3494 0.2550 0.026*
H16B 1.1027 0.3994 0.2186 0.026*
C17A 1.2933 (2) 0.48049 (13) 0.25020 (7) 0.0241 (4)
H17A 1.3558 0.4868 0.2826 0.029*
H17B 1.3810 0.4683 0.2274 0.029*
C18A 1.1570 (3) 0.56816 (15) 0.18463 (7) 0.0296 (5)
H18A 1.0974 0.6234 0.1769 0.044*
H18B 1.0791 0.5197 0.1748 0.044*
H18C 1.2618 0.5646 0.1675 0.044*
C19A 1.3169 (3) 0.63736 (16) 0.25201 (10) 0.0396 (6)
H19A 1.2540 0.6917 0.2442 0.059*
H19B 1.4230 0.6358 0.2353 0.059*
H19C 1.3477 0.6342 0.2868 0.059*
S1B 0.66729 (7) 0.22246 (4) 0.627252 (18) 0.03356 (16)
O1B 0.39362 (17) 0.32974 (9) 0.47928 (5) 0.0224 (3)
H1B 0.2941 0.3119 0.4691 0.027*
N1B 0.0713 (2) 0.27183 (13) 0.45327 (6) 0.0272 (4)
C1B 0.6076 (2) 0.33566 (12) 0.54588 (6) 0.0194 (4)
C2B 0.6575 (2) 0.41167 (13) 0.52343 (7) 0.0225 (4)
H2BA 0.5966 0.4284 0.4937 0.027*
C3B 0.7936 (3) 0.46361 (14) 0.54324 (8) 0.0269 (4)
H3BA 0.8237 0.5154 0.5274 0.032*
C4B 0.8849 (3) 0.43913 (14) 0.58631 (8) 0.0296 (5)
H4BA 0.9773 0.4743 0.6003 0.036*
C5B 0.8406 (3) 0.36365 (14) 0.60857 (7) 0.0279 (4)
H5BA 0.9048 0.3467 0.6378 0.033*
C6B 0.7032 (2) 0.31114 (13) 0.58920 (7) 0.0227 (4)
C7B 0.5684 (3) 0.13299 (14) 0.59244 (7) 0.0292 (4)
H7BA 0.6145 0.0780 0.6070 0.035*
H7BB 0.4418 0.1340 0.5955 0.035*
C8B 0.5951 (2) 0.13126 (13) 0.53919 (7) 0.0249 (4)
C9B 0.6839 (3) 0.05921 (14) 0.52276 (9) 0.0340 (5)
H9BA 0.7316 0.0173 0.5453 0.041*
C10B 0.7035 (3) 0.04778 (15) 0.47439 (10) 0.0382 (6)
H10B 0.7637 −0.0015 0.4638 0.046*
C11B 0.6349 (3) 0.10843 (16) 0.44183 (8) 0.0341 (5)
H11B 0.6440 0.1002 0.4084 0.041*
C12B 0.5524 (2) 0.18169 (14) 0.45762 (7) 0.0257 (4)
H12B 0.5087 0.2240 0.4348 0.031*
C13B 0.5316 (2) 0.19501 (13) 0.50640 (7) 0.0199 (4)
C14B 0.4538 (2) 0.28306 (12) 0.52111 (6) 0.0187 (4)
C15B 0.3036 (2) 0.27781 (14) 0.55385 (7) 0.0231 (4)
H15C 0.3525 0.2592 0.5863 0.028*
H15D 0.2554 0.3370 0.5570 0.028*
C16B 0.1534 (2) 0.21639 (14) 0.53708 (7) 0.0258 (4)
H16C 0.2030 0.1642 0.5227 0.031*
H16D 0.0976 0.1970 0.5657 0.031*
C17B 0.0125 (2) 0.25346 (13) 0.50080 (7) 0.0220 (4)
H17C −0.0853 0.2116 0.4968 0.026*
H17D −0.0321 0.3080 0.5140 0.026*
C18B 0.0944 (3) 0.1914 (2) 0.42672 (9) 0.0515 (8)
H18D 0.1890 0.1573 0.4433 0.077*
H18E 0.1232 0.2054 0.3942 0.077*
H18F −0.0136 0.1575 0.4248 0.077*
C19B −0.0530 (3) 0.3298 (2) 0.42629 (9) 0.0479 (7)
H19D −0.0118 0.3430 0.3950 0.072*
H19E −0.0635 0.3839 0.4444 0.072*
H19F −0.1668 0.3012 0.4215 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0386 (3) 0.0189 (2) 0.0344 (3) −0.0007 (2) 0.0165 (2) 0.00348 (19)
O1A 0.0191 (7) 0.0210 (7) 0.0333 (7) −0.0042 (5) 0.0094 (5) −0.0068 (6)
N1A 0.0208 (8) 0.0233 (8) 0.0293 (8) −0.0028 (6) 0.0070 (6) −0.0039 (7)
C1A 0.0150 (8) 0.0269 (9) 0.0148 (8) 0.0016 (7) 0.0015 (6) 0.0003 (7)
C2A 0.0194 (9) 0.0291 (10) 0.0208 (8) 0.0002 (7) 0.0025 (7) −0.0039 (8)
C3A 0.0247 (10) 0.0398 (12) 0.0188 (8) 0.0059 (9) 0.0047 (7) −0.0055 (8)
C4A 0.0240 (10) 0.0434 (12) 0.0189 (8) 0.0055 (9) 0.0078 (7) 0.0078 (8)
C5A 0.0249 (10) 0.0315 (11) 0.0234 (9) 0.0026 (8) 0.0059 (7) 0.0092 (8)
C6A 0.0209 (9) 0.0222 (9) 0.0177 (8) 0.0033 (7) 0.0022 (7) 0.0030 (7)
C7A 0.0269 (10) 0.0198 (9) 0.0258 (9) 0.0003 (7) 0.0088 (7) −0.0037 (7)
C8A 0.0184 (9) 0.0251 (10) 0.0177 (8) −0.0006 (7) 0.0051 (7) −0.0007 (7)
C9A 0.0237 (10) 0.0395 (12) 0.0210 (9) −0.0004 (9) 0.0031 (7) −0.0090 (8)
C10A 0.0236 (10) 0.0594 (15) 0.0164 (8) 0.0080 (10) 0.0018 (7) 0.0004 (9)
C11A 0.0210 (10) 0.0468 (13) 0.0254 (9) 0.0101 (9) 0.0091 (7) 0.0159 (9)
C12A 0.0166 (8) 0.0265 (10) 0.0277 (9) 0.0028 (7) 0.0089 (7) 0.0068 (8)
C13A 0.0121 (8) 0.0230 (9) 0.0169 (8) 0.0016 (7) 0.0065 (6) 0.0015 (7)
C14A 0.0166 (8) 0.0192 (9) 0.0190 (8) −0.0008 (7) 0.0041 (6) −0.0021 (7)
C15A 0.0168 (8) 0.0257 (10) 0.0198 (8) 0.0013 (7) 0.0026 (6) −0.0003 (7)
C16A 0.0171 (9) 0.0246 (9) 0.0242 (9) 0.0036 (7) 0.0049 (7) 0.0001 (7)
C17A 0.0160 (8) 0.0306 (10) 0.0260 (9) 0.0008 (8) 0.0033 (7) −0.0002 (8)
C18A 0.0264 (10) 0.0345 (11) 0.0293 (10) 0.0043 (8) 0.0103 (8) 0.0074 (9)
C19A 0.0314 (12) 0.0322 (12) 0.0572 (14) −0.0121 (10) 0.0155 (11) −0.0117 (11)
S1B 0.0336 (3) 0.0426 (3) 0.0233 (3) 0.0001 (2) −0.00317 (19) 0.0080 (2)
O1B 0.0184 (6) 0.0281 (7) 0.0199 (6) −0.0033 (5) −0.0022 (5) 0.0059 (5)
N1B 0.0221 (8) 0.0414 (10) 0.0180 (7) −0.0099 (7) 0.0010 (6) 0.0005 (7)
C1B 0.0158 (8) 0.0226 (9) 0.0200 (8) 0.0041 (7) 0.0026 (7) −0.0039 (7)
C2B 0.0179 (9) 0.0246 (9) 0.0248 (9) 0.0030 (7) 0.0018 (7) −0.0044 (8)
C3B 0.0213 (9) 0.0237 (9) 0.0357 (10) 0.0016 (8) 0.0033 (8) −0.0048 (8)
C4B 0.0206 (9) 0.0308 (11) 0.0362 (11) 0.0004 (8) −0.0034 (8) −0.0133 (9)
C5B 0.0222 (10) 0.0354 (11) 0.0250 (9) 0.0063 (8) −0.0038 (7) −0.0070 (8)
C6B 0.0213 (9) 0.0254 (9) 0.0212 (8) 0.0062 (7) 0.0014 (7) −0.0019 (8)
C7B 0.0353 (11) 0.0253 (10) 0.0283 (10) −0.0100 (9) 0.0094 (8) 0.0047 (8)
C8B 0.0171 (9) 0.0241 (10) 0.0336 (10) −0.0039 (7) 0.0027 (7) 0.0009 (8)
C9B 0.0218 (10) 0.0223 (10) 0.0581 (14) −0.0020 (8) 0.0040 (9) 0.0019 (10)
C10B 0.0218 (10) 0.0288 (11) 0.0657 (16) −0.0039 (9) 0.0135 (10) −0.0190 (11)
C11B 0.0229 (10) 0.0411 (12) 0.0403 (11) −0.0105 (9) 0.0127 (9) −0.0188 (10)
C12B 0.0175 (9) 0.0341 (11) 0.0264 (9) −0.0067 (8) 0.0061 (7) −0.0057 (8)
C13B 0.0117 (8) 0.0243 (9) 0.0241 (9) −0.0032 (7) 0.0045 (6) −0.0036 (7)
C14B 0.0169 (9) 0.0228 (9) 0.0163 (8) 0.0010 (7) 0.0014 (6) 0.0015 (7)
C15B 0.0168 (9) 0.0341 (10) 0.0184 (8) 0.0037 (8) 0.0022 (7) 0.0015 (8)
C16B 0.0178 (9) 0.0327 (11) 0.0274 (9) −0.0008 (8) 0.0048 (7) 0.0102 (8)
C17B 0.0169 (9) 0.0289 (10) 0.0206 (8) −0.0005 (7) 0.0038 (7) −0.0008 (7)
C18B 0.0343 (13) 0.079 (2) 0.0434 (13) −0.0256 (13) 0.0172 (11) −0.0361 (14)
C19B 0.0280 (12) 0.0747 (19) 0.0382 (12) −0.0149 (12) −0.0115 (9) 0.0277 (13)

Geometric parameters (Å, °)

S1A—C6A 1.7713 (19) S1B—C6B 1.766 (2)
S1A—C7A 1.822 (2) S1B—C7B 1.811 (2)
O1A—C14A 1.418 (2) O1B—C14B 1.412 (2)
O1A—H1A 0.8400 O1B—H1B 0.8400
N1A—C19A 1.463 (3) N1B—C18B 1.461 (3)
N1A—C18A 1.468 (3) N1B—C19B 1.465 (3)
N1A—C17A 1.473 (3) N1B—C17B 1.470 (2)
C1A—C2A 1.398 (3) C1B—C2B 1.397 (3)
C1A—C6A 1.406 (3) C1B—C6B 1.408 (2)
C1A—C14A 1.543 (2) C1B—C14B 1.545 (2)
C2A—C3A 1.393 (3) C2B—C3B 1.393 (3)
C2A—H2AA 0.9500 C2B—H2BA 0.9500
C3A—C4A 1.380 (3) C3B—C4B 1.388 (3)
C3A—H3AA 0.9500 C3B—H3BA 0.9500
C4A—C5A 1.380 (3) C4B—C5B 1.375 (3)
C4A—H4AA 0.9500 C4B—H4BA 0.9500
C5A—C6A 1.402 (3) C5B—C6B 1.401 (3)
C5A—H5AA 0.9500 C5B—H5BA 0.9500
C7A—C8A 1.498 (3) C7B—C8B 1.521 (3)
C7A—H7AA 0.9900 C7B—H7BA 0.9900
C7A—H7AB 0.9900 C7B—H7BB 0.9900
C8A—C9A 1.398 (3) C8B—C13B 1.398 (3)
C8A—C13A 1.408 (3) C8B—C9B 1.402 (3)
C9A—C10A 1.376 (3) C9B—C10B 1.384 (4)
C9A—H9AA 0.9500 C9B—H9BA 0.9500
C10A—C11A 1.382 (3) C10B—C11B 1.373 (4)
C10A—H10A 0.9500 C10B—H10B 0.9500
C11A—C12A 1.390 (3) C11B—C12B 1.386 (3)
C11A—H11A 0.9500 C11B—H11B 0.9500
C12A—C13A 1.390 (3) C12B—C13B 1.402 (3)
C12A—H12A 0.9500 C12B—H12B 0.9500
C13A—C14A 1.548 (2) C13B—C14B 1.552 (3)
C14A—C15A 1.550 (2) C14B—C15B 1.545 (2)
C15A—C16A 1.540 (2) C15B—C16B 1.534 (3)
C15A—H15A 0.9900 C15B—H15C 0.9900
C15A—H15B 0.9900 C15B—H15D 0.9900
C16A—C17A 1.525 (3) C16B—C17B 1.525 (3)
C16A—H16A 0.9900 C16B—H16C 0.9900
C16A—H16B 0.9900 C16B—H16D 0.9900
C17A—H17A 0.9900 C17B—H17C 0.9900
C17A—H17B 0.9900 C17B—H17D 0.9900
C18A—H18A 0.9800 C18B—H18D 0.9800
C18A—H18B 0.9800 C18B—H18E 0.9800
C18A—H18C 0.9800 C18B—H18F 0.9800
C19A—H19A 0.9800 C19B—H19D 0.9800
C19A—H19B 0.9800 C19B—H19E 0.9800
C19A—H19C 0.9800 C19B—H19F 0.9800
C6A—S1A—C7A 109.55 (9) C6B—S1B—C7B 110.20 (9)
C14A—O1A—H1A 109.5 C14B—O1B—H1B 109.5
C19A—N1A—C18A 109.89 (18) C18B—N1B—C19B 111.0 (2)
C19A—N1A—C17A 110.88 (17) C18B—N1B—C17B 111.00 (19)
C18A—N1A—C17A 111.53 (16) C19B—N1B—C17B 109.77 (18)
C2A—C1A—C6A 117.58 (17) C2B—C1B—C6B 117.73 (17)
C2A—C1A—C14A 118.41 (17) C2B—C1B—C14B 118.00 (15)
C6A—C1A—C14A 123.95 (16) C6B—C1B—C14B 124.27 (17)
C3A—C2A—C1A 122.01 (19) C3B—C2B—C1B 122.07 (18)
C3A—C2A—H2AA 119.0 C3B—C2B—H2BA 119.0
C1A—C2A—H2AA 119.0 C1B—C2B—H2BA 119.0
C4A—C3A—C2A 120.05 (19) C4B—C3B—C2B 119.4 (2)
C4A—C3A—H3AA 120.0 C4B—C3B—H3BA 120.3
C2A—C3A—H3AA 120.0 C2B—C3B—H3BA 120.3
C5A—C4A—C3A 118.91 (18) C5B—C4B—C3B 119.56 (19)
C5A—C4A—H4AA 120.5 C5B—C4B—H4BA 120.2
C3A—C4A—H4AA 120.5 C3B—C4B—H4BA 120.2
C4A—C5A—C6A 121.9 (2) C4B—C5B—C6B 121.55 (18)
C4A—C5A—H5AA 119.0 C4B—C5B—H5BA 119.2
C6A—C5A—H5AA 119.0 C6B—C5B—H5BA 119.2
C5A—C6A—C1A 119.50 (18) C5B—C6B—C1B 119.62 (19)
C5A—C6A—S1A 110.96 (15) C5B—C6B—S1B 111.62 (14)
C1A—C6A—S1A 129.40 (14) C1B—C6B—S1B 128.64 (16)
C8A—C7A—S1A 115.01 (13) C8B—C7B—S1B 116.69 (14)
C8A—C7A—H7AA 108.5 C8B—C7B—H7BA 108.1
S1A—C7A—H7AA 108.5 S1B—C7B—H7BA 108.1
C8A—C7A—H7AB 108.5 C8B—C7B—H7BB 108.1
S1A—C7A—H7AB 108.5 S1B—C7B—H7BB 108.1
H7AA—C7A—H7AB 107.5 H7BA—C7B—H7BB 107.3
C9A—C8A—C13A 119.34 (18) C13B—C8B—C9B 119.4 (2)
C9A—C8A—C7A 117.71 (18) C13B—C8B—C7B 123.82 (18)
C13A—C8A—C7A 122.93 (16) C9B—C8B—C7B 116.7 (2)
C10A—C9A—C8A 121.6 (2) C10B—C9B—C8B 121.4 (2)
C10A—C9A—H9AA 119.2 C10B—C9B—H9BA 119.3
C8A—C9A—H9AA 119.2 C8B—C9B—H9BA 119.3
C9A—C10A—C11A 119.35 (18) C11B—C10B—C9B 119.3 (2)
C9A—C10A—H10A 120.3 C11B—C10B—H10B 120.3
C11A—C10A—H10A 120.3 C9B—C10B—H10B 120.3
C10A—C11A—C12A 119.9 (2) C10B—C11B—C12B 120.1 (2)
C10A—C11A—H11A 120.1 C10B—C11B—H11B 120.0
C12A—C11A—H11A 120.1 C12B—C11B—H11B 120.0
C13A—C12A—C11A 121.7 (2) C11B—C12B—C13B 121.7 (2)
C13A—C12A—H12A 119.2 C11B—C12B—H12B 119.1
C11A—C12A—H12A 119.2 C13B—C12B—H12B 119.1
C12A—C13A—C8A 118.18 (17) C8B—C13B—C12B 117.96 (18)
C12A—C13A—C14A 117.78 (17) C8B—C13B—C14B 123.96 (16)
C8A—C13A—C14A 123.85 (16) C12B—C13B—C14B 117.86 (17)
O1A—C14A—C1A 106.40 (14) O1B—C14B—C1B 106.49 (15)
O1A—C14A—C13A 109.58 (15) O1B—C14B—C15B 108.00 (14)
C1A—C14A—C13A 105.90 (14) C1B—C14B—C15B 110.53 (14)
O1A—C14A—C15A 108.06 (14) O1B—C14B—C13B 109.25 (14)
C1A—C14A—C15A 110.73 (14) C1B—C14B—C13B 105.96 (14)
C13A—C14A—C15A 115.78 (14) C15B—C14B—C13B 116.21 (16)
C16A—C15A—C14A 116.41 (15) C16B—C15B—C14B 116.08 (16)
C16A—C15A—H15A 108.2 C16B—C15B—H15C 108.3
C14A—C15A—H15A 108.2 C14B—C15B—H15C 108.3
C16A—C15A—H15B 108.2 C16B—C15B—H15D 108.3
C14A—C15A—H15B 108.2 C14B—C15B—H15D 108.3
H15A—C15A—H15B 107.3 H15C—C15B—H15D 107.4
C17A—C16A—C15A 115.75 (16) C17B—C16B—C15B 116.37 (17)
C17A—C16A—H16A 108.3 C17B—C16B—H16C 108.2
C15A—C16A—H16A 108.3 C15B—C16B—H16C 108.2
C17A—C16A—H16B 108.3 C17B—C16B—H16D 108.2
C15A—C16A—H16B 108.3 C15B—C16B—H16D 108.2
H16A—C16A—H16B 107.4 H16C—C16B—H16D 107.3
N1A—C17A—C16A 113.87 (15) N1B—C17B—C16B 114.20 (16)
N1A—C17A—H17A 108.8 N1B—C17B—H17C 108.7
C16A—C17A—H17A 108.8 C16B—C17B—H17C 108.7
N1A—C17A—H17B 108.8 N1B—C17B—H17D 108.7
C16A—C17A—H17B 108.8 C16B—C17B—H17D 108.7
H17A—C17A—H17B 107.7 H17C—C17B—H17D 107.6
N1A—C18A—H18A 109.5 N1B—C18B—H18D 109.5
N1A—C18A—H18B 109.5 N1B—C18B—H18E 109.5
H18A—C18A—H18B 109.5 H18D—C18B—H18E 109.5
N1A—C18A—H18C 109.5 N1B—C18B—H18F 109.5
H18A—C18A—H18C 109.5 H18D—C18B—H18F 109.5
H18B—C18A—H18C 109.5 H18E—C18B—H18F 109.5
N1A—C19A—H19A 109.5 N1B—C19B—H19D 109.5
N1A—C19A—H19B 109.5 N1B—C19B—H19E 109.5
H19A—C19A—H19B 109.5 H19D—C19B—H19E 109.5
N1A—C19A—H19C 109.5 N1B—C19B—H19F 109.5
H19A—C19A—H19C 109.5 H19D—C19B—H19F 109.5
H19B—C19A—H19C 109.5 H19E—C19B—H19F 109.5
C6A—C1A—C2A—C3A 1.2 (3) C6B—C1B—C2B—C3B −1.7 (3)
C14A—C1A—C2A—C3A 178.23 (17) C14B—C1B—C2B—C3B 179.50 (17)
C1A—C2A—C3A—C4A −1.2 (3) C1B—C2B—C3B—C4B 0.8 (3)
C2A—C3A—C4A—C5A −0.2 (3) C2B—C3B—C4B—C5B 0.6 (3)
C3A—C4A—C5A—C6A 1.6 (3) C3B—C4B—C5B—C6B −1.0 (3)
C4A—C5A—C6A—C1A −1.6 (3) C4B—C5B—C6B—C1B 0.1 (3)
C4A—C5A—C6A—S1A 174.51 (16) C4B—C5B—C6B—S1B −176.25 (16)
C2A—C1A—C6A—C5A 0.2 (3) C2B—C1B—C6B—C5B 1.2 (3)
C14A—C1A—C6A—C5A −176.66 (16) C14B—C1B—C6B—C5B 179.94 (17)
C2A—C1A—C6A—S1A −175.12 (14) C2B—C1B—C6B—S1B 176.89 (15)
C14A—C1A—C6A—S1A 8.0 (3) C14B—C1B—C6B—S1B −4.4 (3)
C7A—S1A—C6A—C5A 156.28 (14) C7B—S1B—C6B—C5B −153.88 (15)
C7A—S1A—C6A—C1A −28.0 (2) C7B—S1B—C6B—C1B 30.1 (2)
C6A—S1A—C7A—C8A −29.24 (17) C6B—S1B—C7B—C8B 22.7 (2)
S1A—C7A—C8A—C9A −114.43 (17) S1B—C7B—C8B—C13B −63.9 (2)
S1A—C7A—C8A—C13A 67.3 (2) S1B—C7B—C8B—C9B 118.40 (19)
C13A—C8A—C9A—C10A 1.4 (3) C13B—C8B—C9B—C10B −2.9 (3)
C7A—C8A—C9A—C10A −176.99 (18) C7B—C8B—C9B—C10B 174.94 (19)
C8A—C9A—C10A—C11A −0.3 (3) C8B—C9B—C10B—C11B 0.2 (3)
C9A—C10A—C11A—C12A −0.6 (3) C9B—C10B—C11B—C12B 2.2 (3)
C10A—C11A—C12A—C13A 0.3 (3) C10B—C11B—C12B—C13B −1.9 (3)
C11A—C12A—C13A—C8A 0.7 (3) C9B—C8B—C13B—C12B 3.1 (3)
C11A—C12A—C13A—C14A −174.38 (16) C7B—C8B—C13B—C12B −174.58 (17)
C9A—C8A—C13A—C12A −1.6 (3) C9B—C8B—C13B—C14B −171.44 (17)
C7A—C8A—C13A—C12A 176.71 (17) C7B—C8B—C13B—C14B 10.9 (3)
C9A—C8A—C13A—C14A 173.24 (17) C11B—C12B—C13B—C8B −0.7 (3)
C7A—C8A—C13A—C14A −8.5 (3) C11B—C12B—C13B—C14B 174.11 (17)
C2A—C1A—C14A—O1A 0.3 (2) C2B—C1B—C14B—O1B −1.8 (2)
C6A—C1A—C14A—O1A 177.21 (16) C6B—C1B—C14B—O1B 179.50 (16)
C2A—C1A—C14A—C13A −116.21 (17) C2B—C1B—C14B—C15B −118.81 (18)
C6A—C1A—C14A—C13A 60.7 (2) C6B—C1B—C14B—C15B 62.4 (2)
C2A—C1A—C14A—C15A 117.54 (18) C2B—C1B—C14B—C13B 114.50 (18)
C6A—C1A—C14A—C15A −65.6 (2) C6B—C1B—C14B—C13B −64.2 (2)
C12A—C13A—C14A—O1A −11.1 (2) C8B—C13B—C14B—O1B −176.78 (16)
C8A—C13A—C14A—O1A 174.06 (15) C12B—C13B—C14B—O1B 8.7 (2)
C12A—C13A—C14A—C1A 103.27 (18) C8B—C13B—C14B—C1B 68.8 (2)
C8A—C13A—C14A—C1A −71.5 (2) C12B—C13B—C14B—C1B −105.66 (18)
C12A—C13A—C14A—C15A −133.61 (17) C8B—C13B—C14B—C15B −54.3 (2)
C8A—C13A—C14A—C15A 51.6 (2) C12B—C13B—C14B—C15B 131.16 (17)
O1A—C14A—C15A—C16A −76.66 (19) O1B—C14B—C15B—C16B 72.5 (2)
C1A—C14A—C15A—C16A 167.18 (15) C1B—C14B—C15B—C16B −171.34 (16)
C13A—C14A—C15A—C16A 46.6 (2) C13B—C14B—C15B—C16B −50.6 (2)
C14A—C15A—C16A—C17A 81.9 (2) C14B—C15B—C16B—C17B −84.3 (2)
C19A—N1A—C17A—C16A 161.24 (17) C18B—N1B—C17B—C16B 73.7 (2)
C18A—N1A—C17A—C16A −75.9 (2) C19B—N1B—C17B—C16B −163.21 (19)
C15A—C16A—C17A—N1A −66.7 (2) C15B—C16B—C17B—N1B 67.5 (2)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg7 and Cg8 are the centroids of the C1A—C6A, C8A—C13A, C1B–C6B and C8B—C13B rings, respectively.
D—H···A D—H H···A D···A D—H···A
O1A—H1A···N1A 0.84 1.86 2.693 (2) 170
O1B—H1B···N1B 0.84 1.84 2.679 (2) 174
C4A—H4AA···O1B 0.95 2.51 3.253 (2) 135
C3A—H3AA···Cg7i 0.95 2.74 3.526 (6) 140
C17A—H17A···Cg1ii 0.99 2.67 3.537 (7) 147
C17A—H17B···Cg2ii 0.99 2.75 3.720 (3) 167
C17B—H17C···Cg8iii 0.99 2.68 3.663 (6) 170
C17B—17D···Cg7iii 0.99 2.64 3.538 (1) 149

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2968).

References

  1. Bandoli, G. & Nicolini, M. (1982). J. Chem. Crystallogr.12, 425–447.
  2. Becke, A. D. (1988). Phys. Rev. A, 38, 3098–100. [DOI] [PubMed]
  3. Becke, A. D. (1993). J. Chem. Phys.98, 5648–5652.
  4. Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 777–780.
  5. Frisch, M. J. et al. (2004). GAUSSIAN03 Gaussian Inc., Wallingford, CT, USA.
  6. Hehre, W.J., Random, L., Schleyer, P. R. & Pople, J.A. (1986). In Ab Initio Molecular Orbital Theory New York: Wiley.
  7. Ieawsuwan, W., Bru Roig, M. & Bolte, M. (2006). Acta Cryst. E62, o1478–o1479.
  8. Ikuo, U., Yoshinari, S., Shizuo, M. & Suminori, U. (1978). Chem. Pharm. Bull.26, 3058–3070.
  9. Kolehmainen, E., Laihia, K., Valkonen, A., Sievänen, E., Nissinen, M., Rudorf, W.-D., Loos, D., Perjéssy, A., Samaliková, M., Susteková, Z., Florea, S. & Wybraziec, J. (2007). J. Mol. Struct.839, 94–98.
  10. Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. [DOI] [PubMed]
  11. Linden, A., Furegati, M. & Rippert, A. J. (2004). Acta Cryst. C60, o223–o225. [DOI] [PubMed]
  12. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  13. Portalone, G., Colapietro, M., Bindya, S., Ashok, M. A. & Yathirajan, H. S. (2007). Acta Cryst. E63, o746–o747.
  14. Rajsner, M., Protiva, M. & Metysová, J. (1971). Czech. Pat. Appl. CS 143737.
  15. Rajsner, M., Svatek, E., Seidlová, V., Adlerová, E. & Protiva, M. (1969). Coll. Czech. Chem. Commun.34, 1278.
  16. Rooks, W. H. II, Tomolonis, A. J., Maloney, P. J., Roszkowski, A. & Wallach, M. B. (1980). Inflamm. Res.10, 266–273. [DOI] [PubMed]
  17. Roszak, A. W., Williams, V. E. & Lemieux, R. P. (1996). Acta Cryst. C52, 3190–3193.
  18. Rudorf, W. D., Baumeister, U., Florea, S., Nicolae, A. & Maior, O. (1999). Monatch. Chem.130, 1475–1480.
  19. Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.
  22. Truce, W. E. & Emrick, D. D. (1956). J. Am. Chem. Soc.78, 6130–6137.
  23. Uchida, S., Honda, F., Otsuka, M., Satoh, Y., Mori, J., Ono, T. & Hitomi, M. (1979). Arzneimittelforschung, 29, 1588–1594. [PubMed]
  24. Wyatt, P., Hudson, A., Charmant, J., Orpen, A. G. & Phetmung, H. (2006). Org. Biomol. Chem.4, 2218–2232. [DOI] [PubMed]
  25. Yoshinari, N. & Konno, T. (2009). Acta Cryst. E65, o774. [DOI] [PMC free article] [PubMed]
  26. Zhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008a). Acta Cryst. E64, o1304. [DOI] [PMC free article] [PubMed]
  27. Zhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008). Acta Cryst. E64, o1027. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053434/lh2968sup1.cif

e-66-0o161-sup1.cif (30.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053434/lh2968Isup2.hkl

e-66-0o161-Isup2.hkl (321.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES