Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 4;66(Pt 1):o45–o46. doi: 10.1107/S160053680905137X

1-[2-(Carboxy­meth­oxy)phen­yl]-N-(4-chloro­phen­yl)methanimine oxide1

Janet M S Skakle a, Edward R T Tiekink b,*, James L Wardell c, Solange M S V Wardell d
PMCID: PMC2980074  PMID: 21580149

Abstract

In the title resonance conformer, C15H12ClNO4, the central C–N bond [1.297 (2) Å] has considerable double-bond character and the N–O bond [1.3215 (18) Å] indicates formal negative charge on the oxygen atom. Considerable deviations from co-planarity are evident in the mol­ecule, with both benzene rings twisted out of the central C–C–N–C plane [the dihedral angle formed between the rings = 81.99 (8)°]. Similarly, the carboxylic acid residue occupies a position almost normal to the plane of the benzene ring to which it is connected [C—C—O—C torsion angle = −78.42 (17)°]. The most prominent inter­molecular inter­actions involve the carboxylic acid the N+–O residues with the O—H⋯O hydrogen bonds leading to helical supra­molecular chains along the b axis. These chains are connected into layers via C–H⋯Ocarbon­yl inter­actions and the layers are consolidated into the crystal structure by C–H⋯Cl contacts.

Related literature

For the synthesis, see: Forrester et al. (1974).graphic file with name e-66-00o45-scheme1.jpg

Experimental

Crystal data

  • C15H12ClNO4

  • M r = 305.72

  • Monoclinic, Inline graphic

  • a = 7.6631 (2) Å

  • b = 19.3034 (5) Å

  • c = 9.6305 (3) Å

  • β = 107.083 (1)°

  • V = 1361.73 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 120 K

  • 0.26 × 0.14 × 0.12 mm

Data collection

  • Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.760, T max = 1.000

  • 15210 measured reflections

  • 3113 independent reflections

  • 2589 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.109

  • S = 1.10

  • 3113 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905137X/pb2014sup1.cif

e-66-00o45-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905137X/pb2014Isup2.hkl

e-66-00o45-Isup2.hkl (149.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.84 1.76 2.5834 (17) 167
C2—H2a⋯O1ii 0.99 2.29 3.205 (2) 154
C9—H9⋯Cl1iii 0.95 2.71 3.5538 (16) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

The title compound (I) and other N-(2-carboxymethoxybenzylidene)aniline N-oxides are useful precursors of 4-aryl-2H-1,4-benzoxazin-3(4H)-ones on photolysis in the presence of persulfate.

The C9–N1 bond distance of 1.297 (2) Å in (I), Fig. 1, indicates significant double bond character is this bond, and the N1–O4 distance of 1.3215 (18) Å is indicative of significant negative charge on the O4 centre, indicating that (I) exists primarily as a zwitterion. The molecular structure of (I) displays considerable deviations from co-planarity of the various residues. Thus, while the central moiety is planar as seen in the C4/C9/N1/C10 torsion angle of 176.07 (14) °, both phenyl substituents are twisted out of this plane as seen in the N1/C9/C4/C3 and C9/N1/C10/C11 torsion angles of 161.63 (15) and -60.8 (2) °, respectively. The carboxylic acid residue occupies a position approximately normal to the plane of the C3—C8 phenyl ring as seen in the C1/C2/O3/C3 torsion angle of -78.42 (17) °. The most prominent hydrogen bonding interactions are of the type O–H···O and occur between the carboxylic acid-O2–H and N–O- atoms. These lead to supramolecular helical chains aligned along the b axis, Table 1 and Fig. 2. Connections between chains are afforded by C–H···O2 interactions leading to undulating supramolecular arrays in the bc plane, Table 1 and Fig. 3, with the chloride atoms lying to either side. Layers stack along the a direction being held in place by C–H···Cl contacts, Table 1 and Fig. 4.

Experimental

The compound was prepared according to a published procedure (Forrester et al., 1974) from 2-H(O)CC6H4OCH2CO2H and 4-ClC6H4NHOH, m. pt. 484–485 K, lit. value 480–482 K. The sample used in the structure determination was grown from EtOH solution.

Refinement

All H atoms were located from a difference map but, were geometrically placed (O–H = 0.84 Å and C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C, O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

Supramolecular helical chain in (I) aligned along the b axis and mediated by O–H···O hydrogen bonds (orange dashed lines). Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.

Fig. 3.

Fig. 3.

Supramolecular array in (I) in the bc plane whereby the chains illustrated in Fig. 2 are connected by C–H···O contacts (blue dashed lines). Colour code as for Fig. 2.

Fig. 4.

Fig. 4.

Unit-cell contents for (I) viewed in projection down the c axis showing the stacking of the layers, illustrated in Fig. 3, along the a direction with the C–H···Cl contacts shown as pink dashed lines. Colour code as for Fig. 2.

Crystal data

C15H12ClNO4 F(000) = 632
Mr = 305.72 Dx = 1.491 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 3158 reflections
a = 7.6631 (2) Å θ = 2.9–27.5°
b = 19.3034 (5) Å µ = 0.30 mm1
c = 9.6305 (3) Å T = 120 K
β = 107.083 (1)° Block, colourless
V = 1361.73 (7) Å3 0.26 × 0.14 × 0.12 mm
Z = 4

Data collection

Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer 3113 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode 2589 reflections with I > 2σ(I)
graphite Rint = 0.043
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 3.1°
φ & ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) k = −24→24
Tmin = 0.760, Tmax = 1.000 l = −12→12
15210 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.4283P] where P = (Fo2 + 2Fc2)/3
3113 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.29830 (5) 0.38201 (2) 0.07891 (5) 0.02112 (14)
O1 0.93820 (17) 0.79845 (6) 0.20859 (13) 0.0221 (3)
O2 0.98035 (17) 0.87208 (6) 0.03948 (13) 0.0188 (3)
H2 0.9383 0.9017 0.0851 0.028*
O3 1.10293 (16) 0.69282 (6) 0.10258 (12) 0.0173 (3)
O4 1.14983 (15) 0.47536 (6) 0.35203 (13) 0.0215 (3)
N1 1.02235 (18) 0.51788 (7) 0.27572 (14) 0.0153 (3)
C1 0.9942 (2) 0.81150 (8) 0.10650 (17) 0.0158 (3)
C2 1.0864 (2) 0.75905 (8) 0.03432 (17) 0.0170 (3)
H2A 1.0148 0.7543 −0.0691 0.020*
H2B 1.2094 0.7762 0.0379 0.020*
C3 1.2385 (2) 0.68188 (8) 0.23022 (17) 0.0145 (3)
C4 1.2202 (2) 0.62054 (8) 0.30478 (17) 0.0137 (3)
C5 1.3572 (2) 0.60303 (9) 0.43187 (18) 0.0165 (3)
H5 1.3471 0.5614 0.4816 0.020*
C6 1.5076 (2) 0.64566 (9) 0.48609 (19) 0.0195 (4)
H6 1.5995 0.6337 0.5729 0.023*
C7 1.5222 (2) 0.70602 (9) 0.41192 (19) 0.0209 (4)
H7 1.6250 0.7353 0.4491 0.025*
C8 1.3896 (2) 0.72460 (9) 0.28434 (19) 0.0191 (4)
H8 1.4021 0.7660 0.2347 0.023*
C9 1.0503 (2) 0.58210 (9) 0.24893 (17) 0.0158 (3)
H9 0.9499 0.6065 0.1867 0.019*
C10 0.8406 (2) 0.48799 (8) 0.21883 (17) 0.0153 (3)
C11 0.6971 (2) 0.51583 (9) 0.25987 (18) 0.0180 (3)
H11 0.7140 0.5563 0.3183 0.022*
C12 0.5272 (2) 0.48347 (9) 0.21402 (18) 0.0185 (4)
H12 0.4265 0.5014 0.2412 0.022*
C13 0.5076 (2) 0.42485 (8) 0.12845 (17) 0.0155 (3)
C14 0.6508 (2) 0.39793 (9) 0.08408 (18) 0.0179 (3)
H14 0.6328 0.3585 0.0225 0.022*
C15 0.8205 (2) 0.42961 (9) 0.13122 (18) 0.0178 (3)
H15 0.9212 0.4117 0.1040 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0142 (2) 0.0219 (3) 0.0254 (2) −0.00393 (15) 0.00286 (17) −0.00054 (16)
O1 0.0261 (7) 0.0237 (7) 0.0188 (6) 0.0052 (5) 0.0103 (5) 0.0049 (5)
O2 0.0244 (6) 0.0137 (6) 0.0191 (6) 0.0040 (5) 0.0076 (5) 0.0017 (5)
O3 0.0220 (6) 0.0128 (6) 0.0153 (6) −0.0007 (5) 0.0024 (5) 0.0011 (4)
O4 0.0154 (6) 0.0150 (6) 0.0306 (7) 0.0007 (5) 0.0015 (5) 0.0064 (5)
N1 0.0153 (6) 0.0149 (7) 0.0151 (7) −0.0001 (5) 0.0037 (5) −0.0002 (5)
C1 0.0129 (8) 0.0178 (9) 0.0141 (8) 0.0003 (6) 0.0000 (6) 0.0007 (6)
C2 0.0227 (8) 0.0133 (8) 0.0145 (8) 0.0019 (7) 0.0047 (7) 0.0029 (6)
C3 0.0153 (8) 0.0147 (8) 0.0142 (7) 0.0033 (6) 0.0053 (6) −0.0014 (6)
C4 0.0150 (8) 0.0118 (8) 0.0147 (8) −0.0007 (6) 0.0052 (6) −0.0024 (6)
C5 0.0185 (8) 0.0146 (8) 0.0168 (8) 0.0014 (6) 0.0057 (7) 0.0004 (6)
C6 0.0164 (8) 0.0192 (9) 0.0208 (8) 0.0020 (7) 0.0021 (7) −0.0014 (7)
C7 0.0155 (8) 0.0176 (9) 0.0277 (9) −0.0030 (7) 0.0035 (7) −0.0015 (7)
C8 0.0204 (8) 0.0143 (8) 0.0232 (9) −0.0025 (7) 0.0073 (7) 0.0003 (7)
C9 0.0168 (8) 0.0153 (8) 0.0142 (8) −0.0001 (6) 0.0029 (6) 0.0003 (6)
C10 0.0143 (8) 0.0148 (8) 0.0157 (8) −0.0029 (6) 0.0028 (6) 0.0021 (6)
C11 0.0214 (8) 0.0146 (8) 0.0179 (8) −0.0010 (7) 0.0060 (7) −0.0026 (6)
C12 0.0163 (8) 0.0195 (9) 0.0207 (8) 0.0023 (7) 0.0068 (7) 0.0004 (7)
C13 0.0137 (7) 0.0158 (8) 0.0153 (8) −0.0017 (6) 0.0015 (6) 0.0033 (6)
C14 0.0187 (8) 0.0171 (8) 0.0174 (8) −0.0005 (7) 0.0043 (7) −0.0022 (6)
C15 0.0169 (8) 0.0174 (9) 0.0195 (8) 0.0005 (7) 0.0060 (6) −0.0008 (6)

Geometric parameters (Å, °)

Cl1—C13 1.7419 (16) C5—H5 0.9500
O1—C1 1.2095 (19) C6—C7 1.388 (2)
O2—C1 1.3248 (19) C6—H6 0.9500
O2—H2 0.8400 C7—C8 1.392 (2)
O3—C3 1.3729 (19) C7—H7 0.9500
O3—C2 1.4260 (19) C8—H8 0.9500
O4—N1 1.3215 (18) C9—H9 0.9500
N1—C9 1.297 (2) C10—C11 1.382 (2)
N1—C10 1.458 (2) C10—C15 1.389 (2)
C1—C2 1.515 (2) C11—C12 1.394 (2)
C2—H2A 0.9900 C11—H11 0.9500
C2—H2B 0.9900 C12—C13 1.382 (2)
C3—C8 1.392 (2) C12—H12 0.9500
C3—C4 1.413 (2) C13—C14 1.390 (2)
C4—C5 1.400 (2) C14—C15 1.387 (2)
C4—C9 1.458 (2) C14—H14 0.9500
C5—C6 1.387 (2) C15—H15 0.9500
C1—O2—H2 109.5 C6—C7—H7 119.3
C3—O3—C2 119.48 (13) C8—C7—H7 119.3
C9—N1—O4 124.48 (14) C7—C8—C3 119.28 (16)
C9—N1—C10 119.93 (14) C7—C8—H8 120.4
O4—N1—C10 115.58 (13) C3—C8—H8 120.4
O1—C1—O2 125.67 (15) N1—C9—C4 126.52 (15)
O1—C1—C2 123.94 (15) N1—C9—H9 116.7
O2—C1—C2 110.37 (13) C4—C9—H9 116.7
O3—C2—C1 112.21 (13) C11—C10—C15 122.26 (15)
O3—C2—H2A 109.2 C11—C10—N1 119.43 (14)
C1—C2—H2A 109.2 C15—C10—N1 118.20 (14)
O3—C2—H2B 109.2 C10—C11—C12 118.87 (15)
C1—C2—H2B 109.2 C10—C11—H11 120.6
H2A—C2—H2B 107.9 C12—C11—H11 120.6
O3—C3—C8 124.86 (15) C13—C12—C11 118.92 (15)
O3—C3—C4 114.96 (14) C13—C12—H12 120.5
C8—C3—C4 120.13 (15) C11—C12—H12 120.5
C5—C4—C3 119.07 (15) C12—C13—C14 122.15 (15)
C5—C4—C9 123.98 (14) C12—C13—Cl1 118.82 (12)
C3—C4—C9 116.77 (14) C14—C13—Cl1 119.01 (13)
C6—C5—C4 120.83 (15) C15—C14—C13 118.91 (15)
C6—C5—H5 119.6 C15—C14—H14 120.5
C4—C5—H5 119.6 C13—C14—H14 120.5
C5—C6—C7 119.21 (16) C14—C15—C10 118.85 (15)
C5—C6—H6 120.4 C14—C15—H15 120.6
C7—C6—H6 120.4 C10—C15—H15 120.6
C6—C7—C8 121.47 (16)
C3—O3—C2—C1 −78.42 (17) C10—N1—C9—C4 176.07 (14)
O1—C1—C2—O3 −1.2 (2) C5—C4—C9—N1 −23.3 (3)
O2—C1—C2—O3 −179.58 (13) C3—C4—C9—N1 161.63 (15)
C2—O3—C3—C8 −15.5 (2) C9—N1—C10—C11 −60.8 (2)
C2—O3—C3—C4 167.06 (13) O4—N1—C10—C11 119.82 (16)
O3—C3—C4—C5 176.51 (14) C9—N1—C10—C15 122.85 (17)
C8—C3—C4—C5 −1.0 (2) O4—N1—C10—C15 −56.54 (19)
O3—C3—C4—C9 −8.1 (2) C15—C10—C11—C12 1.2 (3)
C8—C3—C4—C9 174.34 (14) N1—C10—C11—C12 −174.98 (14)
C3—C4—C5—C6 1.2 (2) C10—C11—C12—C13 −0.3 (2)
C9—C4—C5—C6 −173.80 (15) C11—C12—C13—C14 −1.4 (3)
C4—C5—C6—C7 −0.6 (2) C11—C12—C13—Cl1 176.80 (12)
C5—C6—C7—C8 −0.1 (3) C12—C13—C14—C15 2.2 (3)
C6—C7—C8—C3 0.3 (3) Cl1—C13—C14—C15 −175.99 (12)
O3—C3—C8—C7 −176.99 (15) C13—C14—C15—C10 −1.3 (2)
C4—C3—C8—C7 0.3 (2) C11—C10—C15—C14 −0.4 (3)
O4—N1—C9—C4 −4.6 (2) N1—C10—C15—C14 175.84 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O4i 0.84 1.76 2.5834 (17) 167
C2—H2a···O1ii 0.99 2.29 3.205 (2) 154
C9—H9···Cl1iii 0.95 2.71 3.5538 (16) 148

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z.

Footnotes

1

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2014).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Forrester, A. R., Skilling, J. & Thomson, R. H. (1974). J. Chem. Soc. Perkin Trans. 1, pp. 2162–2166.
  3. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  4. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  5. Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905137X/pb2014sup1.cif

e-66-00o45-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905137X/pb2014Isup2.hkl

e-66-00o45-Isup2.hkl (149.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES