Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 24;66(Pt 1):o239–o240. doi: 10.1107/S1600536809054798

Bis(2,4,6-triamino-1,3,5-triazin-1-ium) hydrogen phosphate trihydrate

Xue-Mei Li a, Si-Si Feng b,*, Fan Wang a, Qi Ma a,b, Miao-Li Zhu b
PMCID: PMC2980075  PMID: 21580120

Abstract

In the title hydrated mol­ecular salt, 2C3H7N6 +·HPO4 2−·3H2O, three of the O atoms of the hydrogen phosphate anion are disordered over two positions, with relative occupancies of 0.763 (1) and 0.237 (1). In the crystal, the components are linked by N—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds

Related literature

For related structures, see: Choi et al. (2004); Janczak & Perpétuo (2001a ,b ,c , 2002, 2003, 2004); Li et al. (2005); Perpétuo & Janczak (2002); Zhang et al. (2004).graphic file with name e-66-0o239-scheme1.jpg

Experimental

Crystal data

  • 2C3H7N6 +·HPO4 2−·3H2O

  • M r = 404.32

  • Triclinic, Inline graphic

  • a = 6.767 (4) Å

  • b = 10.548 (7) Å

  • c = 12.497 (8) Å

  • α = 91.865 (11)°

  • β = 105.609 (10)°

  • γ = 108.020 (9)°

  • V = 810.3 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.933, T max = 0.954

  • 3823 measured reflections

  • 2803 independent reflections

  • 2027 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.178

  • S = 1.06

  • 2803 reflections

  • 274 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809054798/hb5248sup1.cif

e-66-0o239-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054798/hb5248Isup2.hkl

e-66-0o239-Isup2.hkl (137.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O5i 0.77 (4) 2.06 (4) 2.791 (4) 158 (4)
N4—H4B⋯O4Aii 0.86 2.22 2.998 (5) 151
N4—H4A⋯N7iii 0.86 2.20 3.059 (5) 177
N5—H5B⋯O7 0.86 1.97 2.822 (5) 170
N5—H5A⋯O6iv 0.86 2.41 3.258 (5) 167
N6—H6B⋯O5i 0.86 2.28 3.009 (5) 143
N6—H6A⋯N9v 0.86 2.17 3.031 (5) 176
N8—H8⋯O3A 0.84 (3) 1.93 (4) 2.742 (7) 164 (3)
N10—H10B⋯O2A 0.86 2.11 2.952 (5) 168
N10—H10A⋯O2Avi 0.86 1.99 2.744 (5) 146
N11—H11B⋯O4Avii 0.86 2.53 3.147 (6) 129
N11—H11B⋯O1vii 0.86 2.33 3.121 (5) 152
N11—H11A⋯N1v 0.86 2.02 2.884 (4) 178
N12—H12B⋯O6viii 0.86 2.07 2.840 (5) 149
N12—H12A⋯N2iii 0.86 2.08 2.935 (4) 172
O1—H1⋯O3Avii 0.82 1.76 2.535 (5) 157
O5—H5D⋯O3Ai 0.85 1.89 2.739 (5) 177
O5—H5C⋯O4A 0.85 2.00 2.726 (6) 142
O6—H6D⋯O1ix 0.85 1.97 2.787 (4) 161
O6—H6C⋯O4A 0.85 2.02 2.838 (6) 162
O7—H7B⋯O1ix 0.85 2.57 3.257 (5) 139
O7—H7B⋯O2Aix 0.85 2.28 2.958 (6) 137
O7—H7A⋯O5i 0.85 2.28 3.006 (6) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Acknowledgments

This work was supported by the Science Foundation of Shanxi Datong University of China (No.2005k03) and the Doctoral Start-up Foundation of Shanxi University.

supplementary crystallographic information

Comment

In previous work, we reported a compound of 2,4,6-triamino-1,3,5-triazin-1-ium with organic anion linked via weak interactions (Li et al., 2005). As continuing interest, here, we present the results of the crystal structure of another ion pair adduct containing monoprotonated melaminium, inorganic anion (hydrogen phosphate), and solvent water, (I, Fig. 1 & Table 1).

The aromatic rings both monoprotonated melaminium exhibit significant distortions from the ideal hexagonal form. Thus, the internal C—N—C angles at the protonated N atoms (C1—N3—C2 and C6 N8 C5) are significantly greater than the other two ring (i.e. C1—N2—C2, C1—N1—C3, C5—N7—C4, C6—N9—C4) angles, and the internal N2—C1—N1and N7—C4—N9 angle, i.e. containing only non-protonated N atoms is greater than either of the remaining N—C—N angles containing both protonated and non-protonated N atoms (Table 1). This feature of the structure is similar to our previous report (Li et al., 2005) and the other reported mono-protonated melaminium cations (Janczak & Perpétuo, 2001a,b,c, 2002, 2003, 2004; Perpétuo & Janczak, 2002; Zhang et al., 2004; Choi et al., 2004).

Between charged residues and the water molecules interact extensively by a combination of ionic, H-bonds (Table 2) as well as π-π interactions as shown in Fig 2. Neighboring melaminium residues are interconnected by double N—H···N H-bonds, leading to the formation of layers.

Experimental

Hot solutions of melamine and meta-phosphoric acid in a 1:1 molar ratio were mixed and, after allowed the mixture to stand at room temperature for a few days, colourless blocks of (I) were desposited.

Refinement

H atoms attached to N (except N3 and N8) and O1 atoms of (I) were placed in geometrically idealized positions with N—H = 0.86 Å O1—H = 0.82 Å and refined with Uiso=1.2Ueq [N] or Uiso=1.5Ueq [O1]. H atoms attached to O (water) N3 and N8 atom were located from the difference Fourier maps and refined their global Uiso=1.2Ueq. The N3—H, N8—H, and O—H distances are in the range 0.768 - 0.851 Å. The O2, O3, and, O4 atoms from hydrogen phosphate anion of crystallization in (I) were found to be disordered and were modelled over two sets of positions using restraints on the anisotropic displacement parameters of these O atoms. The major and minor disorder components had refined occupancies of O2A 0.77 (1), O3A 0.76 (1), O4A 0.76 (1) % and O2B 0.23 (1) O3B 0.24 (1)O4B 0.24 (1)%, respectively.

Figures

Fig. 1.

Fig. 1.

The structure of (I), with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Fig. 2.

Fig. 2.

The packing of (I) viewed down the a axis.

Crystal data

2C3H7N6+·HPO42·3H2O Z = 2
Mr = 404.32 F(000) = 424
Triclinic, P1 Dx = 1.657 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.767 (4) Å Cell parameters from 1970 reflections
b = 10.548 (7) Å θ = 2.5–28.0°
c = 12.497 (8) Å µ = 0.24 mm1
α = 91.865 (11)° T = 296 K
β = 105.609 (10)° Block, colourless
γ = 108.020 (9)° 0.30 × 0.25 × 0.20 mm
V = 810.3 (9) Å3

Data collection

Bruker SMART 1K CCD diffractometer 2803 independent reflections
Radiation source: fine-focus sealed tube 2027 reflections with I > 2σ(I)
graphite Rint = 0.029
ω scans θmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −7→8
Tmin = 0.933, Tmax = 0.954 k = −11→12
3823 measured reflections l = −14→7

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0996P)2 + 0.520P] where P = (Fo2 + 2Fc2)/3
2803 reflections (Δ/σ)max = 0.003
274 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.5323 (6) 0.7920 (4) −0.0156 (3) 0.0352 (8)
C2 0.6740 (6) 0.8584 (4) 0.1714 (3) 0.0359 (8)
C3 0.4373 (6) 0.6393 (4) 0.1008 (3) 0.0337 (8)
C4 0.0847 (5) 0.8128 (3) 0.0751 (3) 0.0317 (8)
C5 0.2296 (6) 0.8597 (4) 0.2627 (3) 0.0372 (8)
C6 −0.0212 (5) 0.6489 (4) 0.1803 (3) 0.0329 (8)
N1 0.4191 (5) 0.6664 (3) −0.0031 (2) 0.0352 (7)
N2 0.6575 (5) 0.8903 (3) 0.0688 (2) 0.0355 (7)
N3 0.5651 (5) 0.7323 (3) 0.1889 (3) 0.0363 (7)
H3 0.577 (6) 0.712 (4) 0.248 (3) 0.029 (10)*
N4 0.5233 (5) 0.8212 (3) −0.1176 (3) 0.0436 (8)
H4A 0.5955 0.9002 −0.1280 0.052*
H4B 0.4453 0.7613 −0.1741 0.052*
N5 0.7957 (5) 0.9458 (3) 0.2586 (3) 0.0459 (8)
H5A 0.8672 1.0258 0.2499 0.055*
H5B 0.8047 0.9235 0.3249 0.055*
N6 0.3325 (5) 0.5192 (3) 0.1207 (3) 0.0418 (8)
H6A 0.2515 0.4577 0.0659 0.050*
H6B 0.3450 0.5021 0.1886 0.050*
N7 0.2203 (5) 0.9023 (3) 0.1634 (2) 0.0358 (7)
N8 0.1115 (5) 0.7333 (3) 0.2726 (3) 0.0374 (7)
H8 0.126 (5) 0.703 (3) 0.334 (3) 0.021 (8)*
N9 −0.0400 (4) 0.6864 (3) 0.0791 (2) 0.0330 (7)
N10 0.3541 (5) 0.9350 (4) 0.3562 (3) 0.0552 (10)
H10A 0.4343 1.0157 0.3550 0.066*
H10B 0.3558 0.9039 0.4191 0.066*
N11 −0.1322 (5) 0.5270 (3) 0.1931 (3) 0.0420 (8)
H11A −0.2178 0.4709 0.1354 0.050*
H11B −0.1193 0.5031 0.2591 0.050*
N12 0.0741 (5) 0.8512 (3) −0.0246 (2) 0.0379 (7)
H12A 0.1520 0.9305 −0.0310 0.045*
H12B −0.0107 0.7969 −0.0834 0.045*
P1 0.24796 (15) 0.68587 (9) 0.57240 (7) 0.0335 (3)
O1 0.0294 (5) 0.6330 (3) 0.6053 (3) 0.0599 (9)
H1 −0.0482 0.5614 0.5669 0.090*
O2A 0.2963 (6) 0.8336 (3) 0.5671 (3) 0.0445 (14) 0.767 (9)
O3A 0.2088 (7) 0.6098 (4) 0.4601 (4) 0.0353 (15) 0.757 (14)
O4A 0.4058 (6) 0.6486 (5) 0.6643 (3) 0.0507 (16) 0.765 (11)
O2B 0.176 (2) 0.7686 (13) 0.4856 (10) 0.046 (5) 0.233 (9)
O3B 0.279 (2) 0.5614 (14) 0.5130 (13) 0.040 (5) 0.243 (14)
O4B 0.4481 (19) 0.7567 (17) 0.6642 (10) 0.048 (5) 0.235 (11)
O5 0.4731 (5) 0.4107 (3) 0.6295 (3) 0.0606 (9)
H5C 0.4405 0.4792 0.6078 0.091*
H5D 0.5757 0.4063 0.6041 0.091*
O6 0.8660 (5) 0.7583 (4) 0.7442 (3) 0.0753 (11)
H6C 0.7299 0.7431 0.7189 0.113*
H6D 0.8984 0.7038 0.7061 0.113*
O7 0.8612 (6) 0.8583 (4) 0.4724 (3) 0.0799 (11)
H7A 0.7320 0.8059 0.4420 0.120*
H7B 0.9418 0.8093 0.4809 0.120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0292 (18) 0.040 (2) 0.040 (2) 0.0123 (16) 0.0150 (15) 0.0077 (16)
C2 0.0342 (19) 0.039 (2) 0.042 (2) 0.0175 (16) 0.0177 (16) 0.0081 (17)
C3 0.0292 (18) 0.038 (2) 0.040 (2) 0.0133 (15) 0.0165 (15) 0.0067 (16)
C4 0.0274 (18) 0.039 (2) 0.0343 (19) 0.0133 (15) 0.0146 (15) 0.0090 (15)
C5 0.0281 (18) 0.047 (2) 0.035 (2) 0.0074 (16) 0.0143 (15) 0.0034 (16)
C6 0.0272 (18) 0.044 (2) 0.0321 (19) 0.0140 (16) 0.0127 (14) 0.0088 (15)
N1 0.0342 (17) 0.0360 (17) 0.0369 (17) 0.0086 (13) 0.0161 (13) 0.0076 (13)
N2 0.0348 (16) 0.0349 (17) 0.0402 (17) 0.0088 (13) 0.0193 (13) 0.0082 (13)
N3 0.0397 (18) 0.0396 (18) 0.0358 (19) 0.0147 (14) 0.0188 (15) 0.0119 (15)
N4 0.0468 (19) 0.0413 (18) 0.0375 (18) 0.0038 (15) 0.0161 (14) 0.0071 (14)
N5 0.054 (2) 0.0432 (19) 0.0371 (18) 0.0088 (15) 0.0154 (15) 0.0043 (15)
N6 0.0464 (19) 0.0408 (19) 0.0396 (18) 0.0101 (15) 0.0188 (15) 0.0120 (14)
N7 0.0302 (16) 0.0381 (17) 0.0375 (17) 0.0053 (13) 0.0146 (13) 0.0040 (13)
N8 0.0384 (18) 0.047 (2) 0.0266 (17) 0.0108 (15) 0.0130 (14) 0.0108 (14)
N9 0.0303 (15) 0.0344 (17) 0.0331 (16) 0.0065 (13) 0.0119 (12) 0.0084 (12)
N10 0.048 (2) 0.062 (2) 0.0367 (19) −0.0071 (17) 0.0125 (16) −0.0012 (16)
N11 0.0438 (18) 0.0413 (18) 0.0323 (17) 0.0017 (14) 0.0111 (14) 0.0125 (13)
N12 0.0408 (18) 0.0368 (17) 0.0337 (17) 0.0056 (14) 0.0150 (13) 0.0101 (13)
P1 0.0332 (5) 0.0360 (5) 0.0311 (5) 0.0064 (4) 0.0142 (4) 0.0090 (4)
O1 0.0576 (19) 0.0512 (19) 0.068 (2) −0.0043 (14) 0.0431 (16) −0.0138 (15)
O2A 0.047 (2) 0.039 (2) 0.047 (3) 0.0066 (17) 0.022 (2) 0.0108 (18)
O3A 0.036 (2) 0.037 (2) 0.033 (2) 0.0065 (16) 0.0155 (18) 0.0097 (17)
O4A 0.058 (3) 0.059 (4) 0.038 (2) 0.028 (2) 0.0091 (17) 0.0085 (18)
O2B 0.060 (9) 0.058 (9) 0.030 (8) 0.032 (7) 0.015 (7) 0.015 (6)
O3B 0.042 (7) 0.045 (8) 0.039 (9) 0.019 (6) 0.015 (6) −0.006 (6)
O4B 0.039 (7) 0.054 (12) 0.047 (7) 0.012 (6) 0.008 (5) 0.011 (6)
O5 0.073 (2) 0.075 (2) 0.065 (2) 0.0440 (18) 0.0458 (17) 0.0388 (16)
O6 0.065 (2) 0.121 (3) 0.0487 (19) 0.050 (2) 0.0113 (16) −0.0150 (18)
O7 0.085 (3) 0.086 (3) 0.077 (2) 0.036 (2) 0.025 (2) 0.037 (2)

Geometric parameters (Å, °)

C1—N4 1.311 (5) N6—H6A 0.8600
C1—N2 1.346 (5) N6—H6B 0.8600
C1—N1 1.347 (5) N8—H8 0.84 (3)
C2—N5 1.303 (5) N10—H10A 0.8600
C2—N2 1.320 (5) N10—H10B 0.8600
C2—N3 1.363 (5) N11—H11A 0.8600
C3—N6 1.315 (5) N11—H11B 0.8600
C3—N1 1.320 (4) N12—H12A 0.8600
C3—N3 1.347 (5) N12—H12B 0.8600
C4—N12 1.313 (4) P1—O4B 1.480 (12)
C4—N7 1.343 (5) P1—O2B 1.488 (10)
C4—N9 1.350 (4) P1—O2A 1.498 (4)
C5—N10 1.305 (5) P1—O4A 1.498 (4)
C5—N7 1.326 (5) P1—O3A 1.510 (4)
C5—N8 1.355 (5) P1—O1 1.581 (3)
C6—N11 1.313 (5) P1—O3B 1.584 (11)
C6—N9 1.323 (4) O1—H1 0.8200
C6—N8 1.346 (5) O5—H5C 0.8501
N3—H3 0.77 (4) O5—H5D 0.8500
N4—H4A 0.8600 O6—H6C 0.8500
N4—H4B 0.8600 O6—H6D 0.8501
N5—H5A 0.8600 O7—H7A 0.8508
N5—H5B 0.8600 O7—H7B 0.8500
N4—C1—N2 116.9 (3) H6A—N6—H6B 120.0
N4—C1—N1 118.0 (3) C5—N7—C4 115.4 (3)
N2—C1—N1 125.1 (3) C6—N8—C5 119.8 (3)
N5—C2—N2 121.1 (3) C6—N8—H8 118 (2)
N5—C2—N3 118.1 (3) C5—N8—H8 122 (2)
N2—C2—N3 120.7 (3) C6—N9—C4 115.6 (3)
N6—C3—N1 120.4 (3) C5—N10—H10A 120.0
N6—C3—N3 118.3 (3) C5—N10—H10B 120.0
N1—C3—N3 121.3 (3) H10A—N10—H10B 120.0
N12—C4—N7 117.0 (3) C6—N11—H11A 120.0
N12—C4—N9 116.9 (3) C6—N11—H11B 120.0
N7—C4—N9 126.1 (3) H11A—N11—H11B 120.0
N10—C5—N7 122.6 (4) C4—N12—H12A 120.0
N10—C5—N8 115.9 (3) C4—N12—H12B 120.0
N7—C5—N8 121.5 (3) H12A—N12—H12B 120.0
N11—C6—N9 120.4 (3) O4B—P1—O2B 116.0 (8)
N11—C6—N8 118.1 (3) O2A—P1—O4A 115.2 (3)
N9—C6—N8 121.5 (3) O2A—P1—O3A 112.0 (2)
C3—N1—C1 116.4 (3) O4A—P1—O3A 112.0 (3)
C2—N2—C1 116.6 (3) O4B—P1—O1 116.8 (5)
C3—N3—C2 119.9 (3) O2B—P1—O1 97.5 (5)
C3—N3—H3 118 (3) O2A—P1—O1 107.06 (18)
C2—N3—H3 122 (3) O4A—P1—O1 102.7 (2)
C1—N4—H4A 120.0 O3A—P1—O1 106.93 (17)
C1—N4—H4B 120.0 O4B—P1—O3B 109.3 (8)
H4A—N4—H4B 120.0 O2B—P1—O3B 108.8 (9)
C2—N5—H5A 120.0 O1—P1—O3B 107.7 (4)
C2—N5—H5B 120.0 P1—O1—H1 109.5
H5A—N5—H5B 120.0 H5C—O5—H5D 107.7
C3—N6—H6A 120.0 H6C—O6—H6D 107.7
C3—N6—H6B 120.0 H7A—O7—H7B 106.2
N6—C3—N1—C1 −179.9 (3) N10—C5—N7—C4 179.9 (4)
N3—C3—N1—C1 −0.9 (5) N8—C5—N7—C4 1.0 (5)
N4—C1—N1—C3 177.9 (3) N12—C4—N7—C5 −179.0 (3)
N2—C1—N1—C3 −1.1 (5) N9—C4—N7—C5 0.1 (5)
N5—C2—N2—C1 178.3 (3) N11—C6—N8—C5 179.6 (3)
N3—C2—N2—C1 −1.1 (5) N9—C6—N8—C5 −0.2 (5)
N4—C1—N2—C2 −176.9 (3) N10—C5—N8—C6 −180.0 (3)
N1—C1—N2—C2 2.1 (5) N7—C5—N8—C6 −1.0 (5)
N6—C3—N3—C2 −179.2 (3) N11—C6—N9—C4 −178.6 (3)
N1—C3—N3—C2 1.8 (5) N8—C6—N9—C4 1.2 (5)
N5—C2—N3—C3 179.9 (3) N12—C4—N9—C6 178.0 (3)
N2—C2—N3—C3 −0.8 (5) N7—C4—N9—C6 −1.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···O5i 0.77 (4) 2.06 (4) 2.791 (4) 158 (4)
N4—H4B···O4Aii 0.86 2.22 2.998 (5) 151
N4—H4A···N7iii 0.86 2.20 3.059 (5) 177
N5—H5B···O7 0.86 1.97 2.822 (5) 170
N5—H5A···O6iv 0.86 2.41 3.258 (5) 167
N6—H6B···O5i 0.86 2.28 3.009 (5) 143
N6—H6A···N9v 0.86 2.17 3.031 (5) 176
N8—H8···O3A 0.84 (3) 1.93 (4) 2.742 (7) 164 (3)
N10—H10B···O2A 0.86 2.11 2.952 (5) 168
N10—H10A···O2Avi 0.86 1.99 2.744 (5) 146
N11—H11B···O4Avii 0.86 2.53 3.147 (6) 129
N11—H11B···O1vii 0.86 2.33 3.121 (5) 152
N11—H11A···N1v 0.86 2.02 2.884 (4) 178
N12—H12B···O6viii 0.86 2.07 2.840 (5) 149
N12—H12A···N2iii 0.86 2.08 2.935 (4) 172
O1—H1···O3Avii 0.82 1.76 2.535 (5) 157
O5—H5D···O3Ai 0.85 1.89 2.739 (5) 177
O5—H5C···O4A 0.85 2.00 2.726 (6) 142
O6—H6D···O1ix 0.85 1.97 2.787 (4) 161
O6—H6C···O4A 0.85 2.02 2.838 (6) 162
O7—H7B···O1ix 0.85 2.57 3.257 (5) 139
O7—H7B···O2Aix 0.85 2.28 2.958 (6) 137
O7—H7A···O5i 0.85 2.28 3.006 (6) 144

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z−1; (iii) −x+1, −y+2, −z; (iv) −x+2, −y+2, −z+1; (v) −x, −y+1, −z; (vi) −x+1, −y+2, −z+1; (vii) −x, −y+1, −z+1; (viii) x−1, y, z−1; (ix) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5248).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Choi, C. S., Venkatraman, R., Kim, E. H., Hwang, H. S. & Kang, S. K. (2004). Acta Cryst. C60, o295–o296. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Janczak, J. & Perpétuo, G. J. (2001a). Acta Cryst. C57, 123–125. [DOI] [PubMed]
  5. Janczak, J. & Perpétuo, G. J. (2001b). Acta Cryst. C57, 1120–1122. [DOI] [PubMed]
  6. Janczak, J. & Perpétuo, G. J. (2001c). Acta Cryst. C57, 1431–1433. [DOI] [PubMed]
  7. Janczak, J. & Perpétuo, G. J. (2002). Acta Cryst. C58, o455–o459. [DOI] [PubMed]
  8. Janczak, J. & Perpétuo, G. J. (2003). Acta Cryst. C59, o349–o352. [DOI] [PubMed]
  9. Janczak, J. & Perpétuo, G. J. (2004). Acta Cryst. C60, o211–o214. [DOI] [PubMed]
  10. Li, X.-M., Lu, L.-P., Feng, S.-S., Zhang, H.-M., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, o811–o813.
  11. Perpétuo, G. J. & Janczak, J. (2002). Acta Cryst. C58, o112–o114. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Zhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. E60, o462–o463.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809054798/hb5248sup1.cif

e-66-0o239-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809054798/hb5248Isup2.hkl

e-66-0o239-Isup2.hkl (137.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES