Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 16;66(Pt 1):o142–o143. doi: 10.1107/S1600536809053021

Tert-butyl 3-oxo-2,3,4,5,6,7-hexa­hydro-1H-pyrazolo[4,3-c]pyridine-5-carboxyl­ate

Tara Shahani a, Hoong-Kun Fun a,*,, R Venkat Ragavan b, V Vijayakumar b, S Sarveswari b
PMCID: PMC2980051  PMID: 21580034

Abstract

In the title compound, C11H17N3O3, the pyrazole ring is approximately planar, with a maximum deviation of 0.005 (2) Å, and forms a dihedral angle of 5.69 (13)° with the plane through the six atoms of the piperidine ring. In the crystal, pairs of inter­molecular N—H⋯O hydrogen bonds form dimers with neighbouring mol­ecules, generating R 2 2(8) ring motifs. These dimers are further linked into two-dimensional arrays parallel to the bc plane by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the biological activity of pyrazolone derivatives, see: Al-Haiza et al. (2001); Brogden, (1986); Coersmeier et al. (1986); Gursoy et al. (2000). For myocardial ischemia, see: Wu et al. (2002). For brain ischemia, see: Watanabe et al. (1984); Kawai et al. (1997). For new compounds with the pyrazolone unit, see: Al-Haiza et al. (2001). For a related structure, see: Shahani et al. (2009). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-0o142-scheme1.jpg

Experimental

Crystal data

  • C11H17N3O3

  • M r = 239.28

  • Monoclinic, Inline graphic

  • a = 18.6250 (12) Å

  • b = 6.0893 (5) Å

  • c = 10.7414 (7) Å

  • β = 104.100 (4)°

  • V = 1181.51 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.97 × 0.35 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.910, T max = 0.986

  • 13101 measured reflections

  • 2690 independent reflections

  • 2136 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.172

  • S = 1.24

  • 2690 reflections

  • 222 parameters

  • All H-atom parameters refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053021/ng2705sup1.cif

e-66-0o142-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053021/ng2705Isup2.hkl

e-66-0o142-Isup2.hkl (132.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.99 (3) 1.77 (3) 2.748 (3) 171 (3)
N2—H1N2⋯O2ii 0.94 (3) 1.75 (4) 2.665 (3) 167 (3)
C1—H1B⋯O2iii 0.98 (3) 2.57 (3) 3.492 (3) 157 (3)
C11—H11C⋯O3iv 0.97 (3) 2.60 (3) 3.504 (3) 156 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Pyrazolone derivatives have a broad spectrum of biological activities being used as analgesic, antipyretic and anti-inflammatory therapeutical drugs (Brogden, 1986; Gursoy et al., 2000). A class of new compounds with pyrazolone moiety was synthesized and reported for their antibacterial, antifungal activities by Al-Haiza et al. (2001). A new pyrazolone derivative, edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is being used as a drug in clinical practice for brain ischemia (Watanabe et al., 1984; Kawai et al., 1997) and the same has been found to be effective against myocardial ischemia (Wu et al., 2002).

In the crystal structure (Fig. 1), the pyrazole ring (C3/N1/N2/C4/C5) is approximately planar, with a maximum deviation of 0.005 (2) Å at atom N2. The piperidine ring (C1/C2/C3/C5/C6/N3) adopts a half-boat conformation (Cremer & Pople, 1975) with puckering of Q = 0.465 (2) Å, Θ = 52.9 (2)° & φ = 39.8 (4)°. The maximum deviation in this piperidine ring is 0.286 Å at atom N3. The dihedral angle formed between the mean planes of pyrazole and piperidine rings is 5.69 (13)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to a closely related structure (Shahani et al., 2009).

In the crystal packing (Fig. 2), pairs of intermolecular N2—H1N2···O2 hydrogen bonds form dimers with neighbouring molecules, generating R22(8) ring motifs (Bernstein et al., 1995). These dimers are further linked into two-dimensional arrays parallel to the bc plane by intermolecular N1—H1N1···O2, C1—H1B···O2 and C11—H11C···O3 hydrogen bonds.

Experimental

LiHMDS (1.0 M solution in toluene, 11 mmol) was added quickly to a solution of tert-butyl 4-oxopiperidine-1-carboxylate (10 mmol 15 ml of toluene) using syringe at 273 K with stirring for 10 minutes. Ethyl chloro formate (11 mmol) was then added quickly. The reaction mixture was slowly (10 minutes) brought to room temperature and stirred for 10 minutes. Acetic acid (2 ml), ethanol (15 ml), and hydrazine hydrate (30 mmol) were added and refluxed for 15 minutes. The reaction mixture was concentrated to dryness under reduced pressure and re-dissolved in ethyl acetate. The organic layer was washed with saturated brine solution, dried over Na2SO4, evaporated under reduced pressure and purified by crystallizing using ethanol (white solid). The recrystallization was done using 1:1 mixture of ethanol and acetone. Yield: 78%. M.p. 498.5–500.5 K. MS calculated for C11H17N3O3: 239.126. Found: 239.80 (M+).

Refinement

All hydrogen atoms were located in a difference map and were refined freely [range of N—H = 0.94 and 0.99 Å; and C—H = 0.95–1.02 Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along b axis, showing two-dimensional arrays parallel to the bc plane.

Crystal data

C11H17N3O3 F(000) = 512
Mr = 239.28 Dx = 1.345 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7287 reflections
a = 18.6250 (12) Å θ = 2.3–33.5°
b = 6.0893 (5) Å µ = 0.10 mm1
c = 10.7414 (7) Å T = 100 K
β = 104.100 (4)° Plate, colourless
V = 1181.51 (15) Å3 0.97 × 0.35 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2690 independent reflections
Radiation source: fine-focus sealed tube 2136 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −24→24
Tmin = 0.910, Tmax = 0.986 k = −7→7
13101 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172 All H-atom parameters refined
S = 1.24 w = 1/[σ2(Fo2) + (0.0688P)2 + 1.2823P] where P = (Fo2 + 2Fc2)/3
2690 reflections (Δ/σ)max < 0.001
222 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.30793 (9) 0.5995 (3) 0.33483 (16) 0.0205 (4)
O2 0.04609 (9) 0.9437 (3) 0.36561 (15) 0.0205 (4)
O3 0.34752 (9) 0.2971 (3) 0.45801 (16) 0.0231 (4)
N1 0.07659 (11) 0.5955 (4) 0.62882 (18) 0.0191 (4)
N2 0.04170 (11) 0.7682 (4) 0.55702 (19) 0.0186 (4)
N3 0.23023 (11) 0.4313 (3) 0.43120 (19) 0.0191 (4)
C1 0.20586 (14) 0.2460 (4) 0.4972 (2) 0.0215 (5)
C2 0.17706 (14) 0.3233 (4) 0.6127 (2) 0.0225 (5)
C3 0.12708 (12) 0.5145 (4) 0.5701 (2) 0.0185 (5)
C4 0.06920 (12) 0.7945 (4) 0.4514 (2) 0.0167 (5)
C5 0.12428 (12) 0.6319 (4) 0.4598 (2) 0.0172 (5)
C6 0.17364 (13) 0.5912 (4) 0.3715 (2) 0.0190 (5)
C7 0.30029 (12) 0.4308 (4) 0.4123 (2) 0.0180 (5)
C8 0.38126 (12) 0.6603 (4) 0.3140 (2) 0.0186 (5)
C9 0.43236 (15) 0.7313 (5) 0.4403 (3) 0.0258 (6)
C10 0.36107 (14) 0.8534 (5) 0.2231 (3) 0.0249 (6)
C11 0.41358 (14) 0.4723 (5) 0.2519 (2) 0.0215 (5)
H1A 0.2501 (16) 0.144 (5) 0.527 (3) 0.027 (7)*
H1B 0.1645 (16) 0.173 (5) 0.437 (3) 0.025 (7)*
H2A 0.1514 (16) 0.203 (6) 0.639 (3) 0.032 (8)*
H2B 0.2187 (16) 0.364 (5) 0.682 (3) 0.026 (7)*
H6A 0.1980 (15) 0.727 (5) 0.353 (3) 0.023 (7)*
H6B 0.1445 (14) 0.539 (5) 0.286 (3) 0.021 (7)*
H9A 0.4124 (16) 0.854 (5) 0.476 (3) 0.026 (8)*
H9B 0.4808 (16) 0.779 (5) 0.428 (3) 0.026 (7)*
H9C 0.4426 (16) 0.611 (6) 0.504 (3) 0.035 (9)*
H10A 0.4080 (17) 0.909 (5) 0.201 (3) 0.035 (8)*
H10B 0.3254 (17) 0.809 (5) 0.139 (3) 0.033 (8)*
H10C 0.3394 (19) 0.970 (6) 0.264 (3) 0.049 (10)*
H11A 0.4596 (16) 0.530 (5) 0.227 (3) 0.031 (8)*
H11B 0.4299 (15) 0.344 (5) 0.313 (3) 0.027 (7)*
H11C 0.3819 (18) 0.421 (6) 0.172 (3) 0.042 (9)*
H1N1 0.0676 (18) 0.566 (6) 0.714 (3) 0.043 (9)*
H1N2 0.0081 (18) 0.852 (6) 0.589 (3) 0.046 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0230 (8) 0.0192 (9) 0.0230 (8) 0.0028 (7) 0.0124 (6) 0.0066 (7)
O2 0.0288 (8) 0.0201 (9) 0.0164 (8) 0.0054 (7) 0.0128 (6) 0.0019 (7)
O3 0.0267 (8) 0.0206 (10) 0.0245 (9) 0.0053 (7) 0.0109 (7) 0.0061 (8)
N1 0.0267 (10) 0.0186 (11) 0.0152 (9) −0.0001 (8) 0.0111 (7) 0.0008 (8)
N2 0.0246 (9) 0.0184 (11) 0.0160 (9) 0.0018 (8) 0.0110 (7) 0.0002 (8)
N3 0.0250 (10) 0.0148 (11) 0.0210 (10) 0.0028 (8) 0.0121 (8) 0.0043 (9)
C1 0.0285 (12) 0.0144 (12) 0.0253 (12) 0.0000 (10) 0.0138 (10) 0.0016 (11)
C2 0.0299 (12) 0.0177 (13) 0.0237 (12) 0.0001 (10) 0.0134 (10) 0.0069 (11)
C3 0.0235 (11) 0.0153 (12) 0.0192 (11) −0.0036 (9) 0.0103 (9) −0.0027 (10)
C4 0.0212 (10) 0.0163 (12) 0.0153 (10) −0.0027 (9) 0.0099 (8) −0.0018 (9)
C5 0.0224 (10) 0.0151 (12) 0.0164 (10) −0.0015 (9) 0.0094 (8) −0.0019 (9)
C6 0.0259 (11) 0.0182 (13) 0.0166 (11) 0.0041 (10) 0.0121 (9) 0.0014 (10)
C7 0.0244 (11) 0.0150 (12) 0.0167 (10) 0.0001 (10) 0.0089 (8) −0.0012 (10)
C8 0.0222 (11) 0.0162 (12) 0.0213 (11) −0.0014 (9) 0.0127 (9) 0.0010 (10)
C9 0.0327 (13) 0.0248 (15) 0.0224 (13) −0.0028 (11) 0.0115 (10) −0.0041 (12)
C10 0.0298 (12) 0.0237 (14) 0.0250 (13) 0.0024 (11) 0.0140 (10) 0.0053 (11)
C11 0.0265 (12) 0.0208 (13) 0.0198 (12) 0.0023 (10) 0.0106 (9) −0.0032 (11)

Geometric parameters (Å, °)

O1—C7 1.351 (3) C3—C5 1.374 (3)
O1—C8 1.484 (3) C4—C5 1.413 (3)
O2—C4 1.290 (3) C5—C6 1.494 (3)
O3—C7 1.212 (3) C6—H6A 0.98 (3)
N1—C3 1.347 (3) C6—H6B 1.00 (3)
N1—N2 1.371 (3) C8—C10 1.516 (4)
N1—H1N1 0.99 (3) C8—C9 1.518 (4)
N2—C4 1.364 (3) C8—C11 1.521 (3)
N2—H1N2 0.94 (4) C9—H9A 0.96 (3)
N3—C7 1.369 (3) C9—H9B 0.99 (3)
N3—C1 1.462 (3) C9—H9C 0.99 (3)
N3—C6 1.463 (3) C10—H10A 1.02 (3)
C1—C2 1.540 (3) C10—H10B 1.02 (3)
C1—H1A 1.02 (3) C10—H10C 0.97 (4)
C1—H1B 0.98 (3) C11—H11A 1.02 (3)
C2—C3 1.491 (4) C11—H11B 1.02 (3)
C2—H2A 0.95 (3) C11—H11C 0.97 (3)
C2—H2B 0.97 (3)
C7—O1—C8 121.42 (18) N3—C6—H6A 109.1 (16)
C3—N1—N2 107.86 (19) C5—C6—H6A 111.8 (17)
C3—N1—H1N1 132 (2) N3—C6—H6B 111.4 (16)
N2—N1—H1N1 120 (2) C5—C6—H6B 110.9 (15)
C4—N2—N1 109.62 (19) H6A—C6—H6B 105 (2)
C4—N2—H1N2 132 (2) O3—C7—O1 125.9 (2)
N1—N2—H1N2 118 (2) O3—C7—N3 124.4 (2)
C7—N3—C1 119.4 (2) O1—C7—N3 109.70 (19)
C7—N3—C6 123.2 (2) O1—C8—C10 101.39 (18)
C1—N3—C6 116.77 (19) O1—C8—C9 109.63 (18)
N3—C1—C2 111.4 (2) C10—C8—C9 111.0 (2)
N3—C1—H1A 107.4 (17) O1—C8—C11 110.8 (2)
C2—C1—H1A 110.2 (16) C10—C8—C11 111.3 (2)
N3—C1—H1B 108.7 (17) C9—C8—C11 112.2 (2)
C2—C1—H1B 107.2 (16) C8—C9—H9A 111.1 (17)
H1A—C1—H1B 112 (2) C8—C9—H9B 110.9 (16)
C3—C2—C1 107.8 (2) H9A—C9—H9B 106 (2)
C3—C2—H2A 111.7 (19) C8—C9—H9C 112.3 (19)
C1—C2—H2A 107.4 (19) H9A—C9—H9C 110 (2)
C3—C2—H2B 111.2 (19) H9B—C9—H9C 106 (2)
C1—C2—H2B 108.9 (17) C8—C10—H10A 108.3 (18)
H2A—C2—H2B 110 (3) C8—C10—H10B 111.7 (19)
N1—C3—C5 109.2 (2) H10A—C10—H10B 107 (2)
N1—C3—C2 126.6 (2) C8—C10—H10C 110 (2)
C5—C3—C2 124.1 (2) H10A—C10—H10C 110 (3)
O2—C4—N2 123.3 (2) H10B—C10—H10C 110 (3)
O2—C4—C5 130.5 (2) C8—C11—H11A 107.7 (18)
N2—C4—C5 106.2 (2) C8—C11—H11B 112.6 (17)
C3—C5—C4 107.13 (19) H11A—C11—H11B 107 (2)
C3—C5—C6 124.1 (2) C8—C11—H11C 114 (2)
C4—C5—C6 128.7 (2) H11A—C11—H11C 105 (3)
N3—C6—C5 108.74 (19) H11B—C11—H11C 110 (3)
C3—N1—N2—C4 1.0 (3) O2—C4—C5—C6 2.0 (4)
C7—N3—C1—C2 125.7 (2) N2—C4—C5—C6 −177.9 (2)
C6—N3—C1—C2 −63.6 (3) C7—N3—C6—C5 −148.5 (2)
N3—C1—C2—C3 45.8 (3) C1—N3—C6—C5 41.2 (3)
N2—N1—C3—C5 −0.9 (3) C3—C5—C6—N3 −7.8 (3)
N2—N1—C3—C2 −178.8 (2) C4—C5—C6—N3 170.1 (2)
C1—C2—C3—N1 162.0 (2) C8—O1—C7—O3 −10.1 (4)
C1—C2—C3—C5 −15.7 (3) C8—O1—C7—N3 170.38 (19)
N1—N2—C4—O2 179.3 (2) C1—N3—C7—O3 −8.0 (4)
N1—N2—C4—C5 −0.8 (3) C6—N3—C7—O3 −178.1 (2)
N1—C3—C5—C4 0.4 (3) C1—N3—C7—O1 171.5 (2)
C2—C3—C5—C4 178.4 (2) C6—N3—C7—O1 1.4 (3)
N1—C3—C5—C6 178.6 (2) C7—O1—C8—C10 −179.8 (2)
C2—C3—C5—C6 −3.4 (4) C7—O1—C8—C9 −62.4 (3)
O2—C4—C5—C3 −179.8 (2) C7—O1—C8—C11 61.9 (3)
N2—C4—C5—C3 0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2i 0.99 (3) 1.77 (3) 2.748 (3) 171 (3)
N2—H1N2···O2ii 0.94 (3) 1.75 (4) 2.665 (3) 167 (3)
C1—H1B···O2iii 0.98 (3) 2.57 (3) 3.492 (3) 157 (3)
C11—H11C···O3iv 0.97 (3) 2.60 (3) 3.504 (3) 156 (3)

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y+2, −z+1; (iii) x, y−1, z; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2705).

References

  1. Al-Haiza, M. A., El-Assiery, S. A. & Sayed, G. H. (2001). Acta Pharm.51, 251–261.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Brogden, R. N. (1986). Drugs, 32, 60–70. [DOI] [PubMed]
  5. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.
  6. Coersmeier, C., Wittenberg, H. R., Aehringhaus, U., Dreyling, K. W., Peskar, B. M., Brune, K. & Pesker, B. A. (1986). Agents Actions Suppl.19, 137–153. [PubMed]
  7. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  9. Gursoy, A., Demirayak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem.35, 359–364. [DOI] [PubMed]
  10. Kawai, H., Nakai, H., Suga, M., Yuki, S., Watanabe, T. & Saito, K. I. (1997). J. Pharmcol. Exp. Ther.281, 921–927. [PubMed]
  11. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Watanabe, T., Yuki, S., Egawa, M. & Nishi, H. (1984). J. Pharmacol. Exp. Ther.268, 1597–1604. [PubMed]
  15. Wu, T. W., Zeng, L. H., Wu, J. & Fung, K. P. (2002). Life Sci.71, 2249–2255. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809053021/ng2705sup1.cif

e-66-0o142-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809053021/ng2705Isup2.hkl

e-66-0o142-Isup2.hkl (132.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES